AUTHOR=Yang Yan , Cheng Shulan , Fang Huajun , Guo Yifan , Li Yuna , Zhou Yi , Shi Fangying , Vancampenhout Karen TITLE=Linkages between the molecular composition of dissolved organic matter and soil microbial community in a boreal forest during freeze–thaw cycles JOURNAL=Frontiers in Microbiology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1012512 DOI=10.3389/fmicb.2022.1012512 ISSN=1664-302X ABSTRACT=
Soil dissolved organic matter (DOM) plays a vital role in biogeochemical processes. Global warming leads to increased freeze–thaw cycles (FTCs) in boreal forest soils, which can change DOM production and consumption. However, the interactions between the chemical composition of DOM molecules and the microbial communities that drive C decomposition in the context of freeze–thaw are poorly understood. Here, a FTCs incubation experiment was conducted. Combined with pyrolysis gas chromatography–mass spectrometry and high-throughput sequencing techniques, the relationships between DOM chemodiversity and microbial community structure were assessed. Results indicated that both low-frequency (2FTCs) and high-frequency freeze–thaw cycles (6FTCs) significantly increased soil dissolved organic carbon (DOC) contents in the surface (0–10 cm) and subsurface (50–60 cm) soil layers. In the topsoil, FTCs significantly reduced the relative abundance of aromatic compounds, but increased the relative proportions of alkanes, phenols, fatty acid methyl esters (Me) and polysaccharides in the DOM. In the subsuface soil layer, only the relative abundance of Me in the 6FTCs treatment increased significantly. The response of bacterial communities to FTCs was more sensitive than that of fungi, among which only the relative abundance of