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Background: Helicobacter pylori (H. pylori) is an important pathogenic 

microorganism that causes gastric cancer, peptic ulcers and dyspepsia, and 

infects more than half of the world’s population. Eradicating H. pylori is the 

most effective means to prevent and treat these diseases. H. pylori coccoid 

form (HPCF) causes refractory H. pylori infection and should be given more 

attention in infection management. However, manual HPCF recognition on 

slides is time-consuming and labor-intensive and depends on experienced 

pathologists; thus, HPCF diagnosis is rarely performed and often overlooked. 

Therefore, simple HPCF diagnostic methods need to be developed.

Materials and methods: We manually labeled 4,547 images from anonymized 

paraffin-embedded samples in the China Center for H. pylori Molecular 

Medicine (CCHpMM, Shanghai), followed by training and optimizing the Faster 

R-CNN and YOLO v5 models to identify HPCF. Mean average precision (mAP) 

was applied to evaluate and select the model. The artificial intelligence (AI) 

model interpretation results were compared with those of the pathologists 

with senior, intermediate, and junior experience levels, using the mean 

absolute error (MAE) of the coccoid rate as an evaluation metric.

Results: For the HPCF detection task, the YOLO v5 model was superior to 

the Faster R-CNN model (0.688 vs. 0.568, mean average precision, mAP); the 

optimized YOLO v5 model had a better performance (0.803 mAP). The MAE 

of the optimized YOLO v5 model (3.25 MAE) was superior to that of junior 

pathologists (4.14 MAE, p < 0.05), no worse than intermediate pathologists 

(3.40 MAE, p > 0.05), and equivalent to a senior pathologist (3.07 MAE, p > 0.05).

Conclusion: HPCF identification using AI has the advantage of high accuracy 

and efficiency with the potential to assist or replace pathologists in clinical 

practice for HPCF identification.
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Introduction

Helicobacter pylori is a gram-negative bacterium that colonizes 
the human gastric mucosa (Schistosomes, 1994; Hooi et al., 2017). 
It commonly causes infectious disease, with the global prevalence 
approaching half of the population (Sugano et al., 2015; Hooi 
et al., 2017). H. pylori can cause various gastric diseases, including 
chronic gastritis, peptic ulcer, and gastric mucosa-associated 
tissue lymphoma (Schistosomes, 1994, Sultan Qaboos University, 
2007). It is classified as a Group I carcinogen by the International 
Agency for Research on Cancer (IARC) (Schistosomes, 1994) and 
a principal cause of intestinal-type gastric cancer (IARC Working 
Group on the Evaluation of Carcinogenic Risks to Humans, 1989). 
Eradicating this bacterium is critical to reducing the risk of gastric 
cancer and other diseases.

Helicobacter pylori coccoid form (HPCF) is a significant cause 
of refractory H. pylori and is generally ignored in clinical practice 
(Ierardi et al., 2020; Krzyzek and Grande, 2020; Shah et al., 2021). 
HPCF is an adaptation to a non-optimal environment in which 
H. pylori transforms from bacillar to coccoid form in response to 
adverse growth conditions, including nutrient deficiencies, altered 
oxygen concentrations, elevated temperatures, and particularly 
sub-lethal antibiotic doses (Cellini et al., 2008; Kadkhodaei et al., 
2020). And HPCF, a viable but non-culturable (VBNC) H. pylori 
form (Ozcakir, 2007), can result in cultivation failure, leading to 
false negatives in H. pylori diagnosis (Sarem and Corti, 2016). 
When H. pylori is in a coccoid state, it increases tolerance to the 
higher concentrations of antibiotics, favouring their survival 
(Tutelyan et al., 2015; Reshetnyak and Reshetnyak, 2017). And it 
causes non-response to antibiotics, resulting ineffective 
eradication treatment (Gladyshev et al., 2022). Most physicians do 
not recognize HPCF and administer other antibiotics to patients 
after a failed first intervention, which have no effect and aggravate 
resistance to more antibiotics. Therefore, according to the 
personalized assessment requirement, doctors need to recognize 
HPCF and discontinue antibiotics immediately until H. pylori 
returns to the bacillar form. Besides, HPCF has a low metabolism 
but does not lose its virulence, so toxic substances accumulate 
(Loke et  al., 2016). Hence coccoid forms are a threat to the 
effectiveness of therapy and timely HPCF detection is a key 
component of personalized assessment before refractory 
H. pylori treatment.

The current clinical practice of identifying HPCF involves a 
pathologist observing stained H. pylori on gastric mucosa slices 
under a microscope and selecting a random field of view to 
estimate the HPCF proportion. However, the current approach is 
time-consuming, labor-intensive, and difficult to popularize. 
Additionally, diagnosis is inconsistent among pathologists owing 

to experience differences. Furthermore, as the field of view under 
the microscope is limited, the manual slide reading is randomly 
selected, leading to diagnosis limitations, randomness, and bias. 
Improving the efficiency and accuracy of HPCF diagnosis and 
reducing the difficulty in reading slides are essential for clinicians 
to provide more effective treatment options and promote this 
diagnostic method.

Artificial intelligence (AI) technology has facilitated the rapid 
development of object detection algorithms, which can be utilized 
for HPCF diagnosis to solve the problems caused by manual 
reading. The purpose of object detection is to find all objects of 
interest in an image and determine their positions and sizes (Mane 
et  al., 2008). An object detection diagnostic model plays an 
essential role in the diagnosis and prognosis of disease, including 
bone marrow cell automatic detection (Tayebi et al., 2022), tumor 
region identification in breast cancer samples (Joseph et al., 2019), 
and tongue cancer diagnosis (Heo et al., 2022). Therefore, object 
detection techniques may potentially contribute to solving HPCF 
diagnosis drawbacks.

The aim of this study was to assess HPCF identification using 
two representative models: the one-stage model YOLO v5 and 
two-stage model Faster-RCNN (Ren et al., 2017; Jocher et al., 
2022). We  collected clinical H. pylori-positive gastric mucosa 
samples, performed H. pylori immunochemical staining, labeled 
the images based on manual morphological classification, trained 
the model, and conducted object recognition with evaluation. The 
use of AI in diagnosis could increase the accuracy of recognizing 
HPCF and reduce manual reading errors, making HPCF detection 
universally popularized. Additionally, these efficient, rapid, and 
convenient methods could enable HPCF to be  diagnosed 
immediately in refractory H. pylori infections to ensure that 
coping strategies are found.

Materials and methods

Data collection and 
immunocytochemistry

Clinical samples were obtained from the biobank of the China 
Center for H. pylori Molecular Medicine (CCHpMM, Shanghai, 
China). We randomly selected paraffin-embedded gastric mucosa 
samples from 34 patients. Ethical approval was not required for 
this study as the samples were completely anonymous, and no 
detailed personal information was obtained.

Immunochemical staining was performed on the obtained 
samples. First, we preprocessed the tissue. The gastric mucosa 
samples placed in 4% paraformaldehyde were fixed for 24 h and 
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then made into paraffin sections by conventional dehydration, 
embedding, and sectioning. Second, staining was applied to 
enhance differentiation between the gastric cells and H. pylori. 
Generally, staining included eight steps: dewaxing and hydration, 
antigen repair, endogenous peroxidase blocking, primary antibody 
addition, enzyme-labeled polymer addition, color development, 
re-staining, dehydration, transparency, and sealing. The dyed 
samples were then scanned using an Aperio Scanscope (Aperio 
XT, Leica, Germany) at 40× magnification and acquired in.tiff 
file format.

Slicing and labeling

The full image was cut into small 500 × 500 pixel images for 
labeling H. pylori morphology. All stained H. pylori in the 
images were labeled according to morphological characteristics 
(Table 1) as bacillar, coccoid, cross-section, transitional, and 
cluster. Each bacterium was labeled individually with a square 
box form in Colabeler v2.0.4 software by two well-trained 
pathologists with 8 years of clinical experience in H. pylori 
pathologic diagnosis. When a disagreement occurred 
concerning labeling, the final decision was made by a third 
senior pathologist after joint discussion. The labeled image was 
then generated as an XML file containing the marker coordinate, 
marker type, and image information to construct the VOC 2007 
data file.

Model frameworks selection and training

Faster R-CNN and YOLO v5 algorithms were chosen for 
object detection to select the one with better performance and 
perform downstream tasks, optimizing the model.

Faster R-CNN
Faster R-CNN is an end-to-end CNN object detection model 

with a two-stage target detection algorithm. The framework is 
divided into four phases: Conv layers, Region Proposal Networks, 
Roi Pooling, and Classifier. This algorithm is characterized by high 
detection accuracy and relatively slow detection speed.

YOLO v5
YOLO is a fast and compact open-source object detection 

model with better performance for the same size and better 
stability than other networks. It is the first end-to-end neural 
network to predict an object’s class and bounding box. YOLO v5, 
one of the most advanced object detection techniques, consists of 
four components: Input, Backone, Neck, and Prediction. YOLO 
v5 offers a wider variety of data enhancements to images on the 
input side, including mosaic data enhancement and adaptive 
image scaling, than traditional target detection models.

Dataset partitioning
We randomly divided the dataset into the train, validation, 

and test sets at a ratio of 6: 2: 2. The train and validation sets were 
used to train models and the test set was used to evaluate model 
performance. We judged the model’s training epochs according to 
the training curve. We found that as the epoch increased to 59, the 
train and validation sets’ loss decreased slowly and stabilized, 
indicating that the deep learning had reached saturation.

Optimized measures

Data enhancement method
The label types showed a data imbalance in our study. To 

address this, we adopted a data enhancement copy-paste method 
by cropping targets from the positive data and randomly pasting 
them onto the negative sample (background information in the 
negative sample favors false positive suppression). The crop’s target 
frame may differ significantly in color from the randomly selected 
negative image. To reduce the “disharmony,” the crop’s target 
is  toned to the negative background style using a stain 
normalization algorithm.

Model structure optimization
Considering that H. pylori occupies a relatively small part of 

the image, background iterative accumulation creates a large 
amount of redundant information accumulated during 
convolution, losing some smaller targets and resulting in low 
detection accuracy. Therefore, we applied coordinate attention 
(CA) between the backbone feature extraction network 
CSPDarkNet53 convolutional layers to improve the model’s object 
detection objects’ feature information extraction (Chao et  al., 
2021; Fang et al., 2022). CA changed the 10-layer network in the 
original YOLO v5 algorithm feature extraction to a 13-layer 
network and set the input image size to 1,280 × 1,280 scale. 
Furthermore, we added a 160 × 160 inspection scale to the original 

TABLE 1 Examples and characterization of five Helicobacter pylori 
morphology categories for distinguishing types and bacteria labeling.

Category name Legend Characterization

Bacillar The normal spiral form of H. pylori, 

usually being longitudinal, bent, and 

curled

Coccoid Rounded shape, the diameter is  

1/3–1/2 the length of the bacterium

Cross section The circular cross-section when the 

bacillus is held upright

Transitional The stubby and irregular state presented 

by H. pylori as it transforms from 

bacillar to coccoid, not the coccoid

Cluster Multiple clustered bacteria, and 

we could not accurately label each 

bacterium individually
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three-scale YOLO v5 inspection layer, expanding it to a four-scale 
inspection. Finally, we  optimized the box anchor parameters, 
adding three anchor boxes for detecting small objects’ dimensions, 
including (5, 6, 8, 14, 15, and 11). The optimized YOLO v5 
network structure is shown in Figure 1.

Evaluation

To evaluate our model, we evaluated precision (P), recall (R), 
and mean average precision (mAP) using the following equations:

  
Recall TP TP FN= +( )/

 
(1)

 
Precision TP TP FP= +( )/

 
(2)

TP, FP, and FN in the above equations are defined as:
TP (True Positive): The number of positive and predicted 

positive samples.
FN (False Negative): The number of positive samples 

predicted as negative samples.
FP (False Positive): The number of negative samples predicted 

as positive samples.
For the object detection model’s comprehensive clinical 

evaluation, the samples’ HPCF percentages were evaluated by nine 
pathologists who were blinded to sample labeling. We  invited 
three junior, three intermediate, and three senior pathologists with 
5, 8, and 10 years of pathological work experience, respectively, to 
independently read the slice and confirm the coccoid percentage. 

Mean absolute error (MAE) helps reflect the forecast value error’s 
actual situation. The formula is as follows:

 
MAE = −∑1

1
m

h y
m

 
(3)

Where m, h, and y represent the number of uncut sample 
sheets in the test set, gold standard (HPCF percent obtained by 
software labeling manually), and HPCF percentage of model 
detection or manual reading, respectively. We used the manual 
labeling results as the gold standard, and the model detection and 
manual reading results as the true values; the higher the error, the 
higher the MAE. All statistical analyses were performed using 
Python, version 3.8.5.

Results

Dataset generation

We obtained 4,547 sub-images for model training and testing. 
The various H. pylori morphology label distribution manually 
marked by the pathologists is shown in Supplementary Appendix S1.

Faster R-CNN vs. YOLO v5

Two models, Faster R-CNN and YOLO v5, were used to 
predict the 1,007 sub-images in the test set; the results are shown 
in Figure 2. The proposed Faster R-CNN and YOLO v5 models 

FIGURE 1

Optimized YOLO v5 network structure (CBL, Conv+Bn + Leaky-relu; CSP, cross stage partial network; Concat, concatenate function; Conv, 
convolutional layer; SPP, spatial pyramid pooling).
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achieved an mAP of 0.414 and 0.461, respectively, for detection 
containing all morphological H. pylori types. For coccoid type 
detection, recall, precision, and mAP values of Faster R-CNN were 
0.582, 0.536, and 0.568, respectively; those of YOLO v5 were 
0.638, 0.700, and 0.688, respectively. The results showed that the 
YOLO v5 model offered a better accuracy for HPCF detection 
than Faster R-CNN, particularly in coccoid detection. Therefore, 
we  chose YOLO v5 as the target model to detect HPCF for 
further optimization.

YOLO v5 vs. optimized YOLO v5

Optimized YOLO v5 with data enhancement and model 
structure optimization achieved an overall mAP value of 0.624; 
that of YOLO v5 was 0.461 (Figure  2). Optimized YOLO v5 
produced better results, attaining a mAP value of 0.803 for coccoid 
type detection, outperforming YOLO v5 by 16.7%. The different 
detection models’ specific performance results are shown in 
Supplementary Appendix S2 and coccoid detection performance 
results of manual labeling and AI in the test set in 
Supplementary Appendix S3.

The loss comparison curve, PR curve, and Confusion matrix 
are shown in Figure 3. The model converges at 59 epochs, and the 
loss decreases as the epoch time increases, eventually converging. 
The bounding box regression (Figure 3A) and training algorithm 
confidence loss (Figure 3B) values were lower than those of the 
validation algorithm, and they both had a large drop at the start 
of training. This means that the model is learning appropriately 

and efficiently and undergoing gradient descent. For classification 
probability loss (Figure 3C), the training set and validation set had 
similar values. The PR curve showed that optimized YOLO v5 
(Figure 3E) significantly outperformed YOLO v5 (Figure 3D). A 
graph of model testing results is shown in Figure 4.

Manual reading vs. optimized YOLO v5

To uncover the clinical feasibility and accuracy of the 
optimized YOLO v5 algorithm for HPCF detection, we compared 
its coccoid rate detection results with those of manual reading 
(Supplementary Appendix S4). The coccoid labels’ number and 
percentage were calculated for each immunohistochemical gastric 
mucosa sample in the test data. The optimized YOLO v5 and 
manual reading MAE comparisons are shown in Figure 5. The 
comparative results showed that, benchmarked against the gold 
standard, AI model detection had the lowest MAE of 3.25, 
indicating a minimum error. However, the junior pathologists’ 
reading had an MAE of 4.14 in their diagnoses compared with the 
gold standard; that of intermediate pathologists had an MAE of 
3.40 and senior practitioners had an MAE of 3.07. This signifies 
that model detection results are closer to the gold standard, 
significantly more accurate than those of junior pathologists (3.25 
vs. 4.14, p < 0.05), no worse than those of intermediate pathologists 
(3.25 vs. 3.40, p > 0.05), and on a par with those of senior 
pathologists (3.25 vs. 3.07, p > 0.05). Moreover, the junior 
pathologists’ reading results had the largest error compared with 
the gold standard, although the diagnosis by a senior pathologist 

FIGURE 2

Mean average precision (mAP) for predicting different proposed bacteria detection models. The column height reflects performance: the higher 
the height, the better the performance. Blue column indicates Faster R-CNN; green column, YOLO v5; and orange column, optimized YOLO v5. 
And optimized YOLO v5 shows the best performance in detecting various morphological (H. pylori).
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was not entirely accurate. This indicates that the AI model has the 
potential to support more efficient and accurate HPCF diagnosis, 
replacing junior pathologists and reducing diagnostic errors.

Discussion

Helicobacter pylori coccoid form is an important factor for 
refractory H. pylori infection, the awareness of which helps to 

eradicate repeated treatment failure (Shah et  al., 2021). Under 
unfavorable and stressful conditions, H. pylori shifts from a bacillar 
form to a coccoid with VBNC state to facilitate survival. The coccoid 
form of H. pylori slows metabolism to facilitate survival, with reduced 
urease activity, respiratory rate and nutrient uptake, and metabolic 
protein maintained at basal levels (Fakruddin et al., 2013; Reshetnyak 
and Reshetnyak, 2017; Kadkhodaei et al., 2020). However, HPCF 
expresses almost all virulence genes, producing high levels of 
virulence and oncogenic proteins that may have equivalent or even 

A

D

F G

E

B C

FIGURE 3

Performance comparison of the deep learning models. (A) Bounding box regression loss: assessing the degree of overlap between the prediction 
and real frames. (B) Confidence loss: it calculates whether the grid’s confidence is correct. (C) Classification probability loss: assessing the 
classification. (D) YOLO v5 PR curve: it indicates the relationship between precision and recall; rows indicate the recall, whereas columns display 
the prediction by the model. (E) Optimized YOLO v5 PR curve. Optimized YOLO v5’s PR curve (E) can completely wrap around YOLO v5’s PR curve 
(D), indicating that Optimized YOLO v5 outperforms YOLO v5. (F) YOLO v5’s confusion matrix. The diagonal values indicate the true positive 
portion for each object type, and the other values, outside of the diagonal, display the misclassification rates, (G) The optimized YOLO v5’s 
confusion matrix.
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greater virulence than the bacillar form (Loke et al., 2016). Moreover, 
HPCF increases the expression of peptidase genes, induces changes 
in globular cell wall components such as peptidoglycan, or increases 
the content of cholesterol and unsaturated fatty acids and their 
accumulation in the cell membrane (Correia et al., 2014; Faghri et al., 
2014; Qaria et al., 2018; Brenzinger et al., 2019), enhancing H. pylori’s 
resistance to antibiotics (Brenciaglia et  al., 2000). These changes 
contribute to a better adaptation of H. pylori to an unfavorable 
environment, facilitating its long-term survival in the gastric 
environment, while also causing it to lose its response to antibiotis 
and leading to the failure of eradication therapy (Ierardi et al., 2020). 
Doctors unaware of HPCF will constantly change antibiotics to 
eradicate H. pylori, further aggravating antibiotic resistance and the 
physical and mental burden on patients. Therefore, in treating 
refractory H. pylori infection, physicians should be  aware of the 
possibility of HPCF, recognize it in time, and stop treatment until the 
H. pylori coccoid form returns to the bacillar form. However, the 
recognition of HPCF is currently performed by pathologists who read 
the slides manually, with time-consuming, labor-intensive, subjective 
variability, and reading limitations and randomness drawbacks.

Rapidly developing AI object detection technology has been 
successfully applied to many medical issues. Tayebi et al. (2022) 
applied the YOLO model to automatically identify and detect all 
bone marrow cells in each region, supporting a more precise 
hematological diagnosis. Lee et  al. (2022) proposed the RCNN 
model to analyze various abnormal teeth types. Lin et al. (2022) used 
the residual U-net and V-OMT algorithms to convert irregular 3D 
brain images into cubes and achieved higher brain tumor detection 

and segmentation accuracy. The AI model’s object detection may 
help clinicians make more efficient and accurate diagnoses.

AI object detection technology can be  applied to HPCF 
detection tasks, contributing to solving HPCF detection 
shortcomings. We  selected the classical representative object 
detection algorithms, YOLO v5 and Faster-RCNN. Faster R-CNN 
(Ren et al., 2017), one of the best two-stage detectors, generates 
Region Proposal and utilizes convolutional neural networks to 
predict the object’s class and location information. YOLO v5, an 
outstanding representative of the one-stage, extracts features 
directly from convolutional neural networks to predict the object’s 
classification and localization. The YOLO v5 model is smaller, 
with faster training and a shorter inference time than Faster 
R-CNN (Wu et al., 2021). Moreover, YOLO v5 can assign each 
bounding box detector to various objects at any possible location 
in the images, focusing on classifying objects within the bounding 
box and providing more accurate predictions for individual and 
smaller objects. YOLO v5 has become the most promising method 
for object detection, with a fast training phase and superiority over 
previous YOLO versions (Jocher et al., 2022). We found that the 
YOLO v5 algorithm (0.688 mAP) is superior to Faster-RCNN 
(0.568 mAP) in coccoid H. pylori detection. Therefore, the YOLO 
v5 was chosen as our base model for identifying HPCF.

Subsequently, we performed tailored optimization on the YOLO 
v5 model according to the dataset characteristics with an unbalanced 
number of labels and a small object size. We chose the Copy-Paste 
to reduce the influence of imbalanced labels, increasing the amount 
of scarce coccoid label training data (Ghiasi et al., 2021). Adding CA, 
multiscale detection, and bounding box anchors parameter 

FIGURE 4

An example of optimized YOLO v5 detection result on test 
dataset sample images. The value shown in the image is the 
Intersection over Union (IOU), which measures the correlation 
between true and predicted as an evaluation function. The IOU is 
between 0 and 1, with higher values being more relevant. Any 
prediction above 0.5 is usually considered correct. IOU, area of 
overlap/area of union.

FIGURE 5

A comparison of the AI models’ and the different-level 
pathologists’ errors using the Mean Absolute Error (MAE) factor. 
The optimized YOLO v5 model’s performance was compared 
with that of nine pathologists with different experience levels 
who made the test set diagnoses. JP is the junior pathologists, IP 
is the intermediate pathologists, SP is the senior pathologists, and 
AI is the improved YOLO v5 detection. The higher the MAE factor 
value, the worse the error in diagnosing HPCF. The senior 
pathologists (SP) have the highest detection accuracy for the 
indices, whereas the model takes second place. Significance is 
indicated with p-value ≤0.05 (*).
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optimization; the improved network can extract the detection 
object’s feature information more effectively, recognizing smaller 
objects better. The results showed that mAP significantly increased 
from 0.688 to 0.803 under the same training set, with an 
improvement of 16.72%.

The comparison between the optimized YOLO v5 model 
recognition and pathologist’s diagnosis is an important indicator 
of measuring the model’s clinical evaluation. This reflects the 
model’s validity, practical significance, and effect.

We concluded that coccoid detection accuracy using the 
optimized YOLO v5 model (3.25 MAE) is superior to that of junior 
pathologists (4.14 MAE), not inferior to that of intermediate 
pathologists (3.40 MAE), and approximately equal to that of 
experienced senior pathologists (3.07 MAE). The HPCF diagnosis 
accuracy largely depends on the pathologist’s experience. Therefore, 
similar morphology that is difficult to distinguish can 
be misdiagnosed by inexperienced junior pathologists who cannot 
clearly identify H. pylori morphological classifications. Compared 
with the “gold standard,” where each bacterium is labeled 
individually, there is a gap in HPCF diagnoses made by senior 
pathologists, suggesting that the randomly selected field of view 
interpretation method leads to some errors. The AI diagnostic 
system can observe complete slices and is not susceptible to external 
factors, enabling a fairly objective and qualitative pathological 
diagnosis. The results of this study show that the optimized YOLO 
v5 model is accurate and fast, reaching the level of senior pathologists, 
and can assist or replace the pathologist’s manual reading.

Conclusion

The application of AI models to HPCF diagnosis is of 
great clinical significance. Owing to the long cycle of training 
excellent pathologists, the imbalance between the strong 
demand for diagnosis and the pathologists’ scarce resources 
has become an important factor limiting HPCF diagnosis 
development and promotion. AI model accuracy can match 
that of senior pathologists and reduce the reliance on 
pathologists’ experience for HPCF diagnosis. Additionally, AI 
models assist pathologists in HPCF diagnosis. They are 
accurate, fast, and easy to use, reducing the pathologist’s 
burden and improving diagnosis efficiency, with a wide range 
of application prospects. Accurate, fast, and easy-to-use AI 
diagnostic tools can facilitate more HPCF detection in clinical 
practice and help physicians make the correct clinical 
decisions, promoting the development of personalized 
treatment for refractory H. pylori infection.
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