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Activation of mucosal immunity 
as a novel therapeutic strategy 
for combating brucellosis
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Brucellosis is a disease of livestock that is commonly asymptomatic until an 

abortion occurs. Disease in humans results from contact of infected livestock 

or consumption of contaminated milk or meat. Brucella zoonosis is primarily 

caused by one of three species that infect livestock, Bacillus abortus in 

cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease 

prophylaxis, livestock vaccines are available, but are only 70% effective; hence, 

improved vaccines are needed to mitigate disease, particularly in countries 

where disease remains pervasive. The absence of knowing which proteins 

confer complete protection limits development of subunit vaccines. Instead, 

efforts are focused on developing new and improved live, attenuated Brucella 

vaccines, since these mimic attributes of wild-type Brucella, and stimulate 

host immune, particularly T helper 1-type responses, required for protection. 

In considering their development, the new mutants must address Brucella’s 

defense mechanisms normally active to circumvent host immune detection. 

Vaccination approaches should also consider mode and route of delivery 

since disease transmission among livestock and humans is believed to occur 

via the naso-oropharyngeal tissues. By arming the host’s mucosal immune 

defenses with resident memory T cells (TRMs) and by expanding the sources 

of IFN-γ, brucellae dissemination from the site of infection to systemic tissues 

can be prevented. In this review, points of discussion focus on understanding 

the various immune mechanisms involved in disease progression and which 

immune players are important in fighting disease.
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Introduction

Brucellosis remains a worldwide problem ranking third among eight neglected 
zoonotic diseases (Mableson et  al., 2014), and is the most common zoonotic disease 
worldwide (Corbel, 1997; Godfroid et al., 2005). In humans, brucellosis is generally results 
from the consumption of unpasteurized dairy products or exposure to aerosols from 
infected livestock (Spink, 1956; Foley et al., 1970; Centers for Disease Control (CDC), 1983; 
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Young, 1983; Chomel et al., 1994; Malik, 1997; Troy et al., 2005; 
de Figueiredo et al., 2015). In livestock, brucellosis was originally 
believed to be solely a sexually transmitted disease resulting in 
fetal abortion (Poester et al., 2013; Olsen and Palmer, 2014; de 
Figueiredo et al., 2015), but oropharyngeal infection is deemed to 
be the probable mode of transmission following exposure to an 
aborted fetus or birthing tissues (Olsen and Palmer, 2014; Cotterill 
et al., 2018). In fact, one study found that Brucella-infected bovine 
umbilicus contained 2 × 108 to 4 × 109 CFUs/g and bovine fetal 
cotyledons, 5 × 1011 to 1 × 1013 CFUs/g tissue (Alexander et al., 
1981). Thus, brucellae can concentrate to high numbers, and 
following abortion, the placenta and fetus can expose herd 
members to high numbers of brucellae. On the human side, this 
Gram-negative species is highly infectious with less than 100 
CFUs needed for blood borne exposure (Pappas et al., 2006) or 
less than 2,000 CFUs for pulmonary infection (Teske et al., 2011; 
Henning et  al., 2012). Regardless of the route of infection, 
brucellae can disseminate systemically resulting in flu-like 
symptoms (Young, 1983; Malik, 1997; Troy et  al., 2005; de 
Figueiredo et al., 2015). Since current vaccines are not completely 
protective in livestock, more efficacious brucellosis vaccines are 
needed to protect livestock and to prevent zoonosis. Vaccines for 
humans would also aid in protecting livestock producers.

This review considers alternate routes of vaccination, 
specifically, mucosal routes, specifically in the context of Brucella 
prophylaxis. Because natural infection generally occurs via 
crossing of the mucosal barrier, vaccination via this route should 
improve vaccine efficacy by mounting both local and distal 
responses of effector and memory B and T cells. While Brucella 
vaccination is often administered parentally in cattle and wildlife, 
mucosal vaccination via the conjunctival route is practiced in 
sheep as a strategy to reduce vaccine-induced abortions. While the 
T cell response is considered crucial to the Brucella vaccine-
induced protective response, few studies have examined the 
mucosal T cell responses in ruminant species following 
conjunctival vaccination. Similarly, most vaccine studies in 
experimental animal models focus on the systemic response 
following parenteral vaccination. Thus, a void exists between the 
understanding host immunity and the routes of vaccination 
particularly in natural hosts. Past research in livestock species have 
focused on protection against abortion, serological responses, and 
peripheral blood T cell responses. More evaluations are needed in 
both natural hosts and laboratory animal models in determining 
additional parameters of protection against both abortion and 
infection. Infection prevention is particularly relevant when 
considering vaccine development for humans.

To meet this objective, the review first explores a historical 
perspective of brucellosis and its prevalence through the course of 
time followed by the etiology of this disease. We then describe 
current knowledge of host immunity to brucellosis, examining 
various cell-mediated immunity parameters that correlate with 
protection. A brief description of currently available vaccines is 
provided. With this background information, we move to studies 
examining mucosal routes of vaccination. We conclude describing 

the potential benefits of mucosal vaccination in both animal and 
human hosts.

Historical perspective

Brucellosis is believed to have been problematic for humans 
for at least several millennia or maybe longer dating to the 
domestication of goats and sheep. Some of the first suggestions of 
brucellosis infections in humans date back about 3,300 years, 
whereby a possible Brucella peptide signature was identified in 
cheese remnants found in Egyptian tombs (Greco et al., 2018). In 
addition, lesions in human vertebrae remains from Early Bronze 
Age and the Pompeii volcanic eruption in 79 AD are suggestive of 
Brucella infection (D'Anastasio et al., 2011). Not until 1887 was 
the etiological agent responsible for brucellosis discovered by the 
British surgeon, David Bruce, while serving in Malta. He first 
identified small coccobacilli causing “Malta Fever,” when isolated 
from the spleen of a victim (Bruce, 1889; Vassallo, 1992), and 
called it Micrococcus melitensis (Bruce, 1887). After its discovery 
in goats’ blood and later in their milk, consumption of goats’ milk 
was surmised to be the source of Malta Fever transmission. This 
suspicion was corroborated when the British military prohibited 
goat milk consumption by its Malta personnel, resulting in a 
dramatic decline in disease incidence (Vassallo, 1992). In 1895, the 
Danish veterinary pathologist, L. F. Benhard Bang, discovered the 
related, Bacillus abortus, responsible for abortion in cattle, and 
upon subsequent infection of an isolate, could induce abortion in 
cattle, sheep, and goats fulfilling Koch’s postulates (Bang, 1897; 
Bang, 1906). Based on the observation that both Bacillus abortus 
and Micrococcus melitensis induced abortion, presence in milk, 
and shared morphology and seroreactivity, Evans concluded these 
species were related (Evans, 1918). In 1920, in honor of Dr. Bruce, 
the three related species of M. melitensis, B. abortus, and B. suis 
were named in the new genus, Brucella (Vassallo, 1992).

Brucella etiology

Brucella, the pathogen

The Gram-negative Brucella species are highly homogeneous 
sharing more than 94% DNA homology (Wattam et al., 2009; Van 
der Henst et al., 2013; Whatmore and Foster, 2021), and 12 species 
have been identified as animal and human pathogens (Olsen and 
Palmer, 2014; Roop et al., 2021; Whatmore and Foster, 2021). 
Their genomes are composed of two circular chromosomes 
(Wattam et  al., 2009; Roop et  al., 2021). Brucella species are 
ubiquitous, infecting both land and marine animals (Guzmán-
Verri et al., 2012; Roop et al., 2021; Whatmore and Foster, 2021). 
Three species are the primary cause of disease in livestock and can 
be problematic for humans due to incidental exposures. Brucella 
melitensis causes disease primarily in goats and sheep (Poester 
et al., 2013; Olsen and Palmer, 2014). Bacillus abortus is primarily 
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a disease of cattle, but has been introduced into wildlife both in 
the United States and other countries (Poester et al., 2013; Olsen 
and Palmer, 2014). Brucella suis is primarily a disease of domestic 
and feral pigs (Corbel, 1997; Poester et al., 2013; Roop et al., 2021). 
Each of these is the primary cause of disease in humans, and the 
remaining 8 species are found in specific hosts (Wattam et al., 
2009; Roop et al., 2021; Whatmore and Foster, 2021). However, 
opportunistic species have been reported in limited or rare human 
infections including, B. inopinata (Scholz et al., 2010; Roop et al., 
2021), the amphibian B. inopinata-like (Rouzic et al., 2021), and 
B. canis (Roop et al., 2021). Recent genomic evidence suggests that 
a number of Ochrobactrum species as being related to Brucella, 
which would dramatically expand this genus (Hördt et al., 2020; 
Moreno et al., 2022).

Livestock disease

The four major Brucella pathogens responsible for livestock 
disease (Poester et al., 2013; Olsen and Palmer, 2014; Goodwin 
and Pascual, 2016) are B. abortus, B. melitensis, B. suis, and B. ovis, 
and each cause abortion (Bang, 1897; Godfroid et  al., 2011; 
Poester et al., 2013; Byndloss and Tsolis, 2016). The absence of 
symptoms prior to abortion is problematic. Brucellosis is a chronic 
disease with possible swelling of lymph nodes near sites of 
infection. The most common clinical manifestation of animal 
brucellosis is reproductive loss resulting from abortion, birth of 
weak offspring, or infertility (Poester et  al., 2013; Olsen and 
Palmer, 2014; Goodwin and Pascual, 2016; Rossetti et al., 2022). 
Brucella abortus localizes and replicates within the rough 
endoplasmic reticulum of trophoblastic epithelial cells in pregnant 
ruminants (Meador and Deyoe, 1989). However, placental 
infections frequently cause abortions after infection, particularly 
for the first offspring, and reduce fertility (Enright, 1990; Olsen 
and Palmer, 2014). Fetal pneumonia and necrotizing placentitis 
are implicated as the cause of abortion (Poester et al., 2013; Olsen 
and Palmer, 2014). Exposure to the aborted fetus and placenta is 
likely responsible for the persistence of B. abortus, B. melitensis, 
and B. suis in herds and populations. Though not zoonotic, B. ovis, 
is responsible for disease primarily in sheep, but is limited to 
mostly rams and transiently infect ewes (Ridler and West, 2011; 
Olsen and Palmer, 2014; Rossetti et al., 2022). Brucella ovis can 
cause epididymitis, which can result in infertility, and its presence 
in semen can be detected in rams with or without epididymitis 
(Ridler and West, 2011; Olsen and Palmer, 2014; Rossetti 
et al., 2022).

Human disease

Human brucellosis can be a debilitating disease, especially if 
untreated (Pappas et al., 2005, 2006; Franco et al., 2007; Cross 
et al., 2019). Brucellosis poses an occupational hazard common to 
abattoir workers, or by needle-stick by laboratory workers and 

veterinarians administering live brucellosis vaccines (Buswell 
et al., 2016; Pereira et al., 2020). Human brucellosis is more often 
acquired subsequent to consumption of unpasteurized dairy 
products (Chomel et  al., 1994; Pappas et  al., 2005; Baldi and 
Giambartolomei, 2013; Dadar et al., 2019; Adetunji et al., 2020). 
The American Academy of Pediatrics recommends against the 
consumption of unpasteurized milk by pregnant women and 
children (American Academy of Pediatrics, 2014). Brucellosis 
prevails along the Mediterranean rim, Middle East, Central Asia, 
South America, and the United States bordering Mexico (Chomel 
et al., 1994; Malik, 1997; Pappas et al., 2005; Corbel, 2006; Pappas 
et al., 2006). Its presence is attributed mostly to the inability to rid 
disease from livestock. The enormous cost of brucellosis to the 
livestock industry, as well as its impact on public health, has 
prompted many countries to adopt brucellosis control and 
eradication programs (Olsen and Stoffregen, 2005). In the 
United States, a brucellosis eradication program was established 
in 1954 aiding in the elimination of B. abortus infections from 
cattle. Vaccination of heifers using B. abortus strain 19 (S19), then 
subsequently with RB51, has been practiced to reduce the 
incidence of the disease and prevent B. abortus-induced abortions 
(Schurig et al., 2002). Ridding brucellosis from animal herds and 
pasteurization of dairy products reduce disease in humans.

The incidence of disease varies among the endemic regions 
(Pappas et al., 2006; Franco et al., 2007), but actual case numbers 
may be higher by as much as 26-fold due to misdiagnosis and 
underreporting (Franco et al., 2007; Hull and Schumaker, 2018). 
The high incidence of Brucella infections is attributed to the 
sustained prevalence of brucellosis in infected livestock (Young, 
1983), that are the source of unpasteurized milk consumed in 
various dairy products (Pappas et  al., 2005; Baldi and 
Giambartolomei, 2013; Dadar et al., 2019; Adetunji et al., 2020). 
In addition, a number of cases have been attributed to an aerosol 
exposure from Brucella-infected livestock (Corbel, 1997), 
laboratory acquired (Traxler et  al., 2013), or an accidental 
biopharmaceutical release (Pappas, 2022). In the latter case, more 
than 10,000 individuals became infected with brucellosis (Pappas, 
2022). However acquired, brucellosis is seldom (<0.5% of cases) 
life-threatening in humans (Ariza et al., 1995; Corbel, 1997), but 
human abortions occur, though rare [rev. in (Arenas-Gamboa 
et al., 2016)]. Acute disease manifests with flu-like symptoms such 
as fever, chills, malaise, headaches, with the presence of 
hepatomegaly and splenomegaly (Corbel, 1997; Pappas et  al., 
2005; Corbel, 2006; Franco et al., 2007). Despite rigorous antibiotic 
treatment, brucellosis can progress to a chronic disease exhibiting 
symptoms of relapsing undulant fever, protracted fatigue, and 
malaise (Young, 1983; Ariza et al., 1995; Franco et al., 2007; Baldi 
and Giambartolomei, 2013; Hull and Schumaker, 2018), and have 
positive Brucella blood cultures (Ariza et al., 1995; Corbel, 1997). 
Patients can further develop neurological complications, 
endocarditis, or arthritis (Rajapakse, 1995; Reguera et al., 2003; 
Shen, 2008; Adetunji et al., 2018; Lacey et al., 2018). Although 
Brucella is sensitive to antibiotics via a prolonged two-antibiotic 
regimen (Ariza et  al., 1995; Corbel, 1997), sequelae can still 
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remain in ~16% of the infected individuals (Ariza et al., 1995), of 
which 50% remain bacteremic (Ariza et  al., 1995). Mucosal 
infection is the most likely means of brucellosis transmission, yet 
the absence of symptoms or pathology in the intestinal tract 
(Ariza et al., 1995; Ablin et al., 1997; Ron-Román et al., 2014) 
suggests that brucellae rapidly transverse the intestinal tract, local 
phagocytic cells become infected and leave this tissue, or that 
other mucosal sites are sensitive to infection. Oropharyngeal 
tissues are the most likely site of infection since pharyngitis is 
often observed (Carpenter and Boak, 1932; Poelma and Pickens, 
1932; Suraud et al., 2007; Zachou et al., 2008; Ron-Román et al., 
2014), and cervical lymph nodes are selectively infected (von 
Bargen et  al., 2015; Rouzic et  al., 2021). Treatment requires a 
combination therapy of antibiotics for 6 weeks generally involving 
doxycycline + streptomycin, doxycycline + gentamicin, or 
doxycycline + rifampin (Ariza et al., 2007; Bosilkovski et al., 2021).

Brucella immunology

Brucella, a stealth pathogen

As a means to sustain intracellular survival, Brucella has 
evolved a number of mechanisms to avoid host recognition and 
establish infection (Celli et al., 2019; Roop et al., 2021). Following 
bacteremia, macrophages are one of the principal cells targeted by 
Brucella to sustain infection (Gomes et al., 2012; Celli et al., 2019; 
Bhagyaraj et  al., 2021). Once brucellae achieve intracellular 
infection, their elimination proves to be more difficult as these 
have a number of tools to evade the host immune system. As such, 
brucellae exist in Brucella-containing vacuoles (BCVs; Gomes 
et al., 2012; Celli et al., 2019; Roop et al., 2021), which traffic in the 
endocytic pathway incorporating endosomal membrane proteins, 
e.g., calreticulin and calnexin1, avoiding phagolysosome 
maturation and killing (Pizarro-Cerdá et al., 1998; Celli et al., 
2003; Starr et  al., 2008; Gomes et  al., 2012; Celli et  al., 2019; 
Bhagyaraj et al., 2021; Roop et al., 2021) in a VirB-dependent 
fashion (Celli et al., 2003; Starr et al., 2008; Gomes et al., 2012; 
Roop et al., 2021). To avoid TLR4 and other LPS-sensitive innate 
detection sensors, Brucella expresses a low endotoxic LPS 
(Forestier et al., 2000; Martirosyan et al., 2011; Conde-Álvarez 
et al., 2012; Byndloss and Tsolis, 2016). Brucella can also infect 
dendritic cells (Bhagyaraj et al., 2021), and suppress dendritic cell 
maturation (Salcedo et  al., 2008). To interfere with TLR2 and 
TLR4 signaling, Brucella produces TcpB, an analog for mammalian 
Toll/interleukin 1 receptor (TIR) domain-containing adaptor 
protein (TIRAP), to suppress NF-κB activation and cytokine 
secretion (Alaidarous et al., 2014; Snyder et al., 2014). TcpB can 
also degrade caspases 1, 4, and 11, and ultimately suppress IL-1 
production (Jakka et  al., 2017). To minimize host adaptive 
immune responses, Brucella has the capacity to interrupt antigen 
presentation via inhibition of MHC class I (Barrionuevo et al., 
2013; Velásquez et al., 2017; Barrionuevo and Giambartolomei, 
2019) and class II molecules (Barrionuevo et al., 2008; Velásquez 

et  al., 2017; Barrionuevo and Giambartolomei, 2019; Milillo 
et al., 2019).

Type 1 IFNs are often deemed important for anti-viral defense 
(McNab et al., 2015; Takaoka and Yamada, 2019), and few studies 
have considered the role of type 1 IFNs following infection with 
wild-type (wt) Brucella (de Almeida et al., 2011; Gorvel et al., 
2014; Khan et al., 2016; Costa Franco et al., 2018; Guimarães et al., 
2019). Brucella infection interferes with monocytic DC maturation 
(Gorvel et al., 2014). The induction of the type 1 IFN pathway was 
found to be  sensing stimulator of interferon genes (STING)-
dependent evidenced by the recognition of both Brucella’s DNA 
(de Almeida et al., 2011; Costa Franco et al., 2018) and c-di-GMP 
(Khan et al., 2016; Costa Franco et al., 2018; Guimarães et al., 
2019). Wt Brucella showed enhanced splenic colonization in 
STING−/− mice (Costa Franco et  al., 2018; Khan et  al., 2020) 
supporting the notion that wt B. melitensis can suppress STING 
early in infection.

Th1 cell immunity and brucellosis

Cellular immunity is essential for protection against 
brucellosis (Table  1). An inflammatory or T helper (Th)1 cell 
response is required to eliminate brucellae in an IL-12- (Zhan and 
Cheers, 1995) and TNF-α-dependent manner (Zhan and Cheers, 
1998) for the stimulation of IFN-γ. As a result, protection to 
Brucella is abated in IFN-γ−/− mice (Murphy et al., 2001; Skyberg 
et  al., 2012) further supporting the importance of IFN-γ to 
protection. Yet, there may exist alternative or cooperative 
pathways of protection. One critical observation is that the degree 
of susceptibility in IFN-γ−/− mice varied between C57BL/6 (B6) 
and BALB/c backgrounds. B6 IFN-γ−/− mice are more highly 
susceptible to death sooner than BALB/c IFN-γ−/− mice (Murphy 
et al., 2001; Skyberg et al., 2012). Moreover, vaccination of BALB/c 
IFN-γ−/− mice with ΔznuA B. melitensis mutant did show reduced 
brucellae colonization from challenge suggesting other 
mechanisms that can contribute to immune protection (Clapp 
et al., 2011, 2016), and these vaccinated IFN-γ−/− mice did not 
show increased susceptibility to death. Both strains of IFN-γ−/− 
mice showed increased susceptibility to osteoarthritis (Skyberg 
et al., 2012; Lacey et al., 2016). In fact, Brucella-infected patients 
with reduced IFN-γ capacity showed increased sensitivity to 
osteoarticular complications (Rafiei et al., 2006; Hedayatizadeh-
Omran et al., 2010).

Essential sources of IFN-γ include CD4+ (Murphy et al., 2001; 
Vitry et al., 2012; Yingst et al., 2013; Vitry et al., 2014; Yang et al., 
2016), CD8+ T cells (Clapp et al., 2011; Durward-Diioia et al., 
2015; Clapp et al., 2016; Yang et al., 2016; Wang et al., 2020), or 
both (Araya et al., 1989; Hanot Mambres et al., 2016; Goodwin 
et al., 2022). NK cells also provide IFN-γ to activate macrophages 
and DCs (Dornand et al., 2004; Bhagyaraj et al., 2021). The role of 
CD4+ and CD8+ T cells has been extensively studied to learn 
correlates of protection against brucellosis (Table 1). How IFN-γ-
producing T cells are elicited is dependent upon the Brucella 
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mutant or vaccine strain used, as well as, its mode of delivery for 
vaccination (Table 1). Clearly, CD4+ Th1 cells provide a primary 
source of IFN-γ to combat Brucella infection (Zhan et al., 1995; 
He et al., 2001; Vitry et al., 2012; Yingst et al., 2013; Vitry et al., 
2014), and vaccination by the parenteral route with livestock 
vaccines elicited mostly CD4+ T cell-dependent responses 
(Table  1). In one study, protection was deemed CD4+ T cell-
dependent since orally vaccinated CD8−/− mice with a purine 
auxotrophic B. melitensis mutant were not protected against 
virulent B. melitensis challenge (Yingst et al., 2013). In a separate 
study, vaccination of MHC class II−/− mice was accomplished 
using a low-dose parenteral infection with wt B. melitensis 16M 
followed by antibiotic treatment. When challenged with wt 
B. melitensis 16M, these mice showed elevated splenic brucellae 
burden and reduced IFN-γ-producing cells when compared to 
similarly vaccinated and challenged immunocompetent mice 
(Vitry et al., 2014). In a subsequent study (Hanot Mambres et al., 
2016), a similar strategy was applied with a nasal wt B. melitensis 
16M infection of MHC class II−/− and TAP1−/− mice followed by 
antibiotic treatment prior to nasal challenge with wt B. melitensis 
16M. Both MHC class II−/− and TAP1−/− mice showed 
equivalent protection to similarly immunized and challenged 
immunocompetent mice. The investigators concluded that the 
source of IFN-γ-producing cells can be either CD4+ or CD8+ T 
cells for conferring protection. Such results corroborate findings 
from an earlier study where adoptive transfer of immune CD4+ or 

CD8+ T cells from B. abortus S19-vaccinated mice reduced splenic 
brucellae colonization following challenge of recipients with wt 
B. abortus (Araya et al., 1989). Thus, based upon these findings, 
dependence on CD4+ T cell immunity for protection against 
virulent Brucella challenge is influenced by the source of the 
immunizing Brucella strain used (Table 1).

CD8+ T cell immunity and brucellosis

The lack of memory CD8+ T cells has been suggested as a 
means for enabling brucellae persistence (Durward-Diioia et al., 
2015). In contrast, others suggest that CD8+ T cell immunity is 
expandable for brucellosis (Vitry et al., 2012; Yingst et al., 2013; 
Vitry et al., 2014). Only a few studies have investigated the role of 
CD8+ T cells in immunity to Brucella infections (Table 1). One 
study focused on using mice deficient of their immunoproteasome 
(lacking β1i, β2i, and β5i subunits) to minimize MHC class 
I antigen presentation. Infection of these mice with wt B. abortus 
2308 resulted in nearly complete loss of IFN-γ+ CD8+ T cells, as 
well as, a substantive reduction in IFN-γ+ CD4+ T cells (Guimarães 
et al., 2018). Such evidence points to CD8+ T cells contributing to 
IFN-γ generation. CD8+ T cell immunity may also be influenced 
by targeted mutations made in Brucella to attenuate its infection. 
One notable mutation was the deletion of znuA, a gene involved 
in zinc uptake, as a means to inactivate zinc-dependent enzymes 

TABLE 1 Both route and Brucella strain used for vaccination influence T cell responses.

Brucella strain used to 
vaccinate1

Route2 Tissue3 Induced T cell 
predilection

Induced memory 
T cell subset4

References

Wt Bacillus abortus 2308 IP Spleen CD4+ ND Dornand et al. (2004)

B. abortus S19 IV Spleen CD4+ ND Araya et al. (1989)

B. abortus S19 IP Spleen CD4+ ND Zhan and Cheers (1995)

B. abortus RB51 IP Spleen CD4+ ND Yang et al. (2016) and He et al. 

(2001)

B. abortus RB51 IT Spleen CD4+ CD44+ Muñoz et al. (2008)

B. abortus RB51 IN Spleen CD4+ CD44+ Muñoz et al. (2008)

B. abortus RB51 IN Lung, spleen, LN CD8+ ND Clapp et al. (2016)

ΔznuA ΔnorD B. abortus-lacZ IP Spleen CD4+ ND Yang et al. (2016)

ΔznuA ΔnorD B. abortus-lacZ oral + IN Lung, spleen CD8+ TRMs Wang et al. (2020)

B. abortus RB51 oral + IN Lung, spleen CD4+ TRMs Wang et al. (2020)

Wt Brucella melitensis 16M IP Spleen CD4+ ND Vitry et al. (2012)

Wt B. melitensis 16M + antibiotic IP Spleen CD4+ ND Vitry et al. (2014) and Hanot 

Mambres et al. (2016)

Wt B. melitensis 16M + antibiotic IN Lung, spleen CD4+, CD8+ ND Hanot Mambres et al. (2016)

ΔznuA B. melitensis IN Lung, spleen, LN CD8+ TEMs, TCMs Clapp et al. (2016)

B. melitensis Rev. 1 IN Lung, spleen CD8+ ND Clapp et al. (2016)

B. melitensis WR201 oral Lung, spleen CD4+ ND Yingst et al. (2013)

ΔznuA ΔnorD B. melitensis-mCherry oral + IN Lung, spleen CD4+ and CD8+ TEMs, TCMs, TRMs Goodwin et al. (2022)

B. melitensis Rev. 1 oral + IN Lung, spleen CD4+ TEMs, TCMs, TRMs Goodwin et al. (2022)

1Various strains of Brucella have been tested including wild-type (Wt), strain 19 (S19), RB51, Rev 1 vaccines, and different defined mutants.
2IP, intraperitoneal; IV, intravenous; IT, intratracheal; IN, intranasal.
3Tissue examined for T cell responses.
4ND, not determined; TCMs, central memory T cells; TEMs, effector memory T cells; TRMs, resident memory T cells.
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in Brucella, particularly its superoxide dismutase. The ΔznuA 
B. abortus mutant exhibited diminished growth capacity in 
macrophages and rendered protective qualities, when 
administered parenterally, similar to conventional B. abortus S19 
and RB51 vaccines (Yang et al., 2006).

The route of vaccination may also influence the T cell response 
elicited (Table 1). Adapting this same mutation in B. melitensis 
resulted in an attenuation signature similar to that of ΔznuA 
B. abortus. Nasal vaccination with the ΔznuA B. melitensis mutant 
showed a T cell bias noted by the stimulation of IFN-γ+ CD8+ T 
cells than by CD4+ T cells (Clapp et al., 2016). Such attribute posed 
an interesting question of whether the preferential stimulation of 
CD8+ T cells was due to the mutation or the mode of vaccination. 
To test this question, a second mutation was introduced into 
ΔznuA B. abortus. The norD gene, which encodes for nitric oxide 
reductase was selected since it showed a modest reduction in 
virulence as a single gene deletion in B. suis (Loisel-Meyer et al., 
2006). The development of the double ΔznuA ΔnorD B. abortus 
mutant carrying the lacZ reporter gene (znBAZ) prompted testing 
via parenteral immunization resulting in the stimulation of both 
IFN-γ-producing and polyfunctional CD4+ and CD8+ T cells 
(Yang et  al., 2016). Yet, the numbers of splenic IFN-γ+ and 
polyfunctional CD4+ T cells exceeded the counterparts for CD8+ 
T cells.

To learn how these mutations in Brucella may influence the 
types of T cell responses elicited following mucosal vaccination 
(Table 1), an oral prime, nasal boost vaccination regimen was 
devised for znBAZ (Wang et al., 2020). The notable attribute that 
distinguished znBAZ’s immunogenicity was the number of 
IFN-γ+ CD8+ and polyfunctional CD8+ T cells doubled those of 
IFN-γ+ CD4+ and polyfunctional CD4+ T cells present in the 
lungs. Similarly primed, boosted mice with RB51 showed no bias 
for IFN-γ+ CD8+ T cells, mostly being IFN-γ+ CD4+ T cells (Wang 
et al., 2020). Another key attribute found with orally primed, 
nasally boosted mice with znBAZ is the induction of resident 
memory T cells (TRMs; Table 1). TRMs are distinguished by their 
expression of memory markers, CD44high L-selectin− CD69+ and 
either CD103+ or CD103−, and reside in the mucosal epithelium 
(Turner et  al., 2013; Mueller and Mackay, 2016; Szabo et  al., 
2019). The mucosal epithelium is where exposure to wt Brucella 
is most likely to occur; hence, the need to arm the epithelium 
with memory T cells is deemed essential to eradicate Brucella-
infected cells. As a result, both CD4+ and CD8+ TRMs were 
elicited to greater levels subsequent to znBAZ vaccination than 
the level seen in those mice similarly vaccinated with RB51 
(Wang et al., 2020). In a similar vein, the same genetic mutations 
were performed to generate the ΔznuA ΔnorD B. melitensis 
mutant carrying the mCherry reporter gene (znBM-mC; 
Goodwin et al., 2022). As accomplished with znBAZ vaccination, 
CD4+ and CD8+ TRMs were induced in the lungs of mice orally 
primed, nasally boosted with znBM-mC (Table 1), but TEMs and 
TCMs were also detected (Goodwin et al., 2022). This evidence 
suggests that the mode of vaccination can contribute to types of 
IFN-γ+ and polyfunctional T cells, as well as to the TRMs 

induced, but cannot diminish the influence of the Brucella’s 
mutations used to develop these strains.

Th17 cell immunity and brucellosis

As suggested above, alternative immune players may 
contribute to protection against Brucella infections. One such 
possibility examined is the role of a different proinflammatory 
cytokine, IL-17. IL-17, important for protection against various 
extracellular mucosal pathogens, is derived from innate and 
adaptive lymphocytes (Mills, 2022). IL-17 is involved in neutrophil 
recruitment and promotes IL-22 and antimicrobial peptide 
production (Mills, 2022). Although often overlooked, IL-17 has 
had varied impact on protection against brucellosis, but IL-17 may 
be more relevant upon extracellular brucellae release from killed 
host cells. For example, mice vaccinated with ΔznuA Brucella 
mutants and treated in vivo with an anti-IL-17 antibody (Ab) 
showed significant increases in colonization suggesting a role for 
IL-17 and protection (Clapp et al., 2011; Pasquevich et al., 2011; 
Clapp et al., 2016). Although IL-17 production is augmented in 
mucosally vaccinated IFN-γ−/− mice (Clapp et al., 2011, 2016), 
IL-17 production is not linked to the development of osteoarthritis 
in Brucella-infected IFN-γ−/− mice (Skyberg et  al., 2012). In 
contrast, oral prime, nasal boost with znBAZ did elicit IL-17+ 
CD4+ and CD8+ TRMs, but in vivo neutralization of IL-17 during 
the post-challenge phase failed to reverse znBAZ’s protective 
qualities, i.e., the diminished lung and splenic colonization by wt 
B. abortus 2308 remained intact (Wang et al., 2020). However, the 
spleens from IL-17−/− mice that were orally primed, nasally 
boosted with znBM-mC showed increased brucellae colonization 
following pulmonary challenge with wt B. melitensis 16M 
suggesting that IL-17 may be important for maintaining systemic 
protection (Goodwin et al., 2022). Nasal infection with virulent 
B. melitensis 16M minimally impacted brucellae colonization of 
the lungs and spleen 4 weeks post-infection of IL-17RA−/− and 
IL-23p19−/− mice, but did enable greater colonization of the lungs 
at 5 and 12 days post-infection of IL-17RA−/− mice. This suggests 
IL-17’s role may be  more relevant early in infection (Hanot 
Mambres et al., 2016), possibly tied to neutrophil recruitment. 
IL-17 derived from γδ T cells is also thought to be important early 
in B. abortus infection (Skyberg et al., 2011).

Th17 cells have been reported to produce GM-CSF and IL-22 
following RORγt activation (Liang et al., 2006; Zheng et al., 2007; 
Codarri et al., 2011; El-Behi et al., 2011). Some consider IL-22-
producing T cells as a separate entity, e.g., Th22 cells (Dudakov 
et al., 2015), since Runx1 has been recently found to coactivate 
RORγt (Sekimata et  al., 2019). The stimulation of IL-22 is 
associated with protection of the mucosal epithelium by enhancing 
the epithelial barrier and increasing defensins production (Valeri 
and Raffatellu, 2016), and is responsible for stimulation of the 
heme scavenger, hemopexin, to sequester iron from bacteria 
(Sakamoto et al., 2017). Examination of IL-22’s role was pursued 
subsequent mucosal vaccination with ΔznuA B. melitensis, and 
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IL-22 production was found to be  augmented in both 
immunocompetent and IFN-γ−/− mice (Clapp et al., 2011, 2016). 
For nasally ΔznuA B. melitensis-vaccinated mice, IL-22 was mostly 
derived from CD8+ T cells (Clapp et  al., 2016). Another 
consideration for IL-22’s relevance is the observed lack of 
intestinal infection by Brucella (Ariza et al., 1995; Ablin et al., 
1997). IL-22 production was augmented following oral ΔznuA 
B. melitensis vaccination (Clapp et  al., 2011). Oral infection 
remains to be tested in IL-22−/− mice to determine if increased 
intestinal pathology occurs because of a reduced barrier. However, 
IL-22−/− mice infected parenterally with virulent B. melitensis 16M 
showed only a minimal impact early in infection with a modest 
reduction in IFN-γ+ CD4+ T cells (Vitry et al., 2012).

γδ T cells and brucellosis

γδ T cells serve as sentinels in mucosal surfaces and respond 
to infectious agents via their variable TCRs and pathogen 
recognition receptors (Holderness et al., 2013). These cells are an 
important source of IL-17 (Agerholm and Bekiaris, 2021), but also 
responsible for the production of other proinflammatory 
cytokines including IFN-γ (Skyberg et al., 2011; Demars et al., 
2019). γδ T cells contribute to early innate cell activation noted by 
the increased brucellae burden following infection of TCRδ-
deficient mice with wt B. abortus 2308 (Skyberg et al., 2011) or wt 
B. melitensis 16M (Hanot Mambres et al., 2016). Consistent with 
the notion of early involvement, macrophages in the presence of 
γδ T cells benefitted by the enhanced clearance of infecting 
brucellae (Skyberg et al., 2011). However, γδ T cells’ impact is not 
relevant during the late phase of infection evidenced by the lack 
of differences in brucellae tissue burdens when compared to 
similarly infected wt mice (Skyberg et al., 2011; Hanot Mambres 
et al., 2016). Instead, γδ T cells’ contribution to brucellae clearance 
from tissues may be dependent upon route of exposure (Skyberg 
et al., 2011; Hanot Mambres et al., 2016; Demars et al., 2019). 
TCRδ-deficient mice given an intradermal infection with wt 
B. melitensis 16M showed no difference in brucellae tissue burdens 
from wt mice at early or late time points (Demars et al., 2019), 
suggesting that peripheral γδ T cells may be  less impacted by 
Brucella infections than mucosal γδ T cells (Hanot Mambres 
et al., 2016).

Livestock T cell immunity

The above studies focused primarily on results obtained in 
mice to learn relevant correlates of protection. Such studies are 
often more difficult to conduct in the natural host due to 
limitations in readily available genetic models to test various 
hypotheses. Nonetheless, significant knowledge can still 
be extrapolated from rodent studies and in vitro studies using 
livestock lymphocytes. Surprisingly, only a few studies have 
delved into studying IFN-γ-producing T cell responses in 

livestock following infection with wt Brucella or subsequent 
vaccination. These studies also varied in their mode of Brucella 
delivery. Additionally, studies that did investigate host T cell 
responses mostly relied upon peripheral blood, not tissue-
derived T cells. The limitation of peripheral blood T cell 
responses is that these lymphocytes are ever evolving, and timing 
is critical to capture the moment of optimal responsiveness. As 
in the case of one study, cows were conjunctivally infected with 
B. suis or B. abortus, and their peripheral blood CD4+ T cells 
were shown to produce IFN-γ following in vitro Ag restimulation 
using Brucellergene®, (a preparation of cytoplasmic proteins 
derived from a rough mutant of B. melitensis; Weynants et al., 
1998), Little IFN-γ production was detected for CD8+ or γδ T 
cells (Weynants et  al., 1998). However, in a separate study, 
bovine γδ T cells could aid in activating macrophages in vitro via 
IFN-γ, suggesting that γδ T cells may be more important early 
during the infection if sufficiently activated (Skyberg et  al., 
2011). Another study investigated IFN-γ production by 
peripheral blood T cells from intramuscular (IM) RB51-
vaccinated heifers, and following Ag restimulation, the induced 
IFN-γ was mostly derived from CD4+ T cells (Boggiatto et al., 
2020). However, one study did pursue an evaluation of memory 
T cells (up to one and one-half years) and various cytokine 
responses by peripheral blood T cells from subcutaneously (SC) 
RB51-vaccinated calves (Dorneles et al., 2015). These heifers 
were dosed twice with RB51 one year apart. While both CD4+ 
and CD8+ T cells showed increased cytokine production 
following in vitro Ag restimulation, the majority of the IFN-γ 
and IL-17 came from CD4+ T cells (Dorneles et  al., 2015). 
Granzyme B+ and perforin+ CD8+ T cells were also augmented 
subsequent the RB51 boost.

An in-depth immune analysis was performed following 
conjunctival infection with wt B. melitensis H38S of sheep 
(Suraud et  al., 2008). Brucellae colonization of various 
mucosal sites including nasal and eye secretions, eyelids and 
lacrimal glands, tonsils, various head and neck lymph nodes 
(HNLNs), and distal mesenteric LNs, precapsular LNs, and 
spleen were monitored up to 4 weeks post-infection. Increases 
in IFN-γ production following Brucella Ag-restimulation of 
regional and distal LN lymphocytes were observed (Suraud 
et  al., 2008). A separate study examined T cell profiles 
following variable SC dosing of sheep with Rev. 1 vaccine, and 
found elevated CD4+ and CD8+ T cell levels, but did not 
discern whether these CD8+ T cells included γδ T cells (Curina 
et al., 2018). Total memory T cells were elevated, but did not 
distinguish between CD4+ and CD8+ T cells. Another study 
measured T cell responses to bp26 and Omp31 peptides in 
sheep SC vaccinated thrice with B. melitensis M5-90 vaccine, 
and found elevated IFN-γ responses mostly derived from 
CD4+ T cells (Wang et al., 2014). The investigators speculated 
that regulatory T cells (Tregs) were increased because of the 
increased CD25 expression, but did not confirm Foxp3 
co-expression, regulatory cytokine production, nor functional 
measurements. While Tregs may express CD25, CD25 is also 
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indicative of activated T cells, so whether the elevated levels 
measured were truly all Tregs or a mixture with activated T 
cells is unclear. One study evaluated CD4+ and γδ T cell 
responses following infection of pregnant goats (11 weeks of 
gestation) with wt B. melitensis 16M or B. melitensis Rev. 1 
vaccine (Higgins et  al., 2018). They did find a significant 
increase in the number of IFN-γ-producing γδ T cells 4 weeks 
post-infection from Rev. 1-infected goats compared to those 
infected with wt B. melitensis 16M.

B cell immunity and brucellosis

The role of B cells in brucellosis is less understood since 
induced Abs only modestly or do not protect against Brucella 
challenge (Vitry et al., 2012; de Figueiredo et al., 2015), and B 
cell-deficient (μMT) mice are found to be  more resistant to 
Brucella infection (Goenka et  al., 2011; Vitry et  al., 2012; 
Dadelahi et al., 2020). Anti-Brucella polysaccharide Abs have 
less value (Vitry et al., 2012; Boggiatto et al., 2020) than cell-
mediated immunity in protection to brucellosis (Godfroid et al., 
2005; Goenka et al., 2012; Vitry et al., 2012, 2014; de Figueiredo 
et al., 2015; Yang et al., 2016; López-Santiago et al., 2019; Wang 
et al., 2020). Passive transfer of anti-Brucella serum was shown 
to diminish splenic B. abortus S19 colonization (Araya et al., 
1989), as well as, the passive transfer of an O-polysaccharide-
specific mAb for prevention of virulent B. abortus in infection 
(Winter et al., 1989); however, cell-mediated immunity is still 
required for protection (Jiang and Baldwin, 1993; Zhan and 
Cheers, 1995; Rodriguez-Zapata et al., 1996; Zhan and Cheers, 
1998; Murphy et al., 2001; Ko et al., 2002; Skyberg et al., 2011; 
Bhagyaraj et al., 2021).

Interestingly, human and animal B cells can be  directly 
infected by Brucella (Bratescu et al., 1981; Goenka et al., 2011, 
2012; Pesce Viglietti et  al., 2016; García-Gil et  al., 2019). 
Consequently, B cells may serve as a reservoir since Brucella 
cannot replicate in B cells (Goenka et al., 2012; Pesce Viglietti 
et  al., 2016), which in turn enables the development of 
immunosuppressive B cells (Atluri et al., 2011; Goenka et al., 
2011, 2012; Spera et al., 2014). Hence, brucellae can persist and 
sequester in B cells. Further inquiry into B cells’ role in 
immunity has found that μMT mice were more resistant to 
B. abortus infection than immunocompetent mice (Goenka 
et al., 2011). Since B. abortus can also infect B cells, infection 
results in the production of B cell-derived TGF-β1, whose anti-
inflammatory property may exacerbate chronic Brucella 
infection (Goenka et al., 2012). In fact, adoptive transfer of B 
and CD4+ T cells into Rag1−/− recipients dampened the 
protective effects of only transferring CD4+ T cells against wt 
B. melitensis 16M infection (Dadelahi et  al., 2020), further 
suggesting that infection of B cells leads to suppression of host 
inflammatory responses (Atluri et al., 2011; Goenka et al., 2011, 
2012; Spera et al., 2014).

Brucella vaccines

Live Brucella vaccines

As noted, stimulation of Th1-type immunity derived from 
CD4+ or CD8+ T cells is required for protection to eliminate 
brucellae from the intracellular compartment (Martirosyan et al., 
2011; de Figueiredo et al., 2015; Pascual et al., 2018). Given the 
high DNA homology among Brucella species (Wattam et al., 2009; 
Whatmore and Foster, 2021), vaccination against one species can 
protect against infection from heterologous Brucella species. 
Current vaccines are limited to four live vaccines used for 
protecting livestock: B. abortus strain 19 (S19) for cattle; rough 
B. abortus RB51 for cattle; B. melitensis Rev. 1 for sheep and goats; 
and B. suis strain 2 (S2) for pigs (Olsen and Palmer, 2014; Byndloss 
and Tsolis, 2016; Goodwin and Pascual, 2016). No vaccines exist 
for humans, although S19 had been used to vaccinate livestock 
workers in the former Soviet Union to successfully diminish the 
incidence of brucellosis (Vershilova, 1961). When the same S19 
isolate from P. A. Vershilova along with Rev. 1 were tested in 
United  States volunteers, four of the S19 vaccinees exhibited 
undesirable sequelae with two recipients being hospitalized; 11 of 
16 Rev. 1 vaccinees also showed undesirable sequelae with four of 
them requiring hospitalization (Spink et al., 1962). A subsequent 
study using a reduced dose of Rev. 1 still produced some 
symptoms in vaccinees (Pappagianis et al., 1966).

Bacillus abortus strain 19 vaccine

Derived from a spontaneously attenuated isolate, the 
B. abortus S19 has a 703 base pair deletion of the erythritol 
catabolic genes (Sangari et al., 1994). S19 was pursued as a cattle 
vaccine (Buck, 1930), and proved to be  effective against 
brucellosis-induced abortion in cattle (Confer et al., 1985), though 
its efficacy is only 70% (Lubroth et al., 2007). S19 can also be used 
therapeutically to reduce incidence of new infections in existing 
Brucella-infected herds (Olsen and Stoffregen, 2005). For 
susceptible herds, S19 is given to female calves at 3–6 months of 
age as a single SC dose or to adults at reduced SC or conjunctival 
dose (Nicoletti, 1990; World Animal Health Organization, 2014). 
Since S19 still retains its LPS and produces a possible positive 
serology test, the vaccination regimen for heifers permits 
protection with a lessened chance of a persistent Ab-reactive 
response, and also reduces the likelihood of vaccine-induced 
abortion and vaccine excretion into milk (World Animal Health 
Organization, 2014).

Bacillus abortus RB51 vaccine

A spontaneous rough mutant was selected after repeated 
passages of wt B. abortus 2308 on rifampin- and 
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penicillin-containing media, and led to the derivation of B. abortus 
RB51 strain (Schurig et al., 1991). RB51’s mutation is due to an 
interruption of the enzyme, wboA glycosyltransferase, that is 
involved in O-Ag biosynthesis (Vemulapalli et  al., 1999). The 
advantage of RB51 as a vaccine is its lack of O-Ag (LPS), thus 
providing a method to distinguish vaccinated from naturally 
B. abortus-infected animals. Since RB51 fails to produce a positive 
serological reaction by conventional tests, its use allows ease for 
diagnosis of positive Brucella reactivity (Stevens et al., 1994).

Vaccination of cattle with RB51 proved to be safe and efficacious 
in precluding Brucella-induced abortion and fetal infection (Olsen, 
2000). Efficacy with RB51 is age-dependent noted by the 
responsiveness to calf vaccination at >5–6 months of age showing 
no abortions by pregnant mature cows (2–3 years of age) subjected 
to B. abortus abortion challenge. In contrast, calves vaccinated too 
young at 3 months of age showed reduced efficacy when challenged 
as pregnant adults (Cheville et  al., 1996; Olsen and Stoffregen, 
2005). RB51’s efficacy was found to be similar to S19 (Olsen, 2000). 
The United states and many other countries have since replaced S19 
with RB51 as part of their brucellosis eradication program.

Brucella melitensis Rev. 1 vaccine

Originating from an avirulent streptomycin-dependent strain, 
B. melitensis Rev. 1, was subsequently derived as an isolated 
revertant that became streptomycin-resistant (Herzberg and 
Elberg, 1955). Rev. 1 vaccine is administered either as a SC 
injection or via the conjunctiva to sheep and goats, and is 
protective against virulent B. melitensis abortion challenge (Olsen 
and Stoffregen, 2005). However, Rev. 1 can induce vaccine-
induced abortion in pregnant animals, and small ruminants are 
generally not vaccinated when pregnant (Olsen and Stoffregen, 
2005; Byndloss and Tsolis, 2016). Although effective against 
B. melitensis-induced abortion, Rev. 1 being a smooth vaccine 
makes it difficult to distinguish vaccinated from naturally infected 
animals. Rev. 1 is also effective in protecting against other Brucella 
species (Byndloss and Tsolis, 2016).

Brucella suis S2 vaccine

Brucella suis, responsible for abortion of fetal pigs, is not 
problematic for United States pork producers since its eradication 
from commercial herds in 2011, but it does threaten cattle where 
feral pigs are problematic (Olsen and Tatum, 2016; Franco-
Paredes et al., 2017). Brucella suis infections of swine remain an 
international problem (Olsen and Tatum, 2016; Franco-Paredes 
et al., 2017). The B. suis strain 2 (S2) vaccine was developed in 
China from an isolate taken from an aborted B. suis-infected fetal 
pig, and then subsequently attenuated by repeated passages (Xin, 
1986; Zhu et al., 2016). S2 is administered orally via drinking 
water, and has been successfully used in China since 1971 to 
reduce brucellosis incidence in swine (Xin, 1986; Zhu et al., 2016; 

Hou et al., 2019). S2 has also been shown to be effective against 
infection by other Brucella species (Xin, 1986; Bosseray and 
Plommet, 1990; Zhu et al., 2016; Hou et al., 2019).

Mucosal approaches to brucellosis 
vaccine delivery

Advantages of mucosal vaccinations

Brucellosis disseminates systemically regardless of the route 
of exposure (Ko and Splitter, 2003; Atluri et al., 2011; de Figueiredo 
et al., 2015). A striking advantage of mucosal vaccination is that it 
arms the mucosa near the sites of infection (Silva-Sanchez and 
Randall, 2019; Kiyono et  al., 2021; Lavelle and Ward, 2022; 
Mettelman et al., 2022) resulting in the stimulation of memory T 
cells that prevent reinfection (Hirahara et al., 2021; Lange et al., 
2022; Zheng and Wakim, 2022; Figure  1). In addition to 
stimulating mucosal immunity, mucosal vaccination results in 
systemic immunity (Silva-Sanchez and Randall, 2019; Kiyono 
et al., 2021; Lavelle and Ward, 2022; Mettelman et al., 2022). Thus, 
a key advantage of mucosal vaccination is its capacity to confer 
protective immunity in both mucosal and systemic tissues. In fact, 
infection with Brucella is the result of a mucosal exposure 
(Goodwin and Pascual, 2016; Pascual et al., 2018; López-Santiago 
et al., 2019).

Oral infection with Brucella is believed to be mediated via the 
prion protein expressed on intestinal microfold cells (Ackermann 
et al., 1988; Paixão et al., 2009; Nakato et al., 2012; Figure 1), but 
brucellae are unable to infect gut tissues (Ablin et  al., 1997; 
Delpino et al., 2007). Rather, infections are believed to be more 
localized to the lymphoid tissues associated with the naso-
oropharyngeal lymph nodes (Meador et al., 1988) resulting from 
animals sniffing or licking Brucella-infected aborted fetuses and/
or infected placental tissues (Samartino and Enright, 1993; 
Schumaker, 2013), and possibly spread through grooming (Rhyan 
et al., 2019). Similar sites of sensitivity, e.g., tonsils, are also evident 
in infected humans (Carpenter and Boak, 1932; Poelma and 
Pickens, 1932; Suraud et al., 2007; Zachou et al., 2008; Ron-Román 
et al., 2014).

Vaccination via naso-oropharyngeal routes offers a potent 
means for inducing mucosal immunity both locally and at distal 
immune sites. The nasopharyngeal-associated lymphoid tissue 
(NALT) and various HNLNs support induction of this process 
(Csencsits et al., 2002). The HNLNs include the facial or parotid 
gland LNs (PrLNs); the submandibular gland LNs (SMLNs) also 
referred to as the superficial cervical LNs; and the deep cervical 
LNs (CLNs) dorsal to the brachial plexus deep within the 
musculature of the neck (Tilney, 1971). The SMLNs drain the 
nasal submucosa, while the CLNs drain the NALT (Tilney, 1971; 
Hameleers et al., 1990; Kuper et al., 1992). In contrast, the PRLNs 
are responsible for draining the skin of the head and neck as well 
as the conjunctiva (Collins, 1978; Freeman and Troutt, 1985; Cserr 
and Knopf, 1992; Wu et al., 1997; Cashion et al., 1999; Dickstein 
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et al., 1999). It is believed that aerosolization of bacteria infects via 
the conjunctiva (Collins, 1978) since spread of Salmonella was 
prevented in goggled guinea pigs (Moore, 1957). Vaccination via 
the conjunctiva resembles nasal vaccine administration in that 
similar draining LNs, e.g., SMLNs and PrLNs, are stimulated 
(Blasco, 1997; Seo et al., 2010). Many of the same regional and 
distal compartments acquire immune B and T cells noted by the 
presence of secretory IgA in the tears, saliva, and nasal vaginal 
washes (Seo et al., 2010). Thus, nasal and conjunctival vaccine 
delivery impacts cellular immunity presence in the various 
effector tissues in the head and neck, e.g., naso-oropharyngeal 
tissues, salivary glands, lungs, and genitourinary tract (Hameleers 
et al., 1990; Wu et al., 1997; Csencsits et al., 2001, 2002; Seo et al., 
2010; Kiyono et al., 2021; Lavelle and Ward, 2022; Mettelman 
et  al., 2022). Given the shared homing signaling among these 
tissues, vaccination via the naso-oropharyngeal and conjunctival 
tissues can provide regional, systemic, and distal immunity.

Despite the fact that Brucella most commonly infects via the 
oral route for both animals and humans, many brucellosis vaccines 
are parenterally administered both for convenience, and 
experimentally to mimic systemic disease. Vaccination of a large 
number of livestock in a short time frame may prove cumbersome 
and subject the vaccinator to the risk of needle-stick injuries 
(Buswell et  al., 2016; Pereira et  al., 2020). The alternative is 
consideration of mucosal delivery methods. Mucosal vaccinations 
can circumvent needle-stick injuries since mucosal delivery is 
needle-free. However, there are limitations as well in mechanizing 
or implementing mucosal vaccinations for a large number of 
animals within a limited time period. Nasal vaccinations have the 
concern of possible draining or sneezing nasal fluids back onto the 
applicator. Oral vaccination may require gavaging, which may 

require animal restraint, to administer successfully. Alternatively, 
food may be mixed with the vaccine (Edmonds et al., 2001; Rhyan 
et al., 2019) or supplied in the drinking water as done for B. suis 
S2 vaccine, but the latter may not adequately deliver standard 
doses among the animals (Kiyono et al., 2021).

Oral vaccination has also been tested with S19 to ascertain its 
capacity for protection against Brucella-induced abortion (Nicoletti 
and Milward, 1983; Nicoletti, 1984). Pregnant heifers in their first 
trimester were orally vaccinated with 5 × 1011 CFUs B. abortus S19, 
and orally challenged with 3.4 × 109 CFUs wt B. abortus 2308 at 
midgestation (Nicoletti and Milward, 1983). Half of all 
unvaccinated, challenged heifers aborted or had premature delivery 
and two-thirds were culture-positive while the vaccinated heifers 
showed only 5% birthing prematurely and 20% being culture-
positive (Nicoletti and Milward, 1983). Oral S19 vaccination was 
found to confer equivalent protection against B. abortus-induced 
abortion challenge to pregnant heifers vaccinated by conventional 
parenteral or conjunctival routes (Nicoletti, 1984). Oral RB51 
vaccination also proved efficacious against B. abortus-induced 
challenge (Elzer et al., 1998). Unbred heifers were orally vaccinated 
with 5 × 1010–1 × 1011 CFUs B. abortus RB51 mixed with corn 
syrup on hay for oral consumption, and were bred 6 weeks post-
vaccination. All vaccinated and unvaccinated pregnant heifers were 
challenged by the conjunctival route with 2 × 107 CFUs wt 
B. abortus 2,308. Of the challenged control animals, 80% were 
culture-positive and 70% aborted compared to RB51-vaccinated 
animals showing 20% culture-positive and 30% aborted (Elzer 
et al., 1998). Thus, oral S19 or RB51 conferred equivalent protection 
to those vaccinated by conventional means (Nicoletti and Milward, 
1983; Nicoletti, 1984; Elzer et al., 1998). As shown with B. suis S2 
vaccine (Xin, 1986), oral delivery of brucellosis vaccines proves to 

A B

FIGURE 1

Mucosal routes of vaccination improve host capacity to target T cells to infiltrate the epithelium to combat Brucella pathogens. (A) Oral 
vaccination with Brucella vaccines or mutant strains enables stimulation of IFN-γ-producing T cells in the Peyer’s patch and eventual 
dissemination into regional lymph nodes (LNs) and mucosal epithelium. (B) Intranasal (IN) and conjunctival vaccination with Brucella vaccines or 
mutant strains enables induction of resident memory T cells (TRMs) to reside in the epithelium to combat reinfection with virulent Brucella.
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be an effective means for vaccination of livestock and possibly 
wildlife (Rhyan et al., 2019). To this end, microencapsulated S19 
plus sheep liver fluke, Fasciola hepatica. Vitelline protein B (VpB), 
was used to orally vaccinate red deer (Arenas-Gamboa et al., 2009). 
The VpB protein was included to delay vaccine release from the 
microspheres. Improved efficacy was observed against conjunctival 
challenge with 109 CFUs of wt B. abortus 2308 compared to red 
deer vaccinated SC or orally without the VpB. The investigators 
measured tissue colonization of the spleen, liver, lungs, SMLNs, 
mammary gland LNs, and mesenteric LNs. These results 
demonstrate the potential of oral vaccination of ruminants.

Conjunctival vaccination of livestock

The conjunctiva, or the membrane lining the inner surface of the 
eyelids, is a surface often susceptible to infection as a result of aerosol 
dispersion or direct contact with an infectious agent, e.g., 
Staphylococcus aureus and Chlamydia trachomatis. The conjunctiva 
is vascularized and composed of epithelial cells and goblet cells, and 
has supportive draining lymphatics responsible for immune 
protection and lubrication for the eyes (Royer et al., 2019). The eyes 
are considered an immune privileged site (Royer et al., 2019), yet the 
conjunctiva is often used to vaccinate against brucellosis, especially 
for goats and sheep (Blasco, 1997; Olsen and Stoffregen, 2005; Olsen 
and Palmer, 2014). SC Rev. 1 vaccination of sheep and goats during 
pregnancy results in vaccine-induced abortion, even at a reduced 
dose (Blasco, 1997; Olsen and Stoffregen, 2005). Too low of a dose 
results in insufficient protective immunity; hence, conjunctival 
vaccination was tested and found to reduce the frequency of Rev. 
1-induced abortion when using a reduced dose in sheep (Blasco, 
1997), but not goats (Zundel et  al., 1992). Despite the reduced 
frequency of vaccine-induced abortion, Rev. 1 administered via the 
conjunctival route can still cause abortion if given to pregnant 
animals. Reduced abortion frequency was also noted in sheep if 
vaccinated via the conjunctiva during the last month of pregnancy 
(Jiménez de Bagués et al., 1989). Conjunctival Rev. 1 vaccination also 
has the advantage of reducing vaccine expression in the milk (Blasco, 
1997). Given these outcomes, Rev. 1 vaccination is widely used for 
vaccination of sheep (Blasco, 1997; Olsen and Stoffregen, 2005).

Conjunctival vaccination with Rev. 1 vaccination of rams 
limited vaccine infection to the HNLNs and spleen, unlike SC 
vaccination, which resulted in more generalized infection (Muñoz 
et al., 2008). Conjunctival vaccination of cattle is not commonly 
done, but has shown to be beneficial for vaccinating with S19 to 
elicit lesser enduring serum Ab responses, yet remained protective 
(Nicoletti, 1990; Chand et al., 2015).

Mucosal vaccination of experimental 
animals

Only a limited number of studies have examined the 
effectiveness of mucosal vaccine approaches, which can induce 

localized immunity and are more apt to prevent infection. First, to 
examine the impact of adopting oral vaccination method, one 
study using orally delivered RB51 proved modestly effective 
against intraperitoneal (IP; Stevens et al., 1996; Pasquevich et al., 
2010) or oral challenge with virulent B. abortus 2308 (Stevens 
et al., 1996). Oral vaccination with irradiated RB51 or B. neotomae, 
a pathogen of wood rats and possibly humans (Suárez-Esquivel 
et al., 2017), decreased brucellae tissue colonization after IP or 
nasal challenge with virulent B. abortus (Dabral et  al., 2014). 
Examination of various attenuated mutants revealed that oral 
vaccination with the ΔpurEK B. melitensis 16M (WR201) strain 
elicited robust protection against nasal B. melitensis 16M challenge 
as shown by abating colonization of the lungs and reducing 
systemic spread (Izadjoo et al., 2004; Yingst et al., 2013). In a 
similar vein, oral ΔznuA B. melitensis vaccination elicited robust 
protection against pulmonary wt B. melitensis 16M challenge, 
whereby 58 and 83% of the vaccinated mice showed no detectable 
brucellae in their lungs and spleens, respectively, in an IFN-γ-
dependent fashion (Clapp et  al., 2016). Interestingly, oral 
vaccination of IFN-γ−/− mice with the ΔznuA B. melitensis mutant 
elicited even some protection, e.g., reduced tissue colonization by 
virulent B. melitensis 16M, partially, in an IL-17-dependent 
fashion (Clapp et al., 2011).

Examination of studies adopting nasal delivery methods 
revealed that nasal immunization with RB51 or a modified RB51 
carrying Brucella superoxide dismutase (SOD), proved ineffective 
against pulmonary wt B. abortus challenge (Surendran et  al., 
2011). Prime and boosting failed to augment protection with 
either RB51 or RB51-SOD. Using a WboA-modified RB51, which 
produces low amount of cytoplasmic O-polysaccharide, also failed 
to confer protection against nasal challenge with wt B. abortus 
2308 (Surendran et al., 2011). However, when RB51WboA was 
later modified to include overexpression of the wbkF gene and 
referred to as RB51WboAKF strain, increased detectable 
O-polysaccharide production was capable of eliciting anti-LPS 
Abs, but still retained its rough phenotype (Dabral et al., 2019). 
When administered parenterally, it was highly effective in 
conferring potent protection of the spleen against wt B. abortus 
2308, wt B. melitensis 16M, and wt B. suis 1330 challenges 
(Dabral  et  al., 2019). The inclusion of soluble TLR2 or TLR4 
agonist upon nasal RB51 vaccination enhanced partial protection 
only in the lungs (Surendran et al., 2013). In contrast, a single, 
nasal dose of ΔznuA B. melitensis potently protected mice against 
pulmonary B. melitensis challenge, wherein more than half of the 
mice had no detectable brucellae in their lungs or spleens (Clapp 
et al., 2016). As with the oral vaccinates, protection was IFN-γ-
dependent, and the reduced protection in nasally vaccinated 
IFN-γ−/− mice was abrogated upon IL-17 neutralization (Clapp 
et al., 2016).

Examination of the types of T cells elicited subsequent to nasal 
vaccination with ΔznuA B. melitensis revealed induction of 
effector memory CD8+ T cells in the lungs producing IFN-γ, 
TNF-α, and granzyme B with the majority of IFN-γ derived from 
CD8+ T cells (Clapp et  al., 2016; Table  1). To ascertain the 
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effectiveness of B. melitensis Rev. 1 vaccine and ΔznuA B. melitensis 
mutant to protection relative to contributions by CD4+ and CD8+ 
T cells, groups of B6, CD4−/−, and CD8−/− mice were nasally 
vaccinated once, and then nasally challenged 6 weeks later with wt 
B. melitensis 16M. Both B6 and CD4−/− mice showed complete 
protection in the spleen and lungs by Rev. 1 and ΔznuA 
B. melitensis showing reliance on CD8+ T cells (Clapp et al., 2016). 
Both Rev. 1 and ΔznuA B. melitensis exhibited reduced protection 
in CD8−/− mice. This T cell bias was preserved upon introduction 
of a second norD mutation into ΔznuA B. abortus strain. Oral 
prime, nasal boost of CD8−/− mice with znBAZ resulted in the loss 
of CD8+ T cell-mediated protection against pulmonary challenge 
with virulent B. abortus 2308 (Wang et al., 2020). In contrast, mice 
vaccinated with znBM-mC depended upon either CD4+ or CD8+ 
T cells for protection despite having elevated numbers of CD8+ T 
cells. CD4−/− and CD8−/− mice, orally primed, nasally vaccinated 
with znBM-mC, showed equivalent protection against virulent 
pulmonary challenge with wt B. melitensis 16M (Goodwin et al., 
2022). Such finding indicated that CD4+ T cells can compensate 
for CD8 T cell deficiency.

Conclusion

Brucellosis is a disease of potential impact to 3.5 billion people 
(Rossetti et al., 2017), and is considered as a neglected disease 
(Mableson et al., 2014). Due to its debilitating effects in humans 
(Pappas et al., 2005, 2006; Franco et al., 2007; Cross et al., 2019), 
and abortions, reduced fertility, and reduced milk and meat 
production in livestock (McDermott et  al., 2013), this disease 
poses significant economic hardship to livestock producers in 
affected countries (World Health Organization, 2005; Rubach 
et al., 2013; Welburn et al., 2015; Rossetti et al., 2017). Eradication 
programs used by the United States and some Western countries 
successfully eliminated and/or controlled livestock brucellosis 
(Schurig et al., 2002; Olsen and Stoffregen, 2005), but application 
of such process would prove costly in countries unable to 
compensate or replace the seropositive livestock (McDermott 
et al., 2013; Rossetti et al., 2017). Given that current vaccines are 
only 70% efficacious (Olsen, 2000; Olsen and Stoffregen, 2005; 
Lubroth et  al., 2007), the development of novel vaccines is 
warranted to help reduce brucellosis incidence. Cheap and readily 
available vaccines could improve livestock production, improve 
the standard of living for livestock producers, and reduce 
incidence of brucellosis in humans.

Most work in brucellosis vaccine development relies on live 
attenuated mutants. The basis for their employment is their 
relative success by B. abortus S19 and RB51, B. melitensis Rev. 1, 
and B. suis S2 vaccines in reducing livestock disease (Olsen and 
Palmer, 2014; de Figueiredo et al., 2015; Byndloss and Tsolis, 2016; 
Goodwin and Pascual, 2016). Although these are not completely 
effective, they provide the basis for successfully using live vaccines 
to elicit the desired protective response. While not discussed in 
this article, a subunit vaccine approach could have promise; 

however, no single Brucella protein has been identified yet that is 
capable of conferring complete protection. Most of the protein 
candidates are not able to confer more than a two log reduction in 
tissue colonization (Pascual et  al., 2018). More likely, some 
combination of epitopes is needed to be  delivered in such a 
manner that potent Th1-type responses are elicited.

Consideration of mucosal vaccination delivery methods does 
need more attention because of their potential impact on 
immunizing diverse tissues, protecting sites of infection, 
improving vaccine efficacy, and conferring conventional and 
alternative mechanisms of protection. Implementing parenteral 
vaccinations lessens the opportunities for eliciting memory T cell 
responses at sites of infection that could potentially prevent or 
limit systemic spread. Several of the studies conducted with 
ruminants vaccinated or infected with wt Brucella did evaluate 
host T cell responses (Weynants et al., 1998; Suraud et al., 2008; 
Wang et al., 2014; Dorneles et al., 2015; Curina et al., 2018; Higgins 
et  al., 2018; Boggiatto et  al., 2020), but many of these studies 
limited evaluations to peripheral blood T cells, and not mucosal 
T cells. Peripheral blood T cells vary in their stage of activation, 
and are in transition in homing to their targeted tissues. Aside 
from looking at peripheral blood, T cell restimulation methods 
may also influence Ag-specific responses. Among these studies, 
the described restimulation methods varied, where often whole 
LPS-bearing brucellae were used. LPS can alter host T cell 
responses via activation of co-cultured Ag-presenting cells 
(APCs). Finally, mode of Ag restimulation may bias T cell 
responses where soluble Ags mostly stimulate via the MHC class 
II-dependent pathway activating CD4+ T cells, and in contrast, an 
infection process, e.g., live infection of APCs, followed by 
subsequent APC inactivation, promotes MHC class I-driven CD8+ 
T cell responses. Future studies are warranted to compare the 
influence of the route of delivery, e.g., SC, conjunctival, oral, and 
nasal, upon eliciting memory T cell responses, especially the naso-
oropharyngeal tissues of animals and humans, which are sensitive 
to Brucella infection (Carpenter and Boak, 1932; Poelma and 
Pickens, 1932; Suraud et  al., 2007, 2008; Zachou et  al., 2008; 
Arenas-Gamboa et al., 2009; Ron-Román et al., 2014; von Bargen 
et al., 2015; Rouzic et al., 2021).

Proof of mucosal vaccination effectiveness has been shown 
experimentally in livestock, wildlife, and rodents. Oral vaccination 
with S19 (Nicoletti and Milward, 1983; Nicoletti, 1984) and RB51 
(Elzer et al., 1998) proved effective in pregnant heifers against 
B. abortus-induced abortion. Oral vaccination of red deer with 
microencapsulated S19 effectively reduced tissue colonization 
(Arenas-Gamboa et al., 2009). Conjunctival Rev. 1 vaccination of 
sheep proved effective in protection against abortion and vaccine-
induced abortion (Jiménez de Bagués et al., 1989; Blasco, 1997). 
Conjunctival brucellosis vaccination is commonly practiced 
(Blasco, 1997; Chand et al., 2015), but understanding why this 
route is effective in livestock is less understood. Given difficulties 
in conducting immune analyses in livestock, experimental animal 
systems can shed insight into mechanisms of protection not 
otherwise possible in livestock. Using the ΔznuA B. melitensis 
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mutant (Clapp et al., 2011, 2016), znBAZ mutant (Wang et al., 
2020), znBM-mC mutant (Goodwin et al., 2022), Rev. 1 vaccine 
(Clapp et al., 2016), and ΔpurEK B. melitensis (WR201) mutant 
(Izadjoo et al., 2004; Yingst et al., 2013), studies proved that potent 
protection can be  achieved in the mucosal and systemic 
compartments. An interesting finding derived from the ΔznuA 
B. melitensis (Clapp et al., 2011, 2016), znBAZ (Wang et al., 2020), 
and znBM-mC (Goodwin et al., 2022) studies was the predilection 
for stimulation of IFN-γ+ CD8+ T cell responses, which is 
attributed to either the mutant or mode of delivery. IP vaccination 
with znBAZ stimulated both CD4+ and CD8+ T cells, but the 
number of splenic IFN-γ+ CD4+ T cells nearly doubled those 
induced by CD8+ T cells (Yang et al., 2016) suggesting that the 
route has an influence. This was particularly noted with nasal Rev. 
1 vaccination resulting CD8+ T cell-dependent immunity as 
observed by the reduction in protection in CD8−/− mice (Clapp 
et al., 2016). However, oral vaccination with the WR201 mutant 
induced CD4+ T cell-dependent protection since protection 
against nasal challenge with wt B. melitensis 16M were equivalent 
in B6 and CD8−/− mice (Yingst et al., 2013). This finding disputes 
the idea that route of vaccination is the only factor, but the mutant 
is also an important consideration. These collective findings 
demonstrate that immune protection can be achieved with either 
CD4+ or CD8+ T cells, but eliciting memory responses proximal 
the site of infection, e.g., the stimulation of TRMs, are more apt to 
protect, possibly preventing or limiting brucellae dissemination as 
suggested by the ΔznuA B. melitensis (Clapp et al., 2016), znBAZ 
(Wang et al., 2020), and znBM-mC (Goodwin et al., 2022) studies. 
Mucosal vaccination with znBAZ or znBM-mC stimulated robust 
CD8+ and CD4+ TRM responses in the lungs to facilitate 
protection against pulmonary wt challenge, and may have 
prevented further brucellae dissemination (Wang et  al., 2020; 
Goodwin et al., 2022). Thus, the stimulation of alternative immune 
pathways is beneficial, and may improve vaccine efficacy 
warranting further testing.

The study of different Brucella species may assist in learning 
Brucella’s pathogenesis and tenets of host protection. The 
discovery of B. microti in voles (Scholz et al., 2008) and later in 
other host species (Occhialini et  al., 2022), extends the genus 
diversity, whereby B. microti shares metabolic traits, conserved 
VirB type IV secretion system, and early granuloma formation 
with other Brucella pathogens of livestock (Scholz et al., 2008; 
Hanna et al., 2011; Jiménez de Bagüés et al., 2011; Occhialini et al., 
2022). Brucella microti offers another model to study brucellosis 
since it can be lethal in mice and actively proliferates in murine 

macrophages. Cell-mediated immunity is essential for protection 
against B. microti and NK cells are required (Jiménez de Bagüés 
et al., 2011) showing the relevance of experimental animal systems.

Finally, an improved vaccine for one species has the potential 
to cross-protect against other Brucella species. A number of 
studies have shown such cross-protection as evidenced in humans 
with S19 for protection against B. melitensis infection (Vershilova, 
1961; van Straten et al., 2016); B. neotomae for protection against 
B. abortus (Dabral et al., 2014); S19, Rev. 1, and S2 for cross-
protection against B. suis, B. melitensis, and B. abortus (Bosseray 
and Plommet, 1990); and RB51WboAKF for B. suis, B. melitensis, 
and B. abortus (Dabral et al., 2019). Herein lies the potential for a 
universal brucellosis vaccine.
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