
Frontiers in Microbiology 01 frontiersin.org

Pan-genomic analysis of 
Corynebacterium amycolatum 
gives insights into molecular 
mechanisms underpinning the 
transition to a pathogenic 
phenotype

Hendor N. R. Jesus 1, Danilo J. P. G. Rocha 2, Rommel T. J. 
Ramos 3, Artur Silva 3, Bertram Brenig 4, Aristóteles Góes-Neto 5, 
Mateus M. Costa 6, Siomar C. Soares 7, Vasco Azevedo 5, Eric R. 
G. R. Aguiar 8, Luiz Martínez-Martínez 9,10,11, Alain Ocampo 12,13, 
Sana Alibi 14, Alexis Dorta 13,15, Luis G. C. Pacheco 1,2* and Jesus 
Navas 13,15*

1 Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of 
Health Sciences, Federal University of Bahia, Salvador, BA, Brazil, 2 Post-Graduate Program in 
Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil, 
3 Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil, 4 Institute of Veterinary 
Medicine, University of Göttingen, Göttingen, Germany, 5 Institute of Biological Sciences, Federal 
University of Minas Gerais, Belo Horizonte, MG, Brazil, 6 Laboratório de Microbiologia e Imunologia 
Animal (LAMIA), Universidade Federal Do Vale Do São Francisco, Petrolina, Pernambuco, Brazil, 
7 Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural 
Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil, 
8 Department of Biological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil, 9 Unidad de 
Gestión Clínica, Hospital Universitario Reina Sofía, Córdoba, Spain, 10 Departamento de 
Microbiología, Universidad de Córdoba, Córdoba, Spain, 11 Instituto Maimónides de Investigación 
Biomédica de Córdoba (IMIBIC), Córdoba, Spain, 12 Microbiology Service, University Hospital 
Marqués de Valdecilla, Santander, Spain, 13 Instituto de Investigación Valdecilla (IDIVAL), Santander, 
Spain, 14 Research Unit Analysis and Process Applied to the Environment, Rejiche, Tunisia, 
15 BIOMEDAGE Group, Faculty of Medicine, Cantabria University, Santander, Spain

Corynebacterium amycolatum is a nonlipophilic coryneform which is 

increasingly being recognized as a relevant human and animal pathogen 

showing multidrug resistance to commonly used antibiotics. However, 

little is known about the molecular mechanisms involved in transition from 

colonization to the MDR invasive phenotype in clinical isolates. In this study, 

we  performed a comprehensive pan-genomic analysis of C. amycolatum, 

including 26 isolates from different countries. We obtained the novel genome 

sequences of 8 of them, which are multidrug resistant clinical isolates from 

Spain and Tunisia. They were analyzed together with other 18 complete or 

draft C. amycolatum genomes retrieved from GenBank. The species C. 

amycolatum presented an open pan-genome (α = 0.854905), with 3,280 

gene families, being 1,690 (51.52%) in the core genome, 1,121 related to 

accessory genes (34.17%), and 469 related to unique genes (14.29%). Although 

some classic corynebacterial virulence factors are absent in the species C. 
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amycolatum, we did identify genes associated with immune evasion, toxin, and 

antiphagocytosis among the predicted putative virulence factors. Additionally, 

we  found genomic evidence for extensive acquisition of antimicrobial 

resistance genes through genomic islands.

KEYWORDS

Corynebacterium amycolatum, pan-genome, multidrug resistance, emerging 
pathogen, virulence factor

Introduction

Although Corynebacterium amycolatum (Collins et al., 1988) 
is commonly found in the normal microbiome of the human skin 
and mucosal membranes (Gladysheva et  al., 2022), this 
microorganism is now regarded as a potential multidrug-resistant 
opportunistic pathogen, especially in nosocomial environments 
and particularly when it comes to immunocompromised patients 
(Konstantinidis and Tiedje, 2005; Carvalho et al., 2018; Borde 
et al., 2020). It has already been described as the causative agent of 
serious infections in both humans and animals. Focusing on 
human infections, C. amycolatum has been described as the 
underlaying agent of endocarditis (Konstantinidis and Tiedje, 
2005), mastitis (Borde et al., 2020), ear infections (Sengupta et al., 
2015), and neonatal sepsis (Berner et al., 1997).

Several studies have shown that C. amycolatum infections are 
often misidentified by culturing and subsequent phenotypic 
analysis of the isolates, making it difficult to implement 
appropriate therapeutic interventions (Funke et  al., 1996; 
Zinkernagel et al., 1996; Wauters et al., 1998; Soltan Mohammadi 
et al., 2013). In this sense, it is essential to define better phenotypic 
and genetic markers that could improve the identification of 
pathogenic nonlipophilic members of the genus Corynebacterium, 
including C. amycolatum (Santos et al., 2017, 2018). C. amycolatum 
can be clearly distinguished from C. xerosis and C. imitans by 
means of MALDI-TOF mass spectrometry using the MALDI 
Biotyper system (Alibi et al., 2017). However, this technology is 
not always accessible to all clinical microbiology laboratories, in 
particular in developing countries. Besides, monitoring the 
phenotypic profiles of antimicrobial susceptibility is of 
fundamental importance, as several isolates have demonstrated 
multiple resistance to antibiotics, in particular to penicillins, 
clindamycin, aminoglycosides, and fluoroquinolones (Sánchez 
Hernández et al., 2003; Carvalho et al., 2018; Borde et al., 2020; 
Dragomirescu et al., 2020).

Previous studies by our group have already demonstrated the 
potential of comparative genomics to aid the understanding of 
variability in biochemical reactions commonly used to identify 
non-diphtherial Corynebacterium spp. which are difficult-to-
differentiate from C. amycolatum in phenotypic tests, particularly 
C. xerosis (Santos et  al., 2018). Besides, through comparative 
genomics we were able to identify specific target genes that can 
render reliable identification of C. striatum, C. amycolatum and 

C. xerosis clinical isolates, by multiplex PCR (Santos et al., 2017). 
More recently, different studies have been demonstrating the 
added value of whole-genome analyses to improve species 
circumscription in the genus Corynebacterium, including the 
study by Dover and collaborators (Dover et  al., 2021) which 
proposes a new phylogenomic-based classification of the genus 
Corynebacterium, based on previous studies (Huson and Bryant, 
2006), encompassing 19 phylogenetic groups; C. amycolatum 
belongs to the newly proposed group M, that also includes isolates 
of C. xerosis and C. freneyi (Dover et al., 2021). Noteworthy, all 
these previous studies were based on a limited number of isolates 
of the species C. amycolatum. Therefore, an extended pan-genomic 
analysis of the species can contribute to a better knowledge of the 
repertoire of gene families, and can aid the understanding of the 
taxonomy, pathogenicity, lifestyle, and resistome (Moradigaravand 
et al., 2018;  Caputo et al., 2019; Kim et al., 2020).

In this study, we performed a pan-genomic analysis of the 
species C. amycolatum, including genome sequences of 26 isolates 
from different countries. Eight of these genomic sequences were 
newly generated in this work and were derived from clinical 
isolates of C. amycolatum from Spain and Tunisia, which 
presented multiple resistance to antimicrobial agents 
(Supplementary Tables S1, S2). Therefore, we can infer that the 
species C. amycolatum has an open pan-genome, with major 
horizontal acquisition of antimicrobial resistance genes through 
genomic islands and many virulence factors.

Materials and methods

Whole-genome sequencing of new 
clinical isolates and retrieval of 
Corynebacterium amycolatum genomic 
sequences from public databases

Next-generation sequencing was performed for eight new 
clinical isolates, which were identified as C. amycolatum / xerosis by 
the API Coryne biochemical battery and by MALDI-ToF mass 
spectrometry, according to standard protocols: strains FA111 and 
FA86 isolated at Farhat Hached Hospital (Sousse, Tunisia); strains 
VH1773, VH2077, VH2225, VH4147_1, VH4147_3, and VH6958 
isolated at University Hospital Marqués de Valdecilla (Santander, 
Spain; please, see Supplementary Tables S1, S2 for clinical 
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information and antimicrobial susceptibility profiles of the isolates). 
The isolates were cultured on blood agar plates for 48 h at 37°C, and 
the genomic DNA was extracted using the NucleoSpin Microbial 
DNA Kit (Macherey-Nagel). For next-generation sequencing using 
the Illumina HiSeq  2,500 platform (Illumina Inc.), sequencing 
libraries were prepared by the NEBNext® Fast DNA Fragmentation 
and Library Preparation Kit for Illumina® (New England Biolabs 
Inc.), as previously described (Rocha et  al., 2020). Genome 
sequences were obtained for paired-end libraries with a minimum 
coverage of 1,000x. Genomic assemblies were obtained through the 
automated pipeline available at the PATRIC platform (Wattam et al., 
2017) using SPAdes (Bankevich et al., 2012).

Eighteen additional genomic sequences for the species 
C. amycolatum (complete or draft) were retrieved from the 
National Center for Biotechnology Information (NCBI)’s 
GenBank (Tatusova et al., 2016).

Average nucleotide identity (ANIb) and 
TETRA

To certify that the genomic sequences are circumscribed 
within the C. amycolatum species, we  performed average 
nucleotide identity by BLAST (ANIb) and tetranucleotide 
signature (TETRA) analyses through the JSpeciesWS platform 
(Richter et al., 2016).

Pan-genomic analysis

For standardization, all assembled genomic sequences were 
annotated using NCBI’s Prokaryotic Genome Annotation Pipeline 
(PGAP; Tatusova et al., 2016). Pan-genomic analysis was performed 
with the Bacterial Pan Genome Analysis (BPGA 1.3) tool (Chaudhari 
et al., 2016), using a 50% identity cut-off and the USEARCH pipeline 
for gene grouping (Edgar, 2010). BPGA uses the Power Law 
regression model (n = k. Nα) to determine whether the pan-genome 
is open (α ≤ 1) or closed (α > 1; Tettelin et al., 2005, 2008).

Functional annotations

The subgroups of the pan-genome were submitted for 
annotation of the Cluster of Orthologous Groups (COG) 
functional categories using the eggNOG-Mapper (Huerta-Cepas 
et al., 2017). The prediction of antibiotic resistance genes was 
performed in the Pathosystems Resource Integration Center 
(PATRIC) platform (Wattam et  al., 2017) using the 
Comprehensive Antibiotic Resistance Database (CARD; Jia et al., 
2017) and Database of Antibiotic-Resistant Organisms 
(NDARO).1 Virulence factors were evaluated through VFanalyzer 
and the Virulence Factor Database (VFDB; Liu et al., 2019). The 

1 https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/

key genes involved in the mycolic acid biosynthetic pathway were 
searched in the C. amycolatum genomes using the sequences and 
the method described by Dover and collaborators (Dover 
et al., 2021).

Predictions of genomic Islands, phages, 
and plasmid-derived sequences

IslandViewer 4 (Bertelli et al., 2017) was used for genomic 
islands prediction by integrating IslandPath-DIMOB (Hsiao et al., 
2003), IslandPick (Langille et al., 2008), SIGI-HMM (Waack et al., 
2006), and Islander (Hudson et al., 2015). Circular plots of the 
genomic sequences were plotted using BLAST Ring Image 
Generator (BRIG), including reference positions for antimicrobial 
resistance genes (AMR), virulence factors (VF), and genomic 
islands (GI; Alikhan et al., 2011).

Phage sequences were predicted with the Phage Search Tool 
Enhanced Release (PHASTER) platform (Arndt et  al., 2016), 
which has approximately 187,000 phage sequences in the database. 
Plasmid searches were performed with the PlasmidFinder 
platform (Carattoli et  al., 2014), which searches for plasmid 
replicons, and with the RFPlasmid platform (van der Graaf-van 
Bloois et al., 2021), which identifies plasmid sequences in contigs 
generated from short-read sequencing, by searching for specific 
proteins and plasmid replicons.

Deposit of genomic sequences in public 
databases

The genomic sequences generated in this study are 
publicly accessible through NCBI’s GenBank, with the respective 
accession numbers: JAFJMB000000000, JAFJMC000000000, 
JAFJMD000000000, JAFJME000000000, JAFJMF000000000, 
JAFJMG000000000, JAFJMH000000000, and JAFJMI000000000. 
A detailed description of the genomes can be  found in 
Supplementary Table S1.

Results and discussion

General features of the Corynebacterium 
amycolatum genomes

Among the 26 C. amycolatum studied genomes, five were 
marked as complete genomes, and the remaining are in draft 
versions (see Supplementary Table S1). The estimated genome 
sizes range between 2.42 and 2.82 Mbp, with the G + C% content 
varying less than 1% between the isolates (58.6–59.0%). The 
numbers of annotated coding sequences (CDS) ranges from 2,038 
(for isolate UMB1182) to 2,371 (for isolate FDAARGOS_991; see 
Supplementary Table S1).

The species assignment of the genomic sequences through 
ANIb (Figure  1) showed that the SK46 isolate was below the 

https://doi.org/10.3389/fmicb.2022.1011578
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/


Jesus et al. 10.3389/fmicb.2022.1011578

Frontiers in Microbiology 04 frontiersin.org

generally regarded cutoff value for species delineation (95.0%) 
when compared with other C. amycolatum isolates: identity 
between the SK46 and the NCTC7243 strain was 94.11%. 
Nevertheless, it has been described that the values above 94.0% are 
equivalent to 70% of DNA–DNA hybridization (DDH), a method 
considered as the gold standard for species identification (Richter 
and Rosselló-Móra, 2009). The results of the TETRA analysis were 
approximately 0.999, and the variation of the percentage of GC 
was ≤1%, reinforcing that the SK46 lineage is circumscribed 
within the species C. amycolatum (Figure 1).

Pan-genomic analysis and functional 
annotations by COGs

The C. amycolatum pan-genome has 3,280 predicted gene 
families (Figure 2), being 1,690  in the core genome (51.52%), 
1,121 related to accessory genes (34.17%), and 469 related to 

unique genes (14.29%; Figure  3). The estimated α value of 
0.854905 indicates an open pan-genome, and the predicted core 
genome stabilizes with approx. 1,641 gene families.

The functional annotations of the pan-genomic subsets 
revealed that the core genome and accessory gene families are 
primarily classified in the ‘Metabolism’ category, with 582 and 216 
annotated gene families (34.0 and 19.0%), respectively. Unique 
genes were mainly ranked in the ‘Information storage and 
processing’ category, with 72 genes in this class (15.0%). The main 
COG subcategories in the core genome were: translation, 
ribosomal structure and biogenesis (8.5%); amino acid transport 
and metabolism (6.7%); coenzyme transport and metabolism 
(5.8%); transcription (5.8%); and inorganic ion transport and 
metabolism (5.1%; Figure  4). Accessory genes were mainly 
involved in functions of replication, recombination, and repair 
(8.4%); inorganic ion transport and metabolism (6.1%); defense 
mechanisms (4.7%); transcription (4.1%); and amino acid 
transport and metabolism (3.7%). Unique genes were mostly 

FIGURE 1

Pairwise comparisons of ANIb values (bottom triangle) and TETRA values (upper triangle) between all studied C. amycolatum genomic sequences.
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related to biological functions of replication, recombination, and 
repair (10.4%); defense mechanisms (6.4%); transcription (4.3%); 
inorganic ion transport and metabolism (3.2%); and lipid 
transport and metabolism (2.1%). A total of 1,337 genes were 

labeled as ‘unknown function genes’, comprising 453 genes 
(26.8%) in the core genome, 589 (52.54%) in accessory genes, and 
295 (62.89%) in the unique genes group (Figure 4).

Prediction of antimicrobial resistance 
genes and genomic islands

The PATRIC platform identified nine antimicrobial 
resistance genes (AMRs) by automatic annotation of the 
C. amycolatum resistome (Figure 5). Only the rpsL gene was 
identified in all studied strains, containing mutations similar to 
those detected in streptomycin-resistant Mycobacterium 
tuberculosis isolates (Sreevatsan et al., 1996). Seven AMRs were 
placed in the accessory genome of C. amycolatum, which confer 
resistance to aminoglycosides, chloramphenicol, streptogramins, 
macrolides, lincosamides, and tetracycline: aac(3)-XI 
(aminoglycoside 3-N-acetyltransferase), identified in 15.0% of 
genomes; aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id (aminoglycoside 
phosphotransferases), in 54% of isolates; cmx (efflux pump 
major facilitator superfamily, MFS), in 54% of isolates; ermX 
(Erm 23S ribosomal RNA methyltransferase), in 62% of isolates; 
and tetO (tetracycline resistance) in only 2 isolates. The tetW 
gene, encoding a ribosomal protection protein, was the single 
AMR gene found as unique in the pan-resistome of 
C. amycolatum, being detected only in the genomic sequence of 
isolate UMB9184 (Figure 5).

FIGURE 2

Numbers of gene families in the C. amycolatum pan-genome vs. numbers of new genomes added to the analysis.

FIGURE 3

Flower plot diagram of the C. amycolatum pan-genome, 
showing core gene families (green), accessory genes present in 
each isolate (orange), and unique genes per genome (red). Within 
parentheses are the numbers of predicted coding sequences for 
each isolate.
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Apart from the rpsL gene, all other predicted AMRs 
co-localize with predicted genomic islands in the studied genomes 
(Figure 6). The genes cmx, aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id were 

consistently found within the exact genomic location (Figure 6), 
indicating a common mechanism of horizontal acquisition of 
AMR genes.

FIGURE 4

Functional annotations of the pan-genome subsets according to COG categories.

FIGURE 5

The C. amycolatum resistome predicted through automated annotation in the PATRIC platform.
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Phages and plasmid-associated sequences 
in Corynebacterium amycolatum

The phage prediction detected 38 sequences 
(Supplementary Figure S1), the most frequent was the 
Corynebacterium Juicebox phage, present in 15 strains 
(Supplementary Figure S2), followed by the Corynebacterium phage 
SamW, identified in 6 strains. In total, 13 different phages were 
found. We  identified the ermX gene within the Gordon phage 
Daredevil sequence in the C. amycolatum lineage UMB9184. The 
results generated by the RFPlasmid tool identified 36 sequences 
containing plasmid signatures among the studied strains, in which 
27 AMR genes were present (Supplementary Table S2). This 
represents approximately 26% of the total predicted AMR genes. The 
ICIS5, ICIS9, VH2225, VH4147_1, and VH4147_3 strains presented 
sequences containing similar context with the AMR genes cmX, aph 
(6)-Id, aph(3″)-Ib, and aph(3′)-Ia. Analyzes performed with 
PlasmidFinder, however, did not detect any plasmid-related 
sequences, when searching for plasmid replicons.

Potential virulence factors

Forty-seven genes were found in the C. amycolatum 
pan-genome, which can be potentially associated with virulence 
functions (Figure 7). The majority of these virulence genes are 
present in the accessory genome (29 genes), while 12 genes are 
shared by all strains (core genome), and only 6 genes appear as 
unique to single isolates (Figure  7). Genes involved in iron 
acquisition are particularly enriched in this category of potential 
virulence genes, with 17 of those genes found in the species 
C. amycolatum. The operon ciuABDE, coding for an ABC-type 
siderophore transporter system (Kunkle and Schmitt, 2005), was 
found only in the strain NCTC7243. The fagABCD operon, coding 
for iron-siderophore transport through the membrane (Billington 
et al., 2002), was located entirely in 15 C. amycolatum genomes and 
partially found in additional 5 genomes. Twenty-four genomes also 
presented genes coding for the complete heterodimeric transporter 
Irp6ABC (Qian et  al., 2002), while 2 genomes showed an 
incomplete coding potential. Additionally, the gene hmuU involved 

FIGURE 6

Circular genome plot showing the distribution of predicted genomic islands (GIs) in the studied C. amycolatum genomes. Most outer circle 
presents the positions of GIs and respective AMR genes. The genome sequence of the isolate FDAARGOS_911 was used as a reference.
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in the heme-transporter system hmuTUV of C. diphtheriae and 
C. ulcerans (Drazek et al., 2000) was found in all C. amycolatum 
genomes. An ortholog of the vctC gene that is part of the vctPDGC 
heme-transportation system in Vibrio cholerae (Wyckoff and 
Payne, 2011) was also found in 24 C. amycolatum genomes. 
Regarding siderophore biosynthesis pathways, we found orthologs 
in all studied genomes for the genes mbtI from Mycobacterium 
tuberculosis (Mori et  al., 2020) and fxbA from Mycobacterium 
smegmatis. The latter is part of the biosynthetic pathway of 
mycobacterial exochelin (lipid- and water-soluble siderophore; 
Ojha and Hatfull, 2007) and was only found in two C. amycolatum 
isolates (FDAARGOS_938 and FDAARGOS_991).

Gene sequences coding for SpaD-like pili were 
predicted in most C. amycolatum isolates (Figure  7). In 
this adherence machinery, the proteins SpaD, SpaE, and SpaF 
form a filamentous structure that remains anchored to the 
bacterial surface and needs the sortases SrtB and SrtC for the 
anchoring step (Gaspar and Ton-That, 2006). These adherence 
structures are involved in essential pathogenicity functions that 
include host tissue colonization (Swaminathan et  al., 2007), 
adherence under mechanical stress conditions (Echelman et al., 
2016), and biofilm biogenesis (Swaminathan et al., 2007).

All C. amycolatum genomes presented genes coding for a 
functional ATP-dependent proteasome system, namely mpA 
(Mycobacterium proteasome ATPase) and pafA (proteasome 
accessory factor A; Pearce et al., 2008). Interestingly, six C. amycolatum 
genomes presented the cylR2 gene, whose product acts as a repressor 
of the cytolysin operon in Enterococcus faecalis (Haas et al., 2002).

The virulence genes fxbA, exc (exochelin), and the operons 
ciuABDE, sugABC, spaDEF plus the sortase genes srtB and srtC 
were mainly predicted within the context of genomic islands, 
showing their role in horizontal acquisition of variable genes.

These results were obtained from the VFDB database, which 
gathers information about virulence factors from studies that 
evaluated the ability of mutants to develop disease in the host 
(Liu et al., 2022). In this sense, our results reinforce the relevance 
of genes coding for pili (Broadway et al., 2013; Oliveira et al., 
2017) and siderophores (Kunkle and Schmitt, 2003; Ibraim et al., 
2019) in the Corynebacterium genus. Importantly, some studies 
have already discussed the important roles these genes play not 
only in virulence, but also in adaptation to distinct niches 
(Swierczynski and Ton-That, 2006; Tauch and Burkovski, 2015). 
Although we did not identify classic corynebacterial virulence 
factors in C. amycolatum, which are commonly associated with 
known pathogens of the Corynebacterium genus, such as 
diphtheria toxin, phospholipase D, and hemolysins (Dorella 
et al., 2006; Parveen  et al., 2019), we were able to detect genes 
associated with immune evasion, antiphagocytosis, and toxins, 
that may be relevant to the pathogenicity of this species.

Mycolic acids are essential components of the cell wall of  
most Actinobacteria (Collins et al., 1982; Ioneda, 1993). They  
play a crucial role in the interaction of M. tuberculosis with host 
cells (Korf et al., 2005). However, C. amycolatum lacks 
corynomycolic acids in its cell wall (Barreau et al., 1993). The 
search for key genes of the mycolic acid biosynthesis pathway in 
C. amycolatum showed the absence of the essential genes 
(Supplementary Figure S3), especially the fadD32-pks13-accD4 
operon (Portevin et al., 2005; Gavalda et al., 2009) and the cmrA 
gene (Lea-Smith et  al., 2007) involved in mycolic acid 
condensation, then confirming that the species C. amycolatum 
does not have the genetic potential to synthesize mycolic acids; 
these findings corroborate the results from previous genomic 
studies of C. amycolatum (Daffé and Draper, 1997; Daffé, 2005; 
Baek et al., 2018; Dover et al., 2021).

FIGURE 7

Distribution of virulence factors throughout the C. amycolatum genomic sequences. According to the legend, colors indicate the functional 
classes of the identified genes. Exo = exochelin coding sequence (ortholog to M. smegmatis gene); Cap = capsule related gene (ortholog to 
Acinetobacter spp). * Denotes gene sequences annotated by manual curation after automatic prediction.
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Conclusion

The C. amycolatum pan-genome demonstrated an open status, 
which corroborates the high number of predicted genomic islands 
containing antimicrobial resistance genes (AMRs) and sequences 
coding for potential virulence factors. These biological functions 
are mainly acquired through horizontal gene transfer in the 
species. Notably, the high number of horizontally-acquired 
virulence genes that code for functions related to adaptation to the 
host organism, such as iron acquisition and adherence, may aid in 
the understanding of the pathogenic potential of this generally-
regarded as commensal microorganism. In addition, the fact that 
we  identified a genomic island containing genes that confer 
resistance to aminoglycosides and chloramphenicol in more than 
50% of the studied isolates demonstrates the importance of 
unambiguous identification of this potentially pathogenic 
microorganism by clinical microbiology laboratories.
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