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Starting phase of laying chicken life is the building stone for rearing and 

production stages. Since, fecal microbial transplantation (FMT) regulates the gut 

microbial diversity and affects the productive performance of the bird. The aim 

of this study is to evaluate the effect of FMT from feed-efficient broiler chicken 

could program the diversity of gut microbiota and growth of recipient native slow 

growing egg-laying chicks. For this, a total of 150 (one-day-old) Jing Hong chicks 

were randomly assigned into two groups, each group consisted of 5 replicates 

(n = 15 bird/ replicate). The control group (CON) and FMT recipient birds (FMT) fed 

on basal diet, the FMT group received an oral daily dose of FMT prepared from 

Cobb-500 chickens. The FMT performed from the 1d to 28d of age, through 

the experimental period, feed intake and body weight were recorded weekly. At 

the end of a 28-day trial, carcass traits were assessed and cecal samples were 

collected for microbiome assessment via 16S rRNA-based metagenomic analysis 

to characterize the diversity and functions of microbial communities. The data 

were statistically analyzed using R software. Body weight and body weight gain 

increased, and FCR decreased (p = 0.01) in FMT group. The relative abundance 

of Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio were increased due 

to FMT administration (p = 0.01). A higher relative abundance of Lactobacillus, 

Lactococcus, and Bifidobacterium were presented in the FMT group. Meanwhile, 

Enterococcus, Helicobacter, and Bacteroides were more abundant in the CON 

group (p < 0.01). Kyoto encyclopedia of genes and genomes (KEGG) pathways for 
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microbial functions regarding amino acid metabolism, secondary metabolites 

biosynthesis, carbohydrate metabolism, energy metabolism, and enzyme families, 

cofactors, and vitamins were significantly annotated in the FMT group. Overall, 

FMT administration from the donor of highly feed-efficient broilers improved 

weight gain by reshaping a distinct gut microbiome, which may be related to the 

metabolism and health in the recipients laying chicks, providing new insight on the 

application of the FMT technique for early life programming of laying chickens.

KEYWORDS

microbial transplantation, early life programming, 16S rRNA gene, body weight gain, 
laying chicken

Introduction

The early maturation of laying chicks and early body weight 
gain was found to be a key step to achieve the flock uniformity and 
egg production efficiency (Underwood et  al., 2021). One key 
factor regulating the birds body weight is the microbiota that 
colonize their gut, the close symbiotic relationship between a host 
and its gut microbiota affects energy harvest from diet, regulates 
the host well-being, and promotes the innate and the acquired 
immunity (Deweerdt, 2014). Additionally, gut microbiota secures 
the permeability of the intestinal mucosa and regulates the 
fermentation and absorption of dietary nutrients, which may 
explain the microbiota importance in the regulation of energy and 
growth activities (Sonnenburg and Bäckhed, 2016). In our 
previous studies, we  investigated some factors that affect gut 
microbiota development in chicken, including performance type 
(Elokil et  al., 2020a), medicine (Elokil et  al., 2020b), fertility 
(Elokil et al., 2020a), and diet (Abouelezz et al., 2019). The FMT 
has been reported as the most effective way for whole microbial 
community changes, whereas probiotic and antibiotic tools 
usually alter up to three orders of the 100 trillion native 
microorganisms of the gut (Borody and Khoruts, 2012; 
Cammarota et  al., 2014). The FMT, also known as stool/fecal 
transplantation or fecal bacterio-therapy, is the infusion of a liquid 
filtrate of stools from a donor individual into the gut of a recipient 
individual to modulate the microbial community for therapeutic 
or medical purposes (Zhang et al., 2012) and to establish a durable 
alteration of the recipient’s gut microbiota (Grehan et al., 2010).

The microbial Firmicutes/Bacteroidetes (F/B) ratio is 
important with positive correlation of somatic growth, as 
these taxa include bacteria that ferment indigestible 
carbohydrates providing an extra source of energy for the 
host, which is eventually stored in skeletal muscle and adipose 
tissue and used for somatic growth (Cornejo-Pareja et  al., 
2019). Body weight selection was shown to result in 
quantitative genetic-correlated responses in gut microbiota 
and in significant differences in heritability of the F/B ratio, 
and the genetic correlations between high and low body 
weight chickens were estimated (Meng et al., 2014). Moreover, 
the higher F/B ratio of gut microbiota has been associated with 

overweight in humans (Karvonen et al., 2019), mice (Vadder 
de and Mithieux, 2018), and rabbits (Zeng et al., 2015). The 
gut microbiota of broiler chicks, which have a high F/B ratio, 
were found to have higher ability to ferment diet ingredients 
to produce volatile fatty acids than that of laying chicks 
(Walugembe et al., 2015). This suggests that a high F/B ratio 
in the gut microbial diversity and/or richness is associated 
with body weight gain. On the other side, the intentional 
change of gut microbiota through fecal microbiota 
transplantation (FMT), probiotics, and antibiotics has been 
used for several purposes including improvement of bird’s 
growth performance.

Jing Hong chicken was selected for this study as it is a 
prominent native breed in China, which is widely distributed 
in Hubei Province as one of the important egg varieties with 
high economic value of egg production. It has a high resistance 
for endemic diseases, rough feeding conditions, and extensive 
breeding environment. Therefore, the aim of the present study 
was to use FMT as a tool to induce early life programming of 
laying chicks via modulation of their gut microbiota, leading 
to early body weight maturation. Thereby, providing 
experimental evidence to understand how the intentional 
programming of gut microbiome affects the growth 
performance of laying chicks.

Materials and methods

Experimental design, diet, and bird 
management

In a 28-day trial. A total of 150-day-old unsexed of newly 
hatched chicks from Jing Hong laying strain were randomly 
allocated into two treatment groups (n = 75/group) as follows: (1) 
birds fed on the basal diet (CON), and (2) birds fed on basal diet 
and received fecal microbiota transplantation (FMT). Each 
dietary treatment consisted of 5 replicates (15 birds/ replicate). 
The chicks were housed in growth metal cages in an enclose 
poultry farm of Huazhong Agricultural University throughout 
the study period, each cage was equipped with one manual feeder 
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and drinker to ensure the animals’ nutritional requirements. A 
tray with a parchment paper was placed under each cage for fecal 
sample collection. The diet was formulated following the 
guidelines of Chinese Feeding Standards using the Feed database 
in China (Beijing, 2004), diet ingredients and nutrient 
composition is provided in Table 1. All birds were fed on the 
same iso-nitrogenous and iso-caloric diet and water was provided 
ad-libitum.

Preparation and inoculation of the FMT 
material

Seventy-five newly hatched Cobb-500 broiler chicks were 
used daily as a stool donor. The FMT was prepared following the 
methods (Matsuoka et al., 2014). Briefly, 10 g of fresh fecal samples 
were collected daily in the morning into the sterile tube (50 ml). 
The white part of the excreta was removed immediately, because 
it mainly comprises uric acid, and the fecal part was mixed with 
0.75% saline in 1:6 ratios (6 ml of 0.75% saline for each gram of 
feces) and span at low speed (800 × g) for 3 min at 4°C to separate 
undigested feed and particulate material from the microbial 
fraction. Keeping the mixture on ice until precipitates were fully 
settled down, the supernatant was collected and filtered with the 
sterile gauze to get fecal suspension.

Performing FMT in laying chickens

A total of 150 females of the recipients Jing Hong chicks similar 
age with the donor Cobb-500 (one-day-old) were randomly 
assigned into two groups (FMT and CON), each group consisted 
from 75 chicks into 5 replicates (n = 15 bird/ replicate). Each laying 
chick in FMT group was provided with an oral fresh dosage of 1 ml 
of FMT solution daily from day 1 to day 28 of age, at early morning 
and before having access to feed and water. The transplant was orally 
administered using 1-ml oral dosage via oral-syringes with soft 
flexible tips that were positioned at the back of the chicks’ tongues. 
The chicks were then supervised to ensure that they had swallowed 
the material and feed was with-held for 60 min after administration.

Growth performance and carcass traits

Live body weight was recorded weekly and used to determine 
the weekly body weight gain and feed intake was recorded weekly, 
FCR was then calculated. At 28 days of age, 11 healthy chicks of 
group average BW were selected and euthanized. The chicks’ 
breasts (pectoralis major) and thigh (drumstick) muscles were 
skinned, de-boned and weighted; their livers weight, and the 
lengths (cm) of their duodenum, jejunum, ileum, and ceca were 
measured similar to Abdelatty et al. (2021).

Microbial DNA extraction

To obtain samples for microbial genes analysis, fresh samples 
from the cecum (n = 11/ group) were aseptically collected 
5–10 min after slaughter under anaerobic conditions and placed 
into sterile 2-ml cryo-tubes (Sarstedt, Nümbrecht, Germany), 
then, samples were immediately stored at −80°C until total 
microbial DNA extraction. Then, all the sample tubes were 
instantaneously snap-frozen in liquid nitrogen, and subsequently 
stored at −80°C for extraction of total microbial DNA later.

The microbial DNA was extracted from 300-μl cecal samples 
using a DNA stool mini kit (QIAmp DNA Stool mini Kit; 
QIAGEN, Hilden, Germany) following the manufacturer’s 
instructions. A Qubit 2.0 Fluorometer (Thermo Fisher Scientific 
Co., Ltd., Shanghai, China) with a Qubit dsDNA HS assay kit (Life 
Technologies) was used to quantify DNA concentration.

PCR amplification and 16S rRNA 
sequencing

An aliquot of each of the extracted DNA samples was used as 
a template for PCR amplification. Additionally, 16S ribosomal 
RNA, library preparation, and DNA sequencing were performed 
by a commercial provider (Personalbio Co., Ltd., Shanghai, 
China). To generate an approximate amplicon size of 570 bp, 
primers (forward 5′ CCTAYGGGRBGCASCAG GNG 3′, reverse 

TABLE 1 Composition and nutrient levels of experimental diet 
(% as fed-basis).

Ingredients* % (As-Fed)

Corn 65.0

Soybean meal 11.0

Corn gluten meal 2.70

Corncob powder 13.68

Lard 3.00

L-lysine HCl 0.42

DL-Methionine 0.22

L-Threonine 0.13

Dicalcium phosphate 1.55

Limestone 1.05

Salt 0.25

Premix1 1.00

Chemical analysis (calculated)

Crude protein 13.00

Lysine 0.83

Methionine + Cysteine 0.66

Calcium 0.79

Non-phytate phosphorus 0.34

1Provided the following per kilogram of diet: Vitamin A, 6000 IU; Vitamin D3, 500 IU; 
Vitamin E, 20 IU; Vitamin K3, 0.50 mg; Vitamin B1, 2.1 mg; Vitamin B2, 3.0 mg; Vitamin 
B6, 3.5 mg; Vitamin B12, 0.01 mg; pantothenic acid, 10 mg; niacin, 15 mg; biotin, 0.15 mg; 
folic acid, 0.45 mg; choline chloride, 500 mg; Fe, 80 mg; Cu, 7 mg; Mn, 60 mg; Zn, 65 mg; 
I, 0.35 mg; Se, 0.23 mg.
*Metabolizable Energy (12.06 MJ/kg diet).
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5′ GGACTACNNGGGTATCTAAT 3′) targeting V3-V4 region 
amplicons were used for amplification and PCR products were 
purified (Busato et  al., 2022; Tawfik et  al., 2022). The PCR 
conditions were as follows: initial denaturation, annealing, and 
extension were carried out and repeated at 94°C for 4 min, 94°C 
for 30 s, 50°C for 45 s, and 72°C for 30 s for 25 cycles.

Sequence quality control and calculation 
of operational taxonomic units (OTUs)

For each library, amplified libraries of V3-V4 region amplicons 
were pooled and sequenced using the Illumina Miseq 2000 platform 
sequencer, including 250-bp paired-end reads generated with a 
7-cycle index read (sequences with an overlap longer than 10 bp 
without any mismatch were assembled). The resultant overlapping 
paired-end reads were stitched and quality filtered using Microsynth 
after removing barcode and primer sequences. To perform sequence 
quality control, the pre-filtered and stitched reads were processed 
using the QIIME software (Quantitative Insights into Microbial 
Ecology, v1.8.0).1 Briefly, the raw tags were merged based on the 
overlap of two reads. Then, clean tags were created by pretreating 
the raw tags and removing the chimeric sequences to generate 
effective tags. Finally, quantitative analysis of the sequences was 
performed using the QIIME software, and the chimeric sequences 
were eliminated using the USEARCH software (v5.2.236).2

Bioinformatics analysis

Quality sequences were counted for each sample after the 
removal of the chimeric sequences (shorter than 160 bp), and 
statistical estimations were created for the distribution of 
sequence length using the R software to characterize the length 
distribution of the sequences contained in each sample. Then, 
sequences were clustered into OTUs with 97% similarity using 
open-reference OTU picking and UCLUST (Edgar, 2010). In 
addition, Specaccum analysis was applied to check if all sample 
sizes and the OTU abundance matrix were sufficient to estimate 
community richness (Supplementary Figure S1). Finally, the 
taxonomy of OTUs was determined using the Greengenes 
default database in QIIME (DeSantis et al., 2006). The most 
abundant OTUs between groups (CON and FMT) were then 
classified against the NCBI nucleotide database using BLASTN 
for taxonomic classification, targeting the 16S rRNA marker. For 
the analysis of bacteria and archaea, the databases for the 16S 
rRNA gene, Greengenes (Release 13.8)3 and RDP (Ribosomal 
Database Project, Release 11.1),4 were used by default to identify 

1 http://qiime.org/

2 http://www.drive5.com/usearch/

3 http://greengenes.secondgenome.com/

4 http://rdp.Cme.msu.edu/

the OTU diversity among the samples and between the groups. 
A Venn diagram was constructed to calculate the total number 
of OTUs per sample (i.e., group) using the R software.

Annotation of microbial composition

A rarefaction depth of 12,000 sequences was used to 
perform α- and β-diversity analyses among samples; the 
α-diversity was determined using the unweighted and weighted 
UniFrac distance (Lozupone et  al., 2007). The analysis of 
α-diversity (Shannon, Simpson, Chao1, and ACE indices) was 
applied to find the drivers of variation in the microbial 
community structure in the samples (Shannon, 1948; Simpson, 
1949; Chao and Shen, 2004). In addition, rarefaction curves of 
β-diversity (PCA, PCoA, NMDS, and UPGMA cluster analyses) 
in the samples were calculated using a maximum rarefaction 
depth of 12,000 sequences and the observed OTU index 
(Ramett, 2007). The orders of phylogenetic tree construction 
(MEGAN and KRONA) were used for microbial interactive 
visualization and to visually display the results of species 
annotation between groups based on OTU tags. Then, a heat 
map was constructed according to the distribution of the top 50 
abundances and the degree of similarity between the samples. 
The order analyses of PLS-DA, LDA, PERMANOVA, and 
ANOSIM were performed to determine the variation in 
community structure between groups for screening key species.

Annotation of microbial function 
prediction

To predict the metabolic functioning of bacteria based on 
total genome sequences from the 16S rRNA gene, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) function 
annotation of the sequence was carried out based on Tax4Fun, 
then visualized using the statistical analysis of metagenomic 
profiles (STAMP) software package (Langille et  al., 2013). 
KEGG orthologies (KOs) were categorized into KEGG level 2 
pathways with the removal of the non-microbial pathways. 
The classified genes were divided into six categories, namely, 
Metabolism, Genetic Information Processing, Environmental 
Information Processing, Cellular Processes, Organismal 
Systems, and Human Diseases, each of which was further 
divided into multiple levels. The nearest sequenced taxon 
index (NSTI) was used to provide a measure of the availability 
of sequenced reference genomes for each OTU in a sample. It 
calculates the average branch length for each sample between 
an OTU and the nearest sequenced reference genome based 
on the Greengenes reference phylogeny, accounting for OUT 
abundance. Finally, the R software was used for the cluster 
analysis of the top 50 most abundant functional predictions 
in each sample, presented by the heat map (Langille 
et al., 2013).
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Statistical analysis

The analysis of β-diversity included PCA and PCoA, which 
were calculated using weighted UniFrac and unweighted UniFrac. 
One-way ANOVA and the LM procedure of the R software version 
3.2.2, R Core were applied to estimate the different bacterial taxa in 
CON and FMT groups (R Development Core Team, 2015). Each 
chick individual was considered an experimental unit, and FMT 
was included as a fixed effect in the statistical model. All differences 
were considered significant at p < 0.05 and were considered trends 
when p < 0.10. Pairwise comparison was performed using T tests.

Results

Growth performance and carcass traits

The differences in body weight, daily weight gain, internal 
organs weight, and length of the digestive tract sections between 
CON and FMT groups of laying chickens are shown in Table 2. 
FMT increased final body weight (p < 0.01) by 2.5% and average 
daily gain increased (p < 0.01) by 2.3%. Feed conversion ratio was 
lower in FMT group compared with the CON group (p = 0.01), 
breast muscle weight increased by 9.7% and thigh muscle weight 
increased by 17.63% in FMT chickens compared with the control 
counterpart (p = 0.01). Liver weight increased by 8.5% (p = 0.01). 
On the other side, duodenum, ilium, and cecum length was 
shorter in MFT group compared with the CON one (p < 0.05).

16S rRNA sequencing metrics and quality

High-throughput sequencing generated from 22 chickens 
(n  = 11/ dietary treatment) yielded a total of 775,945 reads 
(average of 35,270 and range of 32,836–38,767 reads per sample; 

Supplementary Figure S2). Average read length was 160 bp, and 
the distributions of sequence lengths shown in OTUs were 
generated based on the greengene database using quantitative 
insights into microbial ecology (QIIME) and characterized for 
different taxonomic levels including domain, phylum, class, order, 
family, and genus. The taxa considered as common in the samples 
were used in further analysis. Statistical number of OTUs at each 
classification level among groups of control and antibiotics-
exposed chicks are presented in Supplementary Table S1. A total 
of 12 phyla, 23 classes, 35 orders, 60 families, 77 genera, and 31 
species were identified in these samples Supplementary Table S2.

Alpha and beta diversities

Total observed OTU count, α indexes (ACE and Chao1), and 
diversity indicators (Simpson and Shannon) between groups are 
summarized in Table 3. The total observed OTUs was significantly 
increased (p < 0.01) in the FMT group than in the CON group. In 
contrast, the means of ACE and Chao1 were significantly decreased 
(p < 0.01) in the FMT group than in the control group. Similarly, 
the Simpson and Shannon indices were significantly decreased in 
the FMT group than in the CON group. In addition, β-diversity 
indicators, principal component analysis (PCA), non-metric 
multidimensional scaling (NMDS), and principal coordinate 
analysis (PCoA) were obtained to measure the between-group and 
inter-group distance of the CON and FMT groups.

The PCA based on unweighted UniFrac distance is presented 
in Figure 1. The PCA plot revealed that the distance between 
samples of the CON group were smaller than that of the FMT 
group, indicating that FMT had a more diverse gut microbiota. 
The R value of the analysis of similarities (ANOSIM; 0.38) was 
correlated among samples within the CON and FMT groups 
(p < 0.01). Similarly, the weighted and unweighted values of 
NMDS indicated that samples of the CON group formed a tighter 

TABLE 2 Effect of oral fecal microbiota transplantation from the donor commercial broiler chickens to the recipient native Jing Hong laying 
chickens on body weight and some carcass traits1.

Item Control FMT SEM P-Value*

Initial body weight, g 29.87 30.75 0.44 0.19

Final Body weight, g 187.90 192.50 3.81 0.01

Average daily gain, g 5.64 5.77 0.13 0.01

Feed intake, g/d 22.27 22.29 0.32 0.12

Feed conversion ratio 3.98 3.84 0.15 0.01

Breast muscle weight, g 5.98 6.56 0.27 0.01

Thigh muscle weight, g 7.60 8.94 0.38 0.01

Liver weight, g 4.58 4.97 0.17 0.21

Duodenum length, cm 16.40 14.77 0.47 0.12

Jejunum length, cm 49.00 50.54 1.69 0.13

Ileum length, cm 6.77 6.45 0.24 0.12

Cecum length, cm 6.40 5.95 0.24 0.11

1Values are mean ± SEM. Samples number (n = 11/ group).
*P ≤ 0.05 considered significant.
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cluster than those of the FMT group. Regarding the R value 
obtained from the mutational multivariate analysis of variance 
(PERMANOVA), there were significant correlations in weighted 
(R = 0.25; p < 0.05) and unweighted (R = 0.19; p < 0.01) UniFrac 
distances among samples and between groups of the CON and 
FMT groups. In addition, the lowest group distance was 
significantly estimated (p < 0.05) within groups in the comparative 
analysis boxplot.

Microbial structure and composition

Figure  2 illustrates the effect of FMT on gut microbiota 
structure of Jing Hong chickens. The number of OTUs was 
significantly increased (p < 0.01) in the FMT group, with a high 
abundance of unique OTUs when compared with the CON group. 
Additionally, a heat map of the top 50 most abundant genera in 
the microbiome community combined with a cluster analysis 
revealed similar microbiome composition among samples of the 
CON and FMT groups. The differences between the CON and 
FMT groups regarding the relative abundance (percent of total 
sequences) of each phylum and family of taxa from the 
microbiome are presented in Figure 2 and Table 4.

At the phylum level, the relative abundances of Firmicutes 
increased and that of Bacteroidetes decreased (p < 0.01) in the 
FMT group, and the Firmicutes/Bacteroidetes ratio (F/B ratio) 
increased in the FMT group than in the CON group (p < 0.01; 
Table  4). The differences between the CON and FMT groups 
regarding the relative abundance (percent of total sequences) of 
each phylum and family of taxa from the microbiome are 
presented in Figure 2 and Table 4. At the phylum level, the relative 
abundances of Firmicutes was increased (FMT vs. CON, 89.05 vs. 
75.39%) and that of Bacteroidetes was decreased (FMT vs. CON, 
2.51 vs. 5.80%) in the FMT group (p < 0.05). Consequently the 
Firmicutes/Bacteroidetes ratio (F/B ratio) increased (FMT vs. 
CON, 35.45 vs. 12.99%) in the FMT group than in the CON group 
(p < 0.01; Table 4). On the other hand, the relative abundance of 
Proteobacteria (FMT vs. CON, 3.52 vs. 7.98%) and 

Campilobacterota (FMT vs. CON, 0.164 vs. 0.811%) were 
decreased in the FMT group chickens (p < 0.01; Table 4). Similarly, 
there was decreased (p < 0.05) in the relative abundance of phyla 
of Verrucomicrobia (FMT vs. CON, 0.740 vs. 1.36%) and TM7 
(FMT vs. CON, 0.005 vs. 0.042%) in the FMT group than in the 
CON group as presented in Figure 2 and Table 4.

At the genus level, there were significant increased the relative 
abundances of some symbiotic taxa such as Lactobacillus (FMT vs. 
CON, 17.87 vs. 9.12%), Lactococcus (FMT vs. CON, 2.51 vs. 
5.80%) and Bifidobacterium (FMT vs. CON, 0.064 vs. 0.051%) in 
the FMT group compared with the CON group (p < 0.01; Figure 2; 
Table 4). On the other hand, there were significant decreased the 
relative abundances of some pathogenic taxa such as Enterococcus 
(FMT vs. CON, 0.55 vs. 0.86%), Helicobacter (FMT vs. CON, 
1.027 vs. 1.589%) and Bacteroides (FMT vs. CON, 0.054 vs. 1.30%) 
in the FMT group in compared with the CON group (p < 0.01; 
Figure 2; Table 4).

Reshaping gut microbial community by 
FMT in laying chicks

The results of the LEfSe analysis based on the linear 
discriminant analysis (LDA) of the specific bacterial taxa that are 
associated with FMT are presented in Supplementary Figure S3. 
The LEfSe cladogram representative of the structure of the host–
microbiota axis shows a significant shift of microbiota between 
groups, including a total of 64 bacterial taxa that were significantly 
different between the CON and FMT groups, with only seven taxa 
(Lactobacillallus, Lactobacillaceae, Lactobacillales, Bacilli, Dietzia, 
Dietziaceae, and Aeriscardovia) in the FMT group. The LDA score 
plot presented group-enriched taxa that were significant between 
the two groups (p < 0.05).

Figure  3 illustrates the comparison of abundance among 
groups at the levels of phylum and genus were performed using a 
Metastats analysis and indicated an increase of the phyla 
Firmicutes and Acidobacteria and of the genera Dietzia and 
Ruminococcus in the FMT group. The similarity between samples 
was evaluated by unweighted pair group method with arithmetic 
mean (UPGMA) analysis, which showed that the samples of the 
CON and FMT groups were mostly similar and distributed into a 
different cluster of hierarchical trees (Supplementary Figure S4).

Microbial function prediction

The relative abundance comparison between the CON and 
FMT groups based on the second-level of KEGG pathways 
analysis is shown in Table 5 and Figure 4. A total of six categories 
of cellular processes, environmental information processing, 
genetic information processing, immune information processing, 
metabolism processing, and organismal systems processing were 
revealed between the CON and FMT groups.

TABLE 3 Observed operational taxonomic units (OTUs) and 
α-diversity measures of bacterial communities between chicks from 
the control and fecal microbiota transplantation (FMT) groups.

Alpha diversity 
index

Control FMT SEM P-Value

Observed OTUs 4357.68 6129.37 311.26 0.0

Abundance index

ACE 1227.56 794.68 66.82 0.03

Chao1 1041.05 770.13 56.09 0.02

Diversity index

Simpson 0.938 0.884 0.016 0.01

Shannon 6.714 5.51 0.24 0.01

All data are expressed as the mean ± SEM (n = 11/group) and presented for a similarity of 
0.97 between the reads. Values between groups mean the index differ significantly 
(p ≤ 0.05).
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In the category of cellular processes, the levels of cell growth 
and death, and transport and catabolism had a higher (p < 0.01) 
relative abundance in the FMT group than in the CON group. The 
level of membrane transport pathway in the category of 
environmental information processing was significantly increased 
(p < 0.01) in the FMT group than in the CON group (Table 5). 
Prediction of functional microbiome in the category of genetic 
information processing showed that three pathway levels of DNA 
replication and repair, transcription, and translation were 
significantly increased (p  < 0.01) in FMT group. One level of 
infectious diseases pathway under the category of immune 
information processing was increased (p < 0.05) in the FMT group 
when compared with the CON group. Regarding the category of 
metabolism processing, the differences between groups (FMT and 
CON) in the pathway levels regarding amino acid metabolism 
(p < 0.01), secondary metabolites biosynthesis (p < 0.01), 
carbohydrate metabolism (p < 0.01), energy metabolism (p < 0.05), 
enzyme families (p < 0.05), and cofactors and vitamins (p < 0.05) 

were higher in the FMT groups than in the CON group. The 
pathway level of endocrine system was significantly increased 
(p < 0.01) in the FMT group when compared with the CON group.

The top 50 most abundant KEGG orthologous genes were 
clustered in the heat map combined with the analysis between the 
CON and FMT groups; samples of the control group formed 
clusters based on their similar microbial compositions. The Venn 
diagram of the common and unique functional groups revealed 
that the FMT group had more functional groups than the CON 
group. PLS discriminant analysis (PLS-DA) plot showed that 
samples belonging to the same group were more similar to each 
other than those from different groups.

Discussion

There is increasing interest in early life programming of 
chickens for better health condition and performance. The recent 

A

C

B

FIGURE 1

The PCA (principal component analysis) based on unweighted UniFrac distance. (A) the PCA, (B) non-metric multidimensional scaling (NMDS) of 
weighted and unweighted of unifrac distance, and (C) boxplot for comparative analysis of inter-group/group differences in unifrac distance 
between groups of control and FMT chicks. Two independent cluster showed significant correlated by ANOSIM (R = 0.38***) and PERMANOVA of 
weighted (R = 0.25**) and unweighted (R = 0.19***) of unifrac distance between control and FMT of laying-chicks.
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reports showed promising results on the application of FMT in 
early life of birds (Siegerstetter et al., 2018; Yan et al., 2021) to 
modulate gut microbiota. Therefore, we investigated the safety of 
daily dosage of FMT from broiler donor chicks and their ability to 
alter the composition, structure, and function of gut microbiota 
and improve metabolic outcomes in the early life of native egg 
laying chicks with low performance. The gut microbiota of the 
Cobb-500 broiler (donors) has been previously characterized in 
several studies, including a distinct microbial community 
regarding improvement in feed-efficient and weight gain 
(Siegerstetter et al., 2018; Richards et al., 2019).

In the present study, the dominant phyla were Firmicutes and 
Proteobacteria followed by Bacteroidetes, Cyanobacteria, and 
Actinobacteria; however, the proportion of each phylum fluctuated 
and was affected by the FMT treatment. We herein observed that 
Firmicutes and the F/B ratio were increased in the FMT group, 
which was also consistent with an increase in body weight gain of 
chicks. We therefore speculate that this may be because Firmicutes 

and a high F/B ratio in the cecum microbiota allow a more 
efficient use of feed energy, since, previous studies have shown that 
the F/B ratio is associated with mammalian weight gain in 
different species, such as human (Karvonen et al., 2019), mice 
(Everard et al., 2014), and rabbit (Zeng et al., 2015). Additionally, 
the difference between the control group and the FMT group may 
be attributed to the latter having obtained abundant microbiota 
from the broiler chicks, which have a higher abundance of 
microbes in their digestive tract and can thus intake more  
nutrients.

Moreover, most α-diversity indices (Ace, Chao, Shannon, 
Simpson) were higher in the control group than in the FMT 
group, suggesting that the gut microbiota in the control group 
was more diverse than in the FMT group, which appeared to 
be  more homogeneous based on the overabundance of 
Firmicutes and the F/B ratio. Additionally, in the current study, 
Lactobacillus, Lactococcus, and Bifidobacterium were more 
abundant in chicks received FMT. Lactobacillus is known to 

A

B

C

FIGURE 2

Impact of FMT on the Chickens Gut Microbiota Structure. (A) Venn diagram of OUT number between groups (Control and FMT) of common and 
unique units. (B) Heat map showing the genera with significant differences of relative abundances between groups. (C) Taxonomic composition 
analysis between groups at each classification level of phylum and family control and FMT groups.
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be involved in carbohydrate (Goh and Klaenhammer, 2014) and 
lipid metabolism (Falcinelli et al., 2015) and in immune system 
metabolism (Xin et  al., 2014). Lactobacillus is the most 
important bacterial genus as it facilitates nutrient absorption, 
enhances host immunity, and prevents intestinal inflammatory 
responses (Wang et  al., 2018). Collectively, Lactobacilli and 
Bifidobacteria are purported beneficial for gut physiology and 
body weight gain.

Gut microbiota composition is one of the most internal factors 
affecting physiological responses of the host through host–
microbiome interaction, and a normal gut microbiota community 
allows gut permeability, nutrient digestibility, and 

anti-inflammatory reactions (Elokil et al., 2020c). Our results 
suggest that the shift in microbe distribution resulting from FMT 
successfully improved body weight gain. Therefore, the gut 
microbiota of the FMT group can digest complex and simple 
carbohydrates and produce more nutrients, such as volatile fatty 
acids, microbial proteins, and vitamins, in order for the host to 
gain weight in comparison with the control group.

Nowadays, CRISPR-Cas technologies, which were 
developed from the prokaryotic immune system, have recently 
made it possible for scientists to examine and modify 
organisms with an unparalleled ease and effectiveness (Vercoe 
et al., 2013; Ahmed et al., 2018). The delivery of CRISPR-Cas 

TABLE 4 Relative abundance (percent of total sequences) of taxa in the cecal microbiota of chicks from the control and fecal microbiota 
transplantation (FMT) groups estimated using metagenomic analysis1.

Taxa levels Bacteria 
Classification

Control FMT SEM P-Value

Phylum Firmicutes 75.39 89.05 1.690 0.001***

Genus Lactobacillus 9.12 17.87 2.270 0.003**

Genus Lactococcus 0.035 1.75 0.090 0.001***

Genus Enterococcus 0.86 0.55 0.410 0.023*

Genus Ruminococcus 1.34 0.86 0.460 0.041*

Genus Facklamia 0.17 0.11 0.060 0.555

Genus Arthromitus 0.16 0.14 0.040 0.721

Genus Erysipelothrix 0.23 0.41 0.180 0.037*

Phylum Bacteroidetes 5.80 2.51 0.690 0.003**

Genus Bacteroides 1.30 0.54 0.170 0.006**

Genus Parabacteroides 0.40 0.26 0.060 0.025*

Genus Prevotella 0.609 0.033 0.008 0.001***

Genus Alistipes 0.081 0.107 0.019 0.070

Genus Barnesiella 0.111 0.054 0.019 0.042*

Phylum F/B ratio 12.99 35.45 1.376 0.001***

Phylum Actinobacteria 0.736 0.402 0.146 0.023*

Genus Bifidobacterium 0.051 0.064 0.019 0.044*

Genus Collinsella 0.001 0.002 0.000 0.557

Genus Corynebacteriaceae 0.004 0.002 0.001 0.444

Genus Nocardiaceae 0.0004 0.0009 0.0003 0.318

Phylum Campilobacterota 0.811 0.164 0.019 0.001***

Phylum Proteobacteria 7.980 3.520 1.881 0.009**

Genus Comamonadaceae 1.831 0.654 0.044 0.001***

Genus Helicobacter 1.589 1.027 0.018 0.001***

Phylum Moraxellaceae 0.019 0.018 0.007 0.946

Genus Pasteurellaceae 0.001 0.001 0.004 0.351

Genus Pseudomonadaceae 0.0004 0.0009 0.000 0.267

Phylum Fusobacteria 0.813 0.897 0.010 0.840

Genus Fusobacteriaceae 0.024 0.037 0.002 0.406

Phylum Verrucomicrobia 1.360 0.740 0.192 0.033*

Genus Akkermansia 0.469 0.404 0.068 0.512

Phylum TM7 0.042 0.005 0.008 0.005**

Phylum Cyanobacteria 0.094 0.118 0.004 0.547

Phylum Other 7.868 2.579 1.403 0.014*

1All data are expressed as the mean ± SEM (n = 11/group) of the percentage of domain bacteria at taxonomic levels (phylum and genus). Data were analyzed using one-way ANOVA. 
p-values between control and FMT chicks were obtained using the t-test. Values between groups are significantly different (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
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systems to bacterial populations is another option. These 
systems can be  designed to target and destroy particular 
microbiome components (Ramachandran and Bikard, 2019). 

Together, these techniques offer fascinating chances to explore 
the intricate relationships that exist between the microbiome’s 
constituent parts and human bodies. They also open up fresh 

A

B

FIGURE 3

Metastats comparison statistics test for significant differences of taxa abundance between groups of control and FMT chicks. (A) six phylum 
(B) twenty genus presented higher F/B ratio in FMT compare with control group.
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possibilities for the creation of medications that specifically 
target the microbiome (Stout et al., 2018). Most bacteria have 
CRISPR-Cas systems, which are present in 40% of them. In 

certain circumstances, it may be possible to use endogenous 
CRISPR-Cas systems, while in other cases, it may be possible 
to introduce designed CRISPR-Cas systems into the target 

TABLE 5 Relative abundance of the functional microbiome predicted by KEGG second-level pathways between chicks from the control and FMT 
groups estimated using the statistical analysis of metagenomic profiles.

Categories of KEGG second-level pathways1 Control FMT SEM P-Value

Cellular Processes

Cell growth and death 0.0060 0.0080 0.0000 0.0001**

Cell motility 0.0120 0.0180 0.0020 0.0720

Transport and catabolism 0.0010 0.0020 0.0000 0.0001**

Unclassified; Cellular Processes and 0.0340 0.0570 0.0040 0.0590*

Environmental Information Processing

Membrane transport 0.1280 0.1370 0.0030 0.004**

Signaling molecules and interaction 0.0020 0.0010 0.0001 0.006**

Signal transduction 0.0130 0.0150 0.0000 0.008**

Genetic Information Processing

Folding, sorting and degradation 0.0230 0.0230 0.0002 0.935

DNA replication and repair 0.0890 0.1000 0.0020 0.003**

Transcription 0.0090 0.0270 0.0005 0.007**

Translation 0.0570 0.0670 0.0010 0.002**

Unclassified; Genetic Information 0.0260 0.0250 0.0003 0.035*

Immune Information Processing

Immune system diseases 0.0010 0.0010 0.0000 0.616

Infectious diseases 0.0040 0.0030 0.0000 0.041*

Metabolic diseases 0.0010 0.0010 0.0000 0.205

Neurodegenerative diseases 0.0010 0.0010 0.0000 0.884

Metabolism Processing

Amino acid metabolism 0.0770 0.0930 0.0030 0.001**

Biosynthesis secondary metabolites 0.0020 0.0080 0.0002 0.001**

Carbohydrate metabolism 0.1110 0.4510 0.0010 0.004**

Energy metabolism 0.0530 0.0910 0.0072 0.032*

Enzyme families 0.0170 0.0420 0.0006 0.025*

Glycan biosynthesis and metabolism 0.0220 0.0860 0.0003 0.090

Lipid metabolism 0.0290 0.0310 0.0008 0.099

Cofactors and vitamins 0.0340 0.0570 0.0010 0.003**

Other amino acids 0.0150 0.0210 0.0003 0.074

Terpenoids and polyketides 0.0080 0.0070 0.0004 0.286

Nucleotide metabolism 0.0470 0.0420 0.0010 0.046*

Xenobiotics biodegradation 0.0230 0.0240 0.0010 0.648

Unclassified; Metabolism Processing 0.0230 0.0870 0.0080 0.009*

Organismal Systems

Circulatory system 0.0000 0.0000 0.0000 0.717

Digestive system 0.0010 0.0050 0.0000 0.025

Endocrine system 0.0010 0.0060 0.0000 0.001

Excretory system 0.0003 0.0002 0.0000 0.079

Immune system 0.0005 0.0002 0.0000 0.048

Nervous system 0.0010 0.0010 0.0000 0.968

Unclassified; Poorly Characterized 0.0500 0.0480 0.0020 0.003

1All data are expressed as the mean ± SEM of the relative abundance for predicting of functional microbiome; Values between groups are significantly different (*p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001). (n=11/group).
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bacteria (Hullahalli et al., 2017). The genomes of probiotic or 
microbiome-associated yeast, bacteria, and bacteriophages can 
all be  altered using these methods. Additionally, based on 
their sequence, they can be employed to eradicate particular 
strains without affecting the remainder of the microbiome 
(Jiang et al., 2013).

Our findings revealed that FMT treatment promoted early 
body weight gain in Jing Hong chickens, speculating the 
physical growth will be completed early and will increase the 
length of laying time in the hens of FMT group than control 
group (Choi and Cho, 2016). Predictably, cocks in FMT group 
will have good physical and external morphometric traits such 
as comb height and color, wattle length, earlobe width, 
wingspan, girth circumference, drumstick length and 
testicular weight (Metzler-Zebeli et al., 2016). Since, the body 
weight- age relationship of laying chicks is directly related to 
the egg weight and number of egg produced for the laying 
chickens (Di Masso et al., 1998), and egg weight attains proper 
flock uniformity which is a key criterion for the success of 
egg-laying performance (Lacin et  al., 2008). Which was 
achieved in the current study through FMT that regulated gut 
microbiome uniformity, and increased.

Conclusion

In conclusion, our findings showed that a distinct microbial 
community were colonized the gut due to FMT administration 
from the donor of highly feed-efficient broilers to laying chicks, 
which improved intestinal functions and antimicrobial 
pathogenicity compared with the control group. In addition, early 
life programming of slow growing chicks breed (Jing Hong) by 
FMT application was successful via increasing the cecal abundance 
of Firmicutes, Lactobacillus, Lactococcus, and Bifidobacterium, 
which may be related to increase the carbohydrate metabolism 
and health in laying chicks. FMT could be a potential strategy to 
improve animal growth performance.
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FIGURE 4

Effect of FMT on Functional Prediction of KEGG Second-level Analysis. (A) KEGG orthologous gene cluster abundance heat map combined with 
cluster analysis based on the similarity of the functional group abundance distribution between samples (red represents a functional group with 
higher abundance in the corresponding sample, and green represents a functional group with lower abundance); venn diagram of the common 
and unique functional group, (B) PLS-DA discriminant analysis plot showed samples belonging to the same group are closer to each other, and the 
distance between the points of different groups is farther.
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