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Human and mouse angiogenins: 
Emerging insights and potential 
opportunities
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Angiogenin, a well-known angiogenic factor, is crucial to the angiogenesis in 

gastrointestinal tumors. Human angiogenin has only one gene, whereas the 

murine angiogenin family has extended to incorporate six genes. Evolutionary 

studies have suggested functional variations among murine angiogenin 

paralogs, even though the three-dimensional structures of angiogenin 

proteins are remarkably similar. In addition to angiogenesis, the ubiquitous 

pattern of angiogenin expression suggests a variety of functions, such as 

tumorigenesis, neuroprotective, antimicrobial activity, and innate immunity. 

Here, we comprehensively reviewed studies on the structures and functions 

of human and mouse angiogenins. Understanding the structure and function 

of angiogenins from a broader perspective could facilitate future research 

related to development of novel therapeutics on its biological processes, 

especially in gastrointestinal cancers.
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Introduction

Angiogenin is the fifth member of the vertebrate-specific RNase a superfamily firstly 
identified in the cell line HT-29 of human adenocarcinoma. The prime role of angiogenin 
is angiogenesis that is required to promote growth and metastatic spread of cancer cells. 
Globally, gastrointestinal cancer such as stomach, liver, and colon cancer are one of the 
leading causes of cancer death (Poon et  al., 2003). Therefore, angiogenesis in 
gastrointestinal tumor is the focus of research, leading to the development of anticancer 
drugs. In addition to angiogenesis in gastrointestinal tumors, it has an extensive variety 
of capabilities, such as neuroprotective, antimicrobial activity, and innate immunity 
(Tello-Montoliu et al., 2006; Sheng and Xu, 2016; Prehn and Jirström, 2020; Sultana et al., 
2022). Further, serum angiogenin levels are associated with different disease conditions, 
including cancer, cardiovascular, and inflammatory bowel diseases (Gabriel-Salazar et al., 
2018; Yu et al., 2018; Garcia-Rodriguez et al., 2021). Mouse angiogenin (mAng) genes 
are clustered together on chromosome 14 and encode proteins with 72–81% sequence 
identity (Steinhelper and Field, 1992). Despite the structural similarity between human 
angiogenin (hANG) and mAngs, previous studies have revealed that this protein is 
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evolutionarily different, probably connected to the versatile 
functions in humans and mice (Osorio et  al., 2007; Codõer 
et al., 2010).

In this review, we  discuss the structures and biological 
functions of hANG and murine Ang paralogs. Comparative 
analysis of the existing structural and functional data among 
angiogenin homologs provides an overview of the implications 
and directions for future research for the development of novel 
therapeutic approach, particularly in the context of 
gastrointestinal cancer.

Structures of hANG and mAngs

Structural overview

The sequence analysis revealed that hANG and mAng6 
contain 123 amino acids; mAng1, mAng2, mAng3, and mAng5 
contain 121 amino acids; and mAng4 contains 120 amino acids. 
The amino acid sequences of mAngs are 76.2% (mAng1), 66.4% 
(mAng2), 63.9% (mAng3), 62.8% (mAng4), 63.9% (mAng5), 
and 54.8% (mAng6) identical to those of hANG (Crabtree et al., 
2007; Iyer et  al., 2013). The phylogenetic tree showing the 
evolutionary relationship between hANG and mAngs is 
depicted in Figure 1A. The phylogenetic tree revealed the two 
major clades. The first one contains hANG, mAng1, and 
mAng2. The hANG gene is most closely related to the mAng1 
gene, and they both have the same most recent common 
ancestor to the mAng2 gene. The other branches move to the 
different clades where the mAngs (3–6) are present. They are 
distinct from the hANG gene. In the angiogenin structure, the 
RNase A fold, comprising α-helices and β-strands connected 
with loop structures, is highly conserved. The structure of 
hANG consists of three α-helices (H1, residues 3–14 at the N 
terminus; H2, residues 22–33; and H3, residues 49–58), seven 
β-strands (B1, residues 41–47; B2, residues 62–65; B3-B4, 
residues 69–84; B5-B6, residues 93–108; and B7, residues 
111–116), and a 310 helix (residues 117–121 at the C terminus; 
Acharya et al., 1994; Figures 1B,D). Structural and biochemical 
studies have established that angiogenin has three distinct 
functional sites: (i) catalytic triad, (ii) nuclear localization 
sequence, and (iii) cell-binding site. In addition, studies on 
angiogenin structure have highlighted other amino acid 
residues that are essential for its biological activity in the P1, B1, 
and B2 subsites (Curran et al., 1993; Russo et al., 1996; Holloway 
et al., 2005). Residues present in the P1, B1, and B2 subsites of 
mAngs occupy similar positions to hANG counterparts and are 
supposed to have comparable activities (Figures 1C,D).

Catalytic site

All members of RNase A superfamily contain catalytic sites 
which specifically cleave tRNA on the 3′-side of the pyrimidine 

nucleotides. Pyrimidine bases preferentially bind to the B1 
subsite, whereas the nearby scissile phosphodiester linkage binds 
to P1 and the purine bases bind to the B2 subsite (Parés et al., 
1991). In the case of hANG, catalytic triad is present in the P1 
subsite, comprising His13, Lys40, and His114. The RNase activity 
of hANG was 104–106 fold less than that of RNase A (Shapiro 
et al., 1986) and this weakness of RNase activity of hANG is due 
to differences in structural features such as pyrimidine binding 
site obstruction by Gln 117, hydrogen bond between Thr44 and 
Thr80 that suppresses the activity of the pyrimidine site, and the 
absence of a structural counterpart important for catalysis 
(Leonidas et al., 1999). Importantly, the catalytic triad residues 
were conserved in all members of angiogenin (Figures 1C,D). 
Angiogenins exhibit structural similarity at the catalytic site, 
with some variations in their enzymatic activities. In comparison 
to hANG, all mAngs show reduced RNase catalytic activity 
because the hydrophobic interactions in between C-terminal 
segment and the main body of the protein seem to be more 
intense than those in hANG (Holloway et al., 2005). Paralogs 
mAng1, mAng3, and mAng4 have similar activities; however, 
mAng2 is more effective at cleaving tRNA. The possible reason 
is the lack of intermolecular interactions in mAng2 that may 
stabilize the C-terminal catalytic residue His113, which 
represents a more open active site than other paralogs (Iyer et al., 
2013). These observations demonstrate that the different 
catalytic activities of angiogenin are due to the variation in 
important amino acid positions, which changes the 
intermolecular interactions in the structure of proteins.

Nuclear localization sequence

The amino acid residues in the NLS of both hANG and 
mAngs are presented in Figures  1C,D. Three consecutive 
cationic residues Arg31, Arg32, and Arg33 comprise the NLS of 
hANG of which Arg33 is crucial for nuclear targeting, whereas 
Arg31 and Arg32 play modulatory roles (Moroianu and 
Riordan, 1994). The NLS sequence of mAng1 (Lys 31, Arg 32, 
and Arg 33) and mAng3 (Lys 31, Lys 32, and Arg33) consists of 
three basic residues, but substitutions of Arg31 to Lys 31 for 
mAng1 and Arg31 to Lys31, and Arg32 to Lys32 for mAng3 
from hANG have been observed (Iyer et al., 2013). However, 
this substitution did not alter the surface charge distribution. 
Furthermore, mAng5 retains the NLS (Lys 31, Lys 32, and 
Arg33) in the same manner as mAng3 (Iyer et  al., 2013). 
Although the essential arginine (Arg33) is conserved in mAng2 
(Val31, Lys32, and Arg33), substitution of Arg31 with Val31 
alters the NLS surface charge (Iyer et  al., 2013). The 
corresponding segment of mAng4 has a different sequence: 
Lys30, Glu31, and Arg32. The backbone conformation and side-
chain positions of mAng4 and hANG are well conserved in this 
region, but the surface charge distribution differs because of the 
substitution of Glu31 for Arg32. Despite the consecutive 
absence of positive charges in the mAng4 structure, novel 
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substitutions of amino acid residues in the vicinity of the 
mAng4 structure from hANG, including Lys7, Arg10, and 
Lys33, instead of His8, Thr11, and Gly34, provided extra 

positive charges that are responsible for the abundance of 
cationic residues on the surface of mAng4, which contribute to 
NLS (Jans et al., 2000; Crabtree et al., 2007).

A B
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C

FIGURE 1

Phylogenetic tree, 3D structure and sequence alignment of angiogenins. (A) Phylogenetic tree of hANG and mAngs. (B) Three-dimensional 
structure of hANG (PDB entry 1B1I) labelled with secondary structures, α-helices (blue), and β-strands (purple). (C) Three-dimensional structure 
of hANG labelled with different functional sites, catalytic triad (red), NLS (purple), and cell-binding segment (blue). (D) Sequence alignment of 
the hANG and mAngs. Secondary structures are indicated by blue line (α-helices) and purple line (β-strands). Residues that form the putative 
substrate-binding subsites are highlighted as follows: P1 subsite residues (yellow), B1 subsite residues (green), and B2 subsite residues (red). The 
stars highlight the active site residues that belong to two subsites and are colored according to the subsite. Residues that form the NLS and 
cell-binding segment are highlighted in purple and blue color, respectively. The phylogenetic tree and sequences were aligned using 
CLUSTALW.
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Cell-binding site

The positions of cell-binding segments in hANG and mAngs 
are shown in Figures  1C,D. Amino acid residues 60–68 
(KNGNPHREN) and Asn109 of hANG are known to be involved 
in cell-binding (Hallahan et al., 1991, 1992). Mutagenesis studies 
have highlighted that the residues Asn61 and Arg66 in the cell-
binding site are important for the angiogenic activity of hANG 
(Hallahan et al., 1991, 1992). In mAng1, the important residues of 
the cell-binding segment, whose sequence is ANGSPYREN, are 
well conserved in hANG but vary more in other mAngs (Holloway 
et al., 2005). The mAng2 cell-binding sequence (KRGSPYGRN) 
has critical amino acid substitutions Asn → Lys at position 60 and 
Arg → Gly at position 65, which are counterparts of Asn61 and 
Arg66 of hANG (Iyer et al., 2013). Although mAng2 has structural 
similarities with other mAngs, its function shifted to 
non-angiogenic due to differences in residues in the cell-binding 
segment, as compared to mAng1. Arg66 of hANG, which is 
critical for angiogenic activity, is replaced by Gly residue (position 
65) in the sequence of mAng3 (ENGRPYGVN; Iyer et al., 2013). 
In case of mAng4 cell-binding segment (KKGSPYGEN), the 
crucial residues of hANG, Asn61 and Arg66, are replaced with 
Lys59 and Gly64, respectively (Crabtree et al., 2007). However, 
Lys59 in mAng4 seems to be crucial for angiogenic activity, since 
the substitution of Lys59 → Asn59 by mutation abolished 
angiogenic activity (Crabtree et al., 2007). In addition, structural 
modification of the cell-binding segment has no appreciable effect 
on RNase activity (Crabtree et al., 2007; Sultana et al., 2022).

Biological functions of 
angiogenins in humans and mice

A summary of the biological functions of hANG and mAngs 
is presented in Table 1.

hANG

hANG is expressed in gastrointestinal adenocarcinomas, 
colonic epithelial tumor cell lines, immune, epithelial, and 
endothelial cells, as well as in blood plasma (Wu et  al., 2007; 
Schwartz et al., 2018). The comprehensive expression characters 
of hANG suggest that the physiological function is not restricted 
to the neovascularization process (Moenner et al., 1994).

In colorectal and pancreatic cancer, elevated hANG expression 
is linked to higher tumor microvessel density and lower patient 
survival (Vanli and Guo-Fu, 2015; Wang et al., 2018). hANG is 
involved in tumor angiogenesis in gastrointestinal cancers. In 
tumors, the formation of new blood vessels is a multistage process. 
After releasing from the tumor cells, hANG binds to specific 
endothelial cell receptors in preexisting blood vessels, activating 
the endothelial cells to release enzymes that break down the 
basement membrane. The newly formed capillary tubes are then 

formed by the proliferation, migration, and assembly of the 
activated endothelial cells. Thereafter, a new basement membrane 
is produced, the vessels mature, and a vascular lumen is formed. 
In addition, hANG triggers the protease cascades that facilitate the 
migration of cancer cells through the extracellular matrix (Poon 
et al., 2003).

The molecular mechanism of angiogenesis induced by hANG 
has to be discussed. The sequential steps to induce angiogenesis 
by hANG are initiated by binding of hANG to hANG receptors 
(170 kDa cell surface protein or plexin b2 receptor). Then, hANG 
is incorporated into the endothelial cell by endocytosis and rapidly 
translocated to the nucleus following to mediate several 
intracellular pathways such as PKB/Akt, ERK1/2, and SAPK/
JNK. This signaling activation promotes ribosomal RNA 
transcription which acts as a key step in ribosome biogenesis and 
drives the angiogenesis accompanied by upregulation of gene sets 
related to cell proliferation, migration, invasion, and tube 
formation (Tsuji et  al., 2005; Hoang and Raines, 2017; Yu 
et al., 2017).

hANG plays a significant role for the metabolism of 
cytoplasmic tRNA. Recent research has shown that in response to 
stress conditions, such as oxidative, starvation, and hypoxia, 
hANG cleaves the conserved single-stranded 3′-CCA termini of 
tRNA or anticodon loop of tRNA to form tiRNA (tRNA-derived, 
stress-induced small RNA), which inhibit protein synthesis, 
activate cytoprotective stress response programs, and promote cell 
survival resulting in progression of gastrointestinal cancers 
(Yamasaki et al., 2009; Ivanov et al., 2011; Li and Hu, 2012; Lyons 
et  al., 2017; Razavi et  al., 2021; Akiyama et  al., 2022). The 
molecular insights of hANG to improve cell survival in stressful 
conditions are mediated by tiRNA, which selectively facilitates 
translation of anti-apoptosis genes and decreases the generation 
of apoptosome proteins produced during apoptosis and thus 
promotes cell survival (Goncalves et al., 2016; Akiyama et al., 
2022). Collectively, metabolism of cytoplasmic tRNA by hANG is 
crucial for the gastrointestinal cancer cell survival, development, 
and progression. Therefore, this process may also serve as targets 
for cancer therapy (Razavi et al., 2021).

The function of hANG in case of other diseases has been 
reported. Loss of functions mutations in the hANG gene has been 
detected in neurodegenerative disorders such as amyotrophic 
lateral sclerosis (ALS) as well as Parkinson’s disease (Greenway 
et al., 2006; Van Es et al., 2011; Aparicio-Erriu and Prehn, 2012; 
Fasoli et al., 2021). Functional assays showed that these mutations 
result in complete loss of function by disabling angiogenesis 
because of deficiency in RNase activity, nuclear translocation, or 
both (Wu et al., 2007). Administration of hANG to an ALS mouse 
model improves motor function and extends lifespan (Kieran 
et al., 2008). To exert neuroprotective functions, hANG shows 
dual actions on both motoneurons and astrocytes via the protein 
synthesis reprogramming. The underlying mechanism is that 
hANG binds syndecan (receptor of hANG) to be uptaken into the 
astroglia and cleaves the tRNA by its ribonuclease activity to 
produce tiRNA which plays an important role for protein synthesis 
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TABLE 1 Summary of biological functions of human and mouse angiogenins.

Name Biological functions Description References

hANG Antimicrobial and antiviral Exhibits antimicrobial activity against Streptococcus pneumoniae, Enterococcus 

faecalis, Listeria monocytogenes, Candida albicans, Klebsiella pneumoniae, 

Mycobacterium tuberculosis, Pseudomonas aeruginosa, Escherichia coli, and 

HIV-1.

Hooper et al. (2003), Bedoya et al. (2006), 

Cocchi et al. (2012), and Noschka et al. 

(2021)

Wound healing and tissue 

regeneration

hANG promotes wound healing and tissue regeneration by activating tissue 

plasminogen activator, fibroblast cells, PI3K signaling, and angiogenesis.

Hu and Riordan (1993), Dutta et al. 

(2014), Cucci et al. (2021), Yurina et al. 

(2021)

Skeletal growth hANG is important for skeletal growth via activation of the angiogenin/plexin b2 

ribosomal biogenesis signaling pathway.

Liu et al. (2021)

Neuroprotective hANG is able to extend neurite and survival of P19 EC cell derived motor 

neurons from hypoxia and also improves motor function and extends lifespan in 

ALS mouse model.

Kieran et al. (2008), Subramanian et al. 

(2008), Aparicio-Erriu and Prehn (2012), 

Prehn and Jirström (2020)

Metabolism of cytoplasmic 

tRNA

Metabolism of cytoplasmic tRNA by hANG are crucial for the gastrointestinal 

cancer cell survival, development and progression.

Razavi et al. (2021), Akiyama et al. (2022)

Tumorigenesis hANG is involved for the growth of tumor and metastasis in many cancer types 

including pancreatic and prostate. The mechanistic insight of tumor growth by 

hANG is the expression of matrix metallopeptidase 2 via the ERK1/2 pathway.

Poon et al. (2003), Miyake et al. (2015), 

Vanli and Guo-Fu (2015), Wang et al. 

(2018)

Diagnostic biomarker hANG may serve as diagnostic biomarker for several diseases such as 

gastrointestinal cancers, cardiovascular, and inflammatory bowel diseases.

Gabriel-Salazar et al. (2018), Yu et al. 

(2018), Garcia-Rodriguez et al. (2021)

Angiogenesis hANG promotes transcription of rRNA and mRNA, as well as activates various 

signaling pathways such as ERK1/2, PI3K/Akt, SAPK/INK enabling various 

functions such as cell proliferation, migration, invasion, survival, and tube 

formation.

Liu et al. (2001), Xu et al. (2001), Tsuji 

et al. (2005), Yoshioka et al. (2006), 

Trouillon et al. (2010), Hoang and Raines 

(2017), Yu et al. (2017)

mAng1 Angiogenic mAng1 exhibits angiogenic activity on chick chorioallantoic membrane and 

induce sprouting from thoracic aorta.

Nobile et al. (1996), Crabtree et al. (2007)

Antimicrobial mAng1 exhibits potent antifungal and antibacterial against Candida albicans and 

Streptococcus pneumoniae, respectively.

Hooper et al. (2003)

Neuroprotective mAng1 displays a neuroprotective role in Parkinson’s disease by protecting 

against neuronal cell death induced by rotenone and neurotoxins 1-methyl-4-

phenylpyridinium through the PI3K-Akt signaling pathway.

Steidinger et al. (2011)

Anti-inflammatory mAng1 regulates gut microbiota composition evidenced by mAng1-knockout 

mice leading to severe colitis by increasing the colitogenic strains of 

α-Proteobacteria and decreasing the protective gut commensal strains of 

Lachnospiraceae.

Sun et al. (2021)

mAng2 Non-angiogenic mAng2 exhibits non-angiogenic activity due to its inability to bind cellular 

receptor.

Nobile et al. (1996), Crabtree et al. (2007), 

Iyer et al. (2013)

mAng3 Angiogenic mAng3 exhibits angiogenic activity in rat cremaster muscle and chicken embryo 

chorioallantoic membrane. In endothelial cell, mAng3 increase mitochondria, 

polysomes, and endoplasmic reticulum.

Fu et al. (1999), Iyer et al. (2013)

mAng4 Angiogenic mAng4 demonstrates angiogenic activity in the thoracic aorta. Crabtree et al. (2007)

Antibacterial mAng4 demonstrates antibacterial effects against Bacteroides thetaiotaomicron, 

Enterococcus faecalis, Bifidobacterium longum, Enterococcus gallinarum, 

Salmonella typhimurium SL1344, Listeria monocytogenes, and Salmonella 

typhimurium LT2.

Hooper et al. (2003), Walker et al. (2013), 

Sultana et al. (2022)

Worm expulsion mAng4 expression is associated with worm clearance such as Trichuris muris and 

Trichinella spiralis by TH2 cytokine-dependent immune response.

Datta et al. (2005), Angkasekwinai et al. 

(2013), Noor et al. (2016)

Gut microbiota homeostasis mAng4 maintains gut microbiota homeostasis by increasing good bacteria 

including Akkermansia, Lactobacillus, Dubosiella, Adlercreutzia, and 

Coriobacteriaceae UCG-002, and reducing certain harmful bacteria, such as 

Alistipes and Enterorhabdus.

Sultana et al. (2022)
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reprogramming. As a result, the protein translation profile is 
altered, and the motoneurons receive a survival signal via the 
PI3K/Akt pathway (Aparicio-Erriu and Prehn, 2012; Prehn and 
Jirström, 2020).

hANG is also known to have an important contribution in 
tissue regeneration and wound healing as a part of the response to 
injury. hANG interacts with actin and forms a complex that 
activates tissue plasminogen activator (tPA) to generate plasmin 
inducing basement membrane and extracellular matrix 
degradation that characterizes the processes of wound healing and 
repair (Hu and Riordan, 1993; Dutta et al., 2014). In addition, 
hANG activates fibroblast cells to produce extracellular matrix 
proteins such as fibrin, collagen, and fibronectin to facilitate 
wound healing (Cucci et al., 2021; Yurina et al., 2021).

Osteoclast-derived angiogenin is important for skeletal 
growth via activation of the angiogenin/plexin b2 ribosomal 
biogenesis signaling pathway. Obstruction of this pathway by 
glucocorticoids (GCs) causes senescence of vascular cells, and 
results in impairment of angiogenesis and osteogenesis. 
Administration of recombinant hANG, which antagonizes cellular 
senescence in vascular endothelial cells, reduces the negative 
effects of GCs on the developing skeleton (Liu et al., 2021).

In addition, hANG exhibits antimicrobial activity against 
Streptococcus pneumoniae, Enterococcus faecalis, Candida albicans, 
and Listeria monocytogenes (Hooper et al., 2003). The antibacterial 
activity is mediated by the binding to anionic surfaces of bacterial 
membranes, forming pores, and penetrating into the phospholipid 
bilayer of bacteria through its amphipathic structure in 
hydrophobic environment (Schwartz et al., 2018). In case of viral 
infection, the antiviral activity of hANG against human 
immunodeficiency virus-1 (HIV-1) has been reported. To exert 
antiviral activity, hANG enters the virus-infected cells by 
pinocytosis that facilitates the interaction of hANG and virions to 
degrade viral nucleic acid resulting inhibition of HIV-1 replication 
(Bedoya et al., 2006). Further research revealed the activity of 
hANG against X4 strains of HIV-1 in which hANG is produced 
from the primary T cells at the concentration effective for antiviral 
activity and appears to be  a major factor of anti-X4 activity 
(Cocchi et al., 2012).

mAng1

mAng1 is abundantly expressed in the liver, with smaller 
extent in the pancreas and lungs (Hooper et al., 2003). mAng1 
regulates gut microbiota composition evidenced by mAng1-
knockout mice leading to severe colitis by increasing the 
colitogenic strains of α-Proteobacteria and decreasing the 
protective gut commensal strains of Lachnospiraceae (Sun et al., 
2021). In addition, mAng1 exhibits potent antifungal and 
antibacterial activities against Candida albicans and Streptococcus 
pneumoniae, respectively (Hooper et al., 2003). Moreover, mAng1 
displays a neuroprotective role in Parkinson’s disease by protecting 
against neuronal cell death induced by rotenone and neurotoxins 

1-methyl-4-phenylpyridinium through the PI3K-Akt signaling 
pathway (Steidinger et al., 2011).

mAng2

mAng2, also known as angiogenin-related protein (Angrp), 
shares 78% sequence identity with mAng1 (Brown et al., 1995; 
Nobile et  al., 1996). The RNase activity of mAng2 toward 
dinucleotide substrates as well as tRNA is greater than that of 
other mAngs (Iyer et  al., 2013). However, mAng2 appears to 
be  non-angiogenic, as estimated by the chick chorioallantoic 
membrane angiogenesis assay, where the number of blood vessel 
branch points is counted for the quantification of blood vessels 
(Nobile et al., 1996). Moreover, its inability to bind to cellular 
receptors due to substitution of the important residues, Asn61 and 
Arg66, in the cell-binding site might be a possible reason for the 
lack of angiogenic activity (Nobile et al., 1996).

mAng3

mAng3 is firstly discovered by transcriptional activation in 
NIH3T3 cells transformed with the E2a-Pbx1 oncoprotein (Fu 
and Kamps, 1997). Expression of mAng3 was found in lung tissues 
and adult prostate (Hooper et al., 2003). mAng3 has angiogenic 
activity, as evidenced by the angiogenesis in the rat cremaster 
muscle and chicken embryo chorioallantoic membrane. Electron 
microscopic image revealed that endothelial cells in mAng3 
induced vessels possessed fenestrations comparable to those 
found in endothelial cells from neovasculature induced by growth 
factor of vascular endothelial and basic fibroblast. Furthermore, 
mAng3 causes remarkable molecular changes in rapidly 
proliferating endothelial cells, such as increasing the mitochondria, 
polysomes, and endoplasmic reticulum (Fu et al., 1999).

mAng4

mAng4 is expressed in the small intestine by Paneth and 
goblet cells and is secreted into the gut lumen together with other 
secretory contents, such as lysozyme (Hooper et al., 2003; Forman 
et al., 2012; Walker et al., 2013). mAng4 expression in the small 
intestine is upregulated by colonization of Bacteroides 
thetaiotaomicron. In addition, the expression of mAng4 was 
detected in conventionally raised mice but not in germ-free mice, 
suggesting that gut bacteria are responsible for greater mAng4 
expression (Hooper et al., 2003). Furthermore, mAng4 expression 
is associated with worm clearance by TH2 cytokine-dependent 
immune response (Datta et al., 2005; Angkasekwinai et al., 2013).

mAng4 demonstrates antibacterial effects against Bacteroides 
thetaiotaomicron, Enterococcus faecalis, Bifidobacterium longum, 
Enterococcus gallinarum, Listeria monocytogenes, and Salmonella 
typhimurium LT2 (Hooper et al., 2003; Walker et al., 2013). Recent 
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studies showed that disruption of bacterial membrane is needed 
to kill bacteria by mAng4 (Sultana et al., 2022).

In addition, mAng4 has been attributed to angiogenesis, 
which is determined by the evaluation of ex vivo angiogenesis 
through thoracic aorta assay (Crabtree et al., 2007). Mutational 
studies have revealed that ribonucleolytic activity is essential for 
angiogenic activity, as assessed by using H12A and H112A 
mutants (Crabtree et al., 2007). Moreover, residues present in the 
cell-binding segment, K59, and nuclear localization sequence, 
R32, play crucial roles in angiogenesis (Crabtree et al., 2007).

Future perspective

Currently, the clinical application of angiogenin has not been 
established. However, increasing evidence suggests that it may 
be helpful in the diagnosis and prognosis prediction of several 
diseases. Variations in serum angiogenin levels in different 
diseases, including cancer, cardiovascular and inflammatory 
bowel diseases, suggest that angiogenin is a potential disease 
diagnostic marker candidate (Yu et al., 2018). However, there is a 
scarcity of clinical trial data, and further research on its prospective 
clinical applications is required.

Over the past 10 years, numerous anti-angiogenic therapies 
have been developed for the treatment of gastrointestinal cancer, 
and at least 80 medications are currently being tested in preclinical 
research and phase I–III clinical trials. However, this anti-
angiogenic therapy imparted resistance due to the activation of 
alternative pathways that maintain tumor growth and 
vascularization (Haibe et  al., 2020). On the other hand, the 
functional sites of angiogenins such as RNase catalytic sites, 
nuclear localization sequences, and cell-binding segments are 
involved in angiogenic activity. Thus, inhibitor of these functional 
sites could be  therapeutic agents for angiogenin-mediated 
angiogenesis. In addition, therapies that antagonize angiogenin 
activity by disrupting angiogenin binding to its receptors (170 kDa 
cell surface protein or plexin b2) might also be  a promising 
therapeutic approach for treating cancer (Yoshioka et al., 2006; Yu 
et al., 2017). Combination of anti-angiogenic drugs and hANG 
inhibitor might lead to better therapeutic outcome of 
gastrointestinal cancers. Because clinical therapy of anti-
angiogenic drugs focused on the inhibition VEGF or tyrosine 
kinases, combination therapy might block the tumor-driven 
angiogenesis mediated by hANG and other angiogenic factors.

In neuroprotective treatments, recombinant angiogenin has 
been reported to significantly reduce mortality in mice model of 
ALS and Parkinson’s diseases (Kieran et al., 2008; Steidinger et al., 
2011). Therefore, it is also important to focus on the findings of 
clinical trials of angiogenin in neurodegenerative disorders.

It is reported that angiogenin is effective to kill highly 
pathogenic bacteria such as Klebsiella pneumoniae and 
Pseudomonas aeruginosa (Noschka et al., 2021). The antibacterial 
action of angiogenin is accomplished by disrupting the cell 
membrane of bacteria, in contrast to conventional antibiotics that 
hinder cell wall synthesis, DNA replication, RNA transcription, 

and protein synthesis (Sultana et al., 2022). Thus, angiogenin may 
not be prone to the rapid development of drug resistance due to 
different killing mechanism against bacteria. In addition, 
angiogenin will be therapeutic targets for the anti-HIV activity.

The 3D structures and functional sites of hANG and mAngs are 
remarkably similar and are hypothesized to exhibit comparable 
activities. Additionally, it has been discovered that mAngs and hANG 
share similar physiological roles, such as angiogenesis, tumorigenesis, 
neuroprotection, antibacterial effects, and innate immunity (Sheng 
and Xu, 2016). Recent research has shown that hANG may serve as a 
therapeutic target as well as a diagnostic biomarker for gastrointestinal 
cancers (Yu et  al., 2018). Therefore, regarding the structural and 
functional similarity between mAngs and hANG, our findings 
strongly suggest that comprehensive studies of mAngs will provide 
information that may facilitate the identification of therapeutic targets 
against gastrointestinal cancers in humans.

Conclusion

In conclusion, the multifunctional protein angiogenin may 
serve as an excellent clinical target, and diagnostic marker. Since 
tumor angiogenesis is responsible for gastrointestinal tumor 
growth, metastasis, and survival, the simultaneous inhibition of 
tumor-driven angiogenesis mediated by angiogenins and vascular 
endothelial growth factors would represent one of the major 
therapeutic approach against cancer. Extensive research has been 
reported on hANG, whereas studies on mAngs in relation to its 
biological activities are limited. The relationship between the 
structure and function of angiogenins was covered in this review. 
With the development of new technologies, further roles of 
angiogenin are expected to be identified in the near future.
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