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The gut microbial dysbiosis is a risk of colorectal cancer (CRC) and some 

bacteria have been reported as potential markers for CRC diagnosis. However, 

heterogeneity among studies with different populations and technologies 

lead to inconsistent results. Here, we investigated six metagenomic profiles of 

stool samples from healthy controls (HC), colorectal adenoma (CA) and CRC, 

and six and four genera were consistently altered between CRC and HC or 

CA across populations, respectively. In FengQ cohort, which composed with 

61 HC, 47 CA, and 46 CRC samples, a random forest (RF) model composed 

of the six genera, denoted as signature-HC, distinguished CRC from HC with 

an area under the curve (AUC) of 0.84. Similarly, another RF model composed 

of the four universal genera, denoted as signature-CA, discriminated CRC 

from CA with an AUC of 0.73. These signatures were further validated in 

five metagenomic sequencing cohorts and six independent 16S rRNA gene 

sequencing cohorts. Interestingly, three genera overlapped in the two models 

(Porphyromonas, Parvimonas and Peptostreptococcus) were with very low 

abundance in HC and CA, but sharply increased in CRC. A concise RF model 

on the three genera distinguished CRC from HC or CA with AUC of 0.87 

and 0.67, respectively. Functional gene family analysis revealed that Kyoto 

Encyclopedia of Genes and Genomes Orthogroups categories which were 

significantly correlated with markers in signature-HC and signature-CA were 

mapped into pathways related to lipopolysaccharide and sulfur metabolism, 

which might be vital risk factors of CRC development. Conclusively, our study 

identified universal bacterial markers across populations and technologies as 

potential aids in non-invasive diagnosis of CRC.
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Introduction

Colorectal cancer (CRC) is a heterogeneous disease of the 
intestinal epithelium, which is one of the leading causes of cancer 
death worldwide. The causes of CRC are complex and varied. It 
has been shown that genetic factors account for only 10%–30% of 
the CRC risk and environmental factors play a significant role in 
causing CRC (Jasperson et al., 2010; Jie et al., 2017; Manson et al., 
2019). Human gut microbiota, which contains trillions of 
microorganisms, has been confirmed as an important 
environmental carcinogenic factor. Most CRCs develop from 
normal epithelium to colorectal adenoma (CA), and further 
develop into malignant tumors through accumulation of abnormal 
changes in oncogenes and tumor suppressor genes, and persistent 
imbalance of intestinal flora (Fearon and Vogelstein, 1990). Many 
studies have demonstrated that CRC patients are accompanied by 
gut microbiota dysbiosis (Zackular et al., 2014; Feng et al., 2015; 
Liang et al., 2020).

Meanwhile, the survival rate gradually decreases with the 
progress of CRC. According to the American Joint Committee on 
Cancer (AJCC), the 5-year survival rate of early CRC (stage II and 
below) is about 90%, while it is less than 10% for stage IV CRC 
patients. Hence the early diagnosis of CRC is crucial for the 
improvement of prognosis. Colonoscopy, a population-wide 
screening and prevention program, which is applied in many 
countries, needs many preoperative preparations and high cost. 
Fecal occult blood testing (FOBT) and carcinoembryonic antigen 
(CEA), currently the standard noninvasive screening tests (Levin 
et  al., 2008; Zavoral et  al., 2009), have limited sensitivity and 
specificity for CRC (Krzystek-Korpacka et al., 2013). Using fecal 
microbiota in CRC screening can serve as a non-invasive 
complement for early diagnosis of CRC.

Based on 16S rRNA gene sequencing and metagenome 
technologies, many fecal microbial markers of CRC have been 
identified (Feng et al., 2015; Yu et al., 2017; Chung et al., 2018; 
Liang et al., 2020; Lowenmark et al., 2020; Zhang et al., 2020). 
However, the reproducibility and the predictive accuracy of these 
microbial markers across cohorts remains unclear. Specially, the 
microbial compositions of samples vary greatly among 
populations (Feng et al., 2015; Yu et al., 2017; Dadkhah et al., 2019; 
Zhang et  al., 2020). Some studies have revealed cross-cohort 
microbial markers for CRC diagnosis using either metagenomic 
sequencing or 16S rRNA gene sequencing (Dai et  al., 2018; 
Thomas et  al., 2019; Wirbel et  al., 2019; Wu et  al., 2021b). 
Nevertheless, there are few microbial markers can be applied into 
both the two technologies. Therefore, it is urgent to identify 
universal microbial markers for early diagnosis of CRC, which are 
insusceptible to geographic and technical differences.

In this work, we  analyzed 705 fecal samples in six 
metagenomic sequencing cohorts and 799 samples in six 16S 
rRNA cohorts, which were collected from different regions and 
ethnics. Six and four genera were significantly different between 
CRC and healthy controls (HC) or CA group, respectively. 
Random forest (RF) models for distinguishing CRC from HC or 

CA group, denoted as signature-HC and signature-CA, 
respectively, achieved high accuracies (CRC versus HC: 
AUC = 0.84; CRC versus CA: AUC = 0.73) in the training cohort. 
The two RF models were further validated in five metagenomic 
cohorts and six 16S rRNA cohorts. Moreover, the two models were 
specific to CRC against other metabolic diseases, including type 2 
diabetes (T2D), obese, ulcerative colitis (UC) and Crohn’s disease 
(CD). Importantly, three genera (Porphyromonas, Parvimonas and 
Peptostreptococcus), which were overlapped in the two signatures, 
were with very low abundance in HC and CA, but sharply 
increased in CRC. A concise RF models on these three genera also 
distinguished CRC from HC or CA group with high accuracies. 
According to functional gene family analysis, 103 CRC-associated 
Kyoto Encyclopedia of Genes and Genomes Orthogroups (KO) 
categories which were significantly correlated with genera in 
signature-HC or signature-CA were mapped to malignancy-
associated pathways. These results have proven the validity of 
CRC-specific markers across populations and technologies, which 
would be an auxiliary method for non-invasive diagnosis.

Materials and methods

Sample characteristics and data 
preprocessing

Six public fecal metagenomic CRC datasets (Zeller et  al., 
2014; Feng et al., 2015; Vogtmann et al., 2016; Yu et al., 2017; 
Thomas et al., 2019) collected from Australia, China, France, 
Italy, Germany and United States were directly downloaded from 
curatedMetagenomicData Rpackage (Pasolli et al., 2017; accessed 
on September 9, 2021), and the taxonomic profiles were retrieved 
using the keyword “*metaphlan_bugs_list.stool*.” The 
MetaPhlAn2 (Truong et al., 2015) pipeline was used to infer the 
taxonomic abundance profiles from the presence and read 
coverage of clade-specific markers in microbiome samples. The 
HUMAnN2 (Abubucker et al., 2012) pipeline was used to define 
the pathway abundance profiles which were presented as the 
average abundance of the top 50% genes with high abundance in 
the pathway. Totally, 324 CRC, 116 CA, and 285 HC were 
included (Table 1). Meanwhile, six 16S rRNA gene sequencing 
datasets (Zackular et al., 2014; Zeller et al., 2014; Nakatsu et al., 
2015; Baxter et al., 2016; Deng et al., 2018; Yang et al., 2019) 
composing of 205 CRC, 301 CA, and 293 HC mainly from 
Canada, China, France and United States were downloaded from 
Sequence Read Archive (SRA),1 and Microbiome Biomarker 
CRC.2 Each the 16S rRNA gene sequencing dataset was uniformly 
processed as follows (Supplementary Figure S1): (i) downloaded 
the raw sequencing data; (ii) filtered out sequencing reads with 

1 https://www.ncbi.nlm.nih.gov/sra (Accessed on December 11, 2021).

2 http://www.mothur.org/MicrobiomeBiomarkerCRC (Accessed on April 

19, 2022).
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quality score Q > 25 and denoise reads into operational taxonomic 
units (OTUs; i.e., 97% exact sequence match) by VSEARCH 
(Rognes et al., 2016), which was wrapped in the Quantitative 
Insights Into Microbial Ecology 2 (QIIME2; Caporaso et  al., 
2010); (iii) assigned taxonomy classification based on the naive 
Bayes classifier using the classify-sklearn package against the 
Silva reference database3 (Quast et al., 2013). In order to apply 
our proposed bacterial biomarkers to both the metagenomic and 
16S rRNA gene sequencing data, all taxonomic profiles at the 
genus level were used for subsequent analysis.

Moreover, to identify the differential genera in all samples 
mixed from the six metagenomics datasets, de-batch processing 
by the MMUPHin Rpackage (Ma et al., 2020) was performed to 
avoid biases from different studies due to different taxonomic 
classifiers, reference databases, etc.

3 Release132, http://www.arb-silva.de.

Microbial community analysis

The microbial community analysis, including α-diversity and 
β-diversity, were calculated by “vegan” Rpackage (Oksanen et al., 
2020). The α-diversity was evaluated by Shannon index and 
richness. Kruskal-Wallis rank-sum test was used for differential 
test of α-diversity. Bray–Curtis distance of β-diversity was used for 
principal coordinate analysis (PCoA) and community discrepancy 
was test by permutational multivariate analyses of variance 
(PERMANOVA) with 999 permutations. Betadisper test was used 
to assess the degree of dispersion in different datasets.

Confounder analysis

Analysis of Variance (ANOVA) was used to quantify the effect 
of potential confounding factors relative to that of CRC on a single 
microbial species. The total variance within the abundance of a 

TABLE 1 The demographic information of CRC datasets.

Dataset Group (Number) Age (Mean) BMI (Mean) Sex (F%/M%) Technology Country

FengQ HC (61) 66.97 27.61 59.02/40.98 Shotgun Australia

CA (47) 66.49 27.96 48.94/51.06

CRC (46) 67.07 26.50 50.00/50.00

ZellerG HC (66) 58.77 24.72 50.00/50.00 Shotgun France/Germany

CA (42) 62.95 25.90 71.43/28.54

CRC (91) 64.66 26.05 59.34/40.66

YuJ HC (54) NA NA NA Shotgun China

CRC (74) NA NA NA

ThomasAM_2018a HC (24) 67.92 25.32 54.17/45.83 Shotgun Italy

CA (27) 62.89 28.00 59.26/40.74

CRC (29) 71.45 25.71 79.31/20.69

ThomasAM_2018b HC (28) NA NA NA Shotgun Italy

CRC (32) NA NA NA

VogtmannE HC (52) 63.23 25.35 71.15/28.85 Shotgun United States

CRC (52) 61.85 24.89 71.15/28.85

PRJNA464414 HC (33) NA NA NA 16S rRNA China

CRC (17) NA NA NA

PRJEB6070 HC (50) 62.32 24.66 48.00/52.00 16S rRNA France

CA (38) 62.29 24.95 68.42/31.58

CRC (41) 65.51 25.44 33.80/66.20

PRJNA280026 HC (61) NA NA NA 16S rRNA China

CA (57) NA NA NA

CRC (52) NA NA NA

PRJNA290926 CA (48) 62.1 26.4 33.3/66.7 16S rRNA United States

CRC (29) 60.3 28.3 48.3/51.7

Zackular HC (30) 55.3 26.6 63/37 16S rRNA Canada/United 

StatesCA (30) 61.3 27.4 40/60

CRC (30) 59.4 30.7 30/70

PRJNA430990 HC (119) NA NA NA 16S rRNA China

CA (128) NA NA NA

CRC (36) NA NA NA

https://doi.org/10.3389/fmicb.2022.1005201
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.arb-silva.de


Zhang et al. 10.3389/fmicb.2022.1005201

Frontiers in Microbiology 04 frontiersin.org

given microbial species was compared to the variance explained 
by disease status and the variance explained by the confounding 
factor using a linear model. Body mass index (BMI), one of 
potential confounders, with continuous values was converted to 
categorical data of lean/normal/overweight/obese according to 
conventional cutoffs (thin: <20; normal: 20–25; overweight: 
25–30; obese: >30).

Model construction and feature 
extraction

A two-sided Wilcoxon rank-sum test for microbes with 
differential abundance were applied at the phylum, genus and 
species levels, respectively. The direction of dysregulation was 
determined by the difference between the means of different 
groups. Then, the common different flora which had consistent 
dysregulated direction in three or two metagenomic datasets 
were extracted as the important features to construct RF models 
for distinguishing CRC from HC or CA, respectively. The 
training dataset FengQ was used to set two parameters of RF 
models (mtry and ntree), and the out-of-bag error rate was 
taken as a reference to determine the optimal combination. The 
AUC, accuracy, sensitivity, specificity and F-score were used to 
evaluate the performances of RF models. F-score was calculated 
as follow:

 
F score

Precision Recall

Precision Recall
− = ×

×
+

2

To assess the generalizability of microbial-based classifiers 
across samples with geographic and technical differences, both 
study-to-study transfer validation and leave-one-dataset-out 
(LODO) validation were performed. In study-to-study transfer 
validation, features were trained in one single cohort and 
assessed on all other cohorts. In LODO validation, one cohort 
was set as the test set, and the other cohorts were combined into 
the training set. A p < 0.05 was considered as significant unless 
otherwise stated.

Functional gene family analysis

Gene families determined by UniRef90 were mapped to KO 
database and were grouped into functional categories by HMP 
Unified Metabolic Analysis Network (HUMAnN3; Franzosa et al., 
2018). The conditioned two-sided Wilcoxon rank-sum test was 
used to estimate p-value for the abundance change of the KO 
categories from HC or CA to CRC in each cohort. Then, the 
common different KO categories which had consistent 
dysregulation direction in multiple metagenomic datasets were 
identified as the CRC-associated KO categories. Spearman 
correlation was applied to estimate the relationship between 
bacterial markers in signature-HC and signature-CA and 

CRC-associated KO categories. All statistical analyses were done 
by using the R 3.6.3.

Results

Overview of the microbial metagenomic 
profiles

First, microbiota diversity and microbial composition was 
carried out on a study-by-study. Kruskal-Wallis rank-sum test 
showed that significant differences in the richness were observed 
between the CRC and HC groups in four metagenomic sequencing 
datasets (FengQ, p = 4.80e−08; ThomasAM_2018b, p = 2.00e−03; 
VogtmannE, p = 0.01; YuJ, p = 1.00e−03, Supplementary  
Figure S2A). Comparing to the HC group, the richness was 
increasing in the CRC group. The Shannon index of α-diversity 
showed no significant difference between groups, while CRC 
increased slightly and reached to the edge of a significant level in 
FengQ (p = 9.10e−02, Supplementary Figure S2B). To display 
microbiome space between samples, β-diversity based on Bray–
Curtis distance was calculated by PERMANOVA. The results 
showed that the fecal microbiota compositions among groups 
were significantly different in ZellerG and YuJ (p = 1.00e−03, 
Supplementary Figure S3), moderately different in FengQ 
(p = 6.90e−02), and could be separated in VogtmannE (p = 0.12) 
and ThomasAM_2018a (p = 0.11).

Then, all samples in the six fecal metagenomic CRC datasets 
were pooled together to perform PCoA analysis to examine the 
biological and technical differences in across-cohorts. As shown 
in Figure 1A, the PERMANOVA test showed that the microbiota 
compositions among studies were significantly different 
(p = 1.00e−03). We further evaluated whether the difference was 
affected by the degree of dispersion in different datasets. The result 
showed that the center points of six datasets were very close in the 
space defined by PCoA, but the degree of dispersion of samples in 
different datasets was significantly different (betadisper test: 
p = 1.00e−03, Supplementary Figure S4). The results indicated that 
the spatial distribution of samples was the main reason for the 
remarkable results of PERMANOVA.

Meanwhile, we observed samples from the same study tended 
to cluster together. Different studies showed more significant 
statistical differences in PCoA1 and PCoA2 than that in different 
disease status, suggesting that the difference between datasets was 
greater than that between the disease status. In another word, 
study heterogeneity had a strong effect on β-diversity (Figure 1A), 
which was consistent with previous studies (Thomas et al., 2019; 
Wu et al., 2021b). Furthermore, the effect of study heterogeneity 
on microbiome composition was quantified and compared with 
other potential confounding factors (patient age, BMI, gender). 
The result also demonstrated that compared to other confounding 
factors, study heterogeneity was the main factor affecting the 
composition of microbial species (Figure  1B). Therefore, the 
subsequent analysis was separately performed in each dataset.
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Alterations of the taxonomic 
composition in CRC

To find the universal differential microbes for CRC diagnosis 
across cohorts, significant differential bacteria between CRC and 
HC or CA were identified at the phylum, genus and species levels, 
respectively. At the phylum level, the gut microbiota in HC, CA 
and CRC were all dominated by members of Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria and 
Verrucomicrobia (Figure  2A). No significant difference was 
observed in the composition of the flora among the groups in six 
metagenomic datasets (chi-square test, FengQ: p = 0.66, ZellerG: 
p  = 0.98, ThomasAM_2018a: p  = 0.18, ThomasAM_2018b: 
p = 0.95, VogtmannE: p = 0.99 and YuJ: p = 0.64). The phylum 
Proteobacteria and Fusobacteria had significantly increased 
abundance in CRC versus HC, while the phylum Firmicutes had 
significantly decreased abundance in CRC compared to that in 
HC and CA groups (Wilcoxon rank-sum test, p < 0.05, Figure 2B; 
Supplementary Tables S1, S2).

At genus level, there were 117 genera commonly detected in 
six cohorts. Using Wilcoxon rank-sum test with p < 0.05, 47, 30, 
29, 14, 13, and 12 differential genera were identified between CRC 
and HC groups in FengQ, ZellerG, YuJ, ThomasAM_2018b, 
VogtmannE and ThomasAM_2018a, respectively, of which 36 
genera were cohort specific, while 12 universal genera were 

consistently dysregulated in at least three cohorts (Figure 3A). 
Compared with HC, Anaerostipes and Eubacterium were 
significantly decreased in CRC, while Porphyromonas, 
Fusobacterium, Parvimonas, Peptostreptococcus, Gemella, 
Eikenella, Escherichia, Anaerococcus, Solobacterium and 
Morganella were significantly increased (Figure  3B; 
Supplementary Table S3). Similarly, 33, 13, and 9 differential 
genera were identified between CRC and CA groups in FengQ, 
ZellerG and ThomasAM_2018a, of which 39 genera were cohort 
specific, while 4 universal genera (Parabacteroides, Parvimonas, 
Peptostreptococcus and Porphyromanas) were consistently 
dysregulated in at least two cohorts (Figures  3A,C; 
Supplementary Table S4). Moreover, Fusobacterium, Parvimonas, 
Peptostreptococcus, Gemella and Porphyromanas were significantly 
increased as disease progressed in FengQ (Figure 3D). Similar 
results were observed in dataset ZellerG and ThomasAM_2018a 
(Supplementary Figure S5).

At species level, 107, 102, 81, 39, 35, and 22 species with 
distinguishable differential abundance were identified between 
CRC and HC groups in FengQ, ZellerG, YuJ, 
ThomasAM_2018b, VogtmannE and ThomasAM_2018a, 
respectively, of which 164 species were cohort-specific 
(Wilcoxon rank-sum test, p < 0.05, Figure 4A). Specially, 22 
universal species belonging to 18 genera were consistently 
dysregulated in at least three cohorts (Figure  4B; 

A B

FIGURE 1

Comparison of heterogeneity between different studies. (A) A strong influence of study heterogeneity on beta diversity. PCoA analysis of samples 
from six metagenomic sequencing studies based on Bray–Curtis distance showed the fecal microbiota composition was different among studies 
(p < 0.001) and groups (p < 0.001). Studies were color-coded and groups (HC, CA, and CRC) were indicated by different shapes. The upper-right and 
the bottom-left boxplots illustrated that samples were projected onto the first two principal coordinates broken down by study and disease status, 
respectively. (B) The associations of potential confounding factors of individual microbial species with patient geographic and technical factors. 
Variances explained by disease status (CRC versus CA or HC) were plotted against variances explained by different confounding factors, including 
age, gender and BMI. Each species was represented by a dot proportional in size to its abundance; For the confounder analysis, the BMI was split 
into lean/normal/overweight/obese according to cutoffs (thin: <20; normal: 20–25; overweight: 25–30; obese: >30).
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Supplementary Table S5). Anaerostipes hadrus, Eubacterium 
eligens and Eubacterium hallii were significantly decreased in 
CRC compared to that in HC group, while the other 19 
species, which were assigned as Peptostreptococcus anaerobius, 
Porphyromonas uenonis, Fusobacterium nucleatum, Gemella 
morbillorum, et., were significantly increased in CRC.

Similarly, 79, 26, and 55 species with distinguishable 
differential abundance were identified between CRC and CA 
groups in FengQ, ThomasAM_2018a and ZellerG, respectively, 
of which 122 species were cohort-specific (Wilcoxon rank-sum 
test, p < 0.05, Figure 4A; Supplementary Table S6). As shown in 
Figures 4C, 11 universal species belonging to 9 genera were 
consistently dysregulated in at least two cohorts. Coprococcus 
comes was significantly decreased in CRC compared to that in 
CA group, while the other 10 species, e.g., Anaerococcus 

obesiensis, P. uenonis, F. nucleatum, G. morbillorum, were 
significantly increased in CRC. Importantly, the pathogenic 
bacteria F. nucleatum, Peptostreptococcus stomatis, Parvimonas 
micra, Eikenella corrodens and Porphyromonas asaccharolytica 
were enriched in CRC group compared with HC and 
CA groups.

Moreover, the six metagenomic sequencing datasets were 
integrated together to investigate whether the universal 
differential microbes identified above can be  obtained in the 
mixed data from six metagenomic cohorts with 324 CRC, 116 
CA, and 285 HC samples. Using Wilcoxon rank-sum test with 
p < 0.05, 71 and 57 significantly differential genera were identified 
between CRC and HC or CA groups, respectively. Compared 
with HC, 23 genera, e.g., Anaerostipes, Faecalibacterium, 
Coprococcus and Eubacterium, were significantly decreased in 

A

B

FIGURE 2

Principal and significantly differential microbes at phylum level in six metagenomic sequencing datasets. (A) Relative proportions of top eight 
principal phyla in HC, CA, and CRC. (B) Alterations of top five phyla between CRC and HC (left) or CA (right). Red and blue indicated phyla were 
increased and decreased in the CRC group, respectively. p-value was calculated by Wilcoxon rank-sum test.
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CRC, while 48 genera, e.g., Porphyromonas, Fusobacterium, 
Parvimonas, Peptostreptococcus, Gemella, Eikenella, Escherichia, 
Anaerococcus, Solobacterium and Morganella, were significantly 
increased (Supplementary Table S7). Notably, 11 of 12 universal 
genera identified beforehand between CRC and HC were also 
presented in the mixed data, all of which had consistent 
dysregulated directions in the two types of analysis. Similarly, 
compared with CA, 24 genera were significantly decreased in 
CRC, while the other 33 genera were significantly increased 

(Supplementary Table S8). All the four universal genera 
identified beforehand between CRC and CA had consistent 
dysregulated directions in the mixed data. The results indicated 
that the universal differential bacteria separately identified from 
multiple datasets were consistently altered in CRC across 
different studies.

Conclusively, the microbial composition altered with disease 
progression and some microbiota with consistent alternations 
were observed across multiple cohorts.

A

B

C

D

FIGURE 3

Significantly differential microbes at genus level in six metagenomic sequencing datasets. (A) UpSet plot showed significantly differential genus 
between CRC and HC or CA. (B,C) Bubble plot showed universal differential genus between CRC and HC or CA. (D) Five genera that abundances 
were significantly increased with disease progressed at FengQ cohort. p-value was calculated by Wilcoxon rank-sum test.
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Identification of microbiological markers 
for CRC versus HC

Among the 12 universal genera with distinguishable 
differential abundance between CRC and HC groups, six 
genera (Anaerostipes, Porphyromonas, Fusobacterium, 
Parvimonas, Peptostreptococcus and Gemella) commonly 
detected by 16S rRNA gene sequencing data were identified as 

important microbiological markers for CRC versus HC. They 
were belonged to three phyla, Firmicutes, Bacteroidetes and 
Fusobacteria. In the training dataset FengQ, a RF model based 
on the six genera with optimal parameter combination for 
mtry = 1 and ntree = 400, named signature-HC, achieved an 
AUC of 0.84 for distinguishing CRC from HC samples (95% 
CI: 0.76–0.92, accuracy: 0.78, sensitivity: 0.61, specificity: 0.90 
and F-score: 0.70, Figure 5A). Then, signature-HC was tested 

A

B C

FIGURE 4

Significantly differential microbes at species level in six metagenomic sequencing datasets. (A) UpSet plot showed significantly differential species 
between CRC and HC or CA. (B,C) Bubble plot showed universal differential species between CRC and HC or CA. p-value was calculated by 
Wilcoxon rank-sum test.
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at the other five metagenomic cohorts. The achieved AUCs 
between the CRC and HC groups in ThomasAM_2018a and 
ThomasAM_2018b were 0.73 and 0.83 with a 95% CI of 0.60–
0.85 and 0.72–0.93, respectively. Similarly, the achieved AUCs 
in VogtmannE, ZellerG and YuJ datasets were 0.72 with a 95% 
CI of 0.63–0.82, 0.77 with a 95% CI of 0.69–0.93 and 0.87 with 
a 95% CI of 0.81–0.93, respectively.

In addition, both study-to-study validation and LODO 
validation were performed on the six metagenomic datasets (see 
Materials and methods for detail). As shown in Figure 5B, the 
AUC values ranged from 0.63 to 0.87, while the mean of AUC 
and the highest value was 0.76 and 0.87, respectively. 
Collectively, signature-HC could be applied to metagenomic 
data from different regions with different ethic, dietary intake 
and lifestyle.

Identification of microbiological markers 
for CRC versus CA

Similarly, among the 11 universal genera with 
distinguishable differential abundance between CRC and CA 
groups, four genera (Parabacteroides, Porphyromonas, 
Parvimonas and Peptostreptococcus) commonly detected by 
16S rRNA gene sequencing were used to construct a RF model 
to discriminate CRC from CA, named signature-CA. The RF 
model with optimal parameter combination for mtry = 1 and 
ntree = 400 achieved an AUC of 0.73 for distinguishing CRC 
from CA in FengQ cohort (95% CI: 0.62–0.83, accuracy: 0.72, 
sensitivity: 0.57, specificity: 0.87 and F-score: 0.67, Figure 5C). 
The achieved AUCs between the CRC and CA group in 
ZellerG and ThomasAM_2018a were 0.75 (95% CI: 0.67–0.83, 
accuracy: 0.68, sensitivity: 0.66, specificity: 0.71 and F-score: 
0.74) and 0.71 (95% CI: 0.57–0.85, accuracy: 0.70, sensitivity: 
0.59, specificity: 0.81 and F-score: 0.67). Moreover, the 
achieved AUC between stage I–II CRC and CA group in 
ZellerG was 0.77 (95% CI: 0.67–0.87, accuracy: 0.69, 
sensitivity: 0.67, specificity: 0.71 and F-score: 0.69). The 
performance was higher than CEA, which was with a 35% 
sensitivity for CRC patients (Chen et  al., 2021) and a 52% 
accuracy for early-stage CRC patients (Krzystek-Korpacka 
et al., 2013). As shown in Figure 5D, the AUC values of study-
to-study validation and LODO validation ranged from 0.53 to 
0.81, while the mean and the highest AUC values was 0.74 and 
0.81, respectively. These results indicated signature-CA could 
be  applied to metagenomic data from different regions for 
early detection of CRC.

In the mixed data from the six metagenomic sequencing 
cohorts, the signature-HC and signature-CA achieved AUCs 
of 0.78 with a 95% CI of 0.74–0.81 (Figure  5E) and 0.72 
with a 95% CI of 0.67–0.77 (Figure 5F), respectively. These 
results demonstrated that the two sets of universal 
microbiological markers were also robustly applied to the 
mixed data.

Comparison of predictive performance 
using previous models

The performances of signature-HC and signature-CA were 
compared with four models proposed in publications 
presented the data. The LASSO logistic regression model 
proposed by Zeller et al. and the RF model proposed by Feng 
et al. performed well in their own data. We cannot further 
evaluate their performances in other datasets due to the lack 
of specific parameters for these models. Another two models 
proposed by Yu et  al. and Thomas et  al. were analyzed in 
multiple datasets, and compared with our signatures. As 
shown in Supplementary Figure S6A, the AUC values of 
signature-HC in most of testing datasets were higher than the 
two models. Meanwhile, the average AUC value of 
signature-HC in study-to-study validation was slightly higher 
than the model proposed by Thomas et  al. 
(Supplementary Figure S6B). Model for discriminating CRC 
from CA was only proposed by Thomas et  al., and the 
comparison also showed that the average AUC value of 
signature-CA was higher (Supplementary Figure S6C). These 
results indicated better performances of our signatures for 
discriminating CRC from HC or CA.

Potential classification efficiency for 16S 
rRNA gene sequencing data

The two signatures were further validated on six 
independent 16S rRNA gene sequencing datasets. As shown in 
Figure  6A, the signature-HC achieved an AUC of 0.79  in 
PRJEB6070 with 41 CRC and 50 HC samples. The AUC values 
in Zackular, PRJNA464414, et. ranged from 0.73 to 0.89, with 
an average of 0.78. Similarly, the signature-CA distinguished 
CRC from CA in PRJEB6070 with an AUC of 0.76. The AUC 
values in Zackular, PRJNA290926, et. ranged from 0.66 to 0.77 
(Figure  6B). Notably, the signature-CA for distinguishing 
early-stage and late-stage CRC from CA in PRJNA290926 
achieved AUCs of 0.70 (95% CI: 0.55–0.85) and 0.89 (95% CI: 
0.80–0.98), respectively. These results demonstrated that the 
two signatures could be also robustly applied to 16S rRNA 
gene sequencing data.

The specificity of microbiological 
markers for CRC

Four datasets of patients who suffered from CD, UC, T2D and 
obese were downloaded from curatedMetagenomicData Rpackage 
and The Inflammatory Bowel Disease Multi’omics Database4 to 

4 https://ibdmdb.org/tunnel/public/summary.html (Accessed on August 

10, 2021).
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evaluate the specificity of signature-HC and signature-CA (shown 
in Table 2). The lowest AUC value was 0.46 for CD. As risk factors 
for CRC, the highest AUC values of CD and UC were 0.65 and 
0.61, respectively, which were also lower than that of CRC 
(Figure 6C). These results pointed out the microbiome markers of 
CRC that were distinct from that in other metabolism diseases.

Classification efficiency of three 
overlapping genera

Notably, three genera, Porphyromonas, Parvimonas and 
Peptostreptococcus, were overlapped in the two signatures 
(Figure 6D). As shown in Figure 3D and Supplementary Figure S5, 
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FIGURE 5

The performances of signature-HC and signature-CA across metagenomic data. (A) Performance of the signature-HC across six metagenomic 
sequencing cohorts. (B) The classification accuracy of signature-HC resulting from study-to-study transfer and LODO model. Values on the 
diagonal (black boxes) refer to the AUC values by training the model in the study of the corresponding row, while off-diagonal values refer to 
the AUC values by testing the model in the study of the corresponding column. The LODO rows refer to the AUC values obtained by the model 
on universal genera, using all but the study of the corresponding column and applying it to the study of the corresponding column. 
(C) Performance of the signature-CA across three metagenomic sequencing cohorts. (D) The classification accuracy of signature-CA resulting 
from study-to-study transfer and LODO model. (E) Performance of the signature-HC in the mixed data. (F) Performance of the signature-CA in 
the mixed data.
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the abundances of these three genera were very low in HC and 
CA, but were with sharp increases in CRC, indicating their crucial 
roles in the development of CRC. A concise RF model was built 
on these three common intestinal florae with optimal parameter 
combination for mtry = 1 and ntree = 600. In the training dataset 
FengQ, the concise RF model achieved an AUC of 0.87 for 
distinguishing CRC from HC samples (95% CI: 0.80–0.94, 
accuracy: 0.82, sensitivity: 0.65, specificity: 0.95 and F-score:0.77, 
Figure 6E). The achieved AUC value for distinguishing CRC from 

HC group in the other five metagenomic cohorts ranged from 0.68 
to 0.86. Furthermore, the achieved AUC value for distinguishing 
CRC from CA group in three metagenomic cohorts ranged from 
0.67 to 0.73, with an average of 0.70. In the six 16S rRNA gene 
sequencing datasets, the AUC of the concise RF model for 
distinguishing CRC from HC or CA samples ranged from 0.61 to 
0.80 (Figure 6F). To sum up, a stool-based diagnostic test using a 
limited number of intestinal florae would serve as a promising 
clinical tool.
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FIGURE 6

The performances of signature-HC and signature-CA across 16S rRNA gene sequencing data and three common genera shared by signature-HC 
and signature-CA. Performance of the signature-HC (A) and signature-CA (B) in six independent 16S rRNA gene sequencing datasets. 
(C) Performance of the signature-HC and signature-CA in other metabolism diseases. (D) Venn diagram for signature-HC and signature-CA. 
Performances of three overlapping genera in six metagenomic cohorts (E) and six 16S rRNA gene sequencing cohorts (F).
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Functional gene family associated with 
bacterial markers

A total of 4,238 KO categories were identified in six 
metagenomic cohorts. Using Wilcoxon rank-sum test, 741, 627, 
232, 152, 415, and 777 KO categories with distinguishable 
differential abundance were identified between CRC and HC 
groups in FengQ, ZellerG, YuJ, ThomasAM_2018b, VogtmannE 
and ThomasAM_2018a, respectively (p < 0.01). Among them, 102 
KO categories were enriched in CRC group in at least three 
cohorts, while 24 KO categories were depleted in CRC group. 
These KO categories were denoted as CRC-associated KO 
categories. Spearman correlation analysis showed that 48 
CRC-associated KO categories that were significantly associated 
with the six genera in signature-HC (p < 0.05), which were mapped 
to the KEGG pathways related to cancer occurrence and 
development, such as ko00310 (Lysine degradation), ko00540 
(Lipopolysaccharide biosynthesis; Song et  al., 2018), ko00920 
(Sulfur metabolism; Ward and DeNicola, 2019) etc. (Figure 7A). 
Comparing to the CA group, 441, 275, and 43 KO categories were 
with significantly differential abundance in CRC groups of FengQ, 
ZellerG and ThomasAM_2018a, respectively (p < 0.01), of which 
56 KO categories were enriched in the CRC group in at least two 
cohorts. Spearman correlation analysis showed that 55 KO 
categories were significantly associated with four bacterial markers 
in signature-CA, and 17 KEGG pathways with at least two KO 
categories were mapped, also including ko00310 (Lysine 
degradation) and ko00540 (Lipopolysaccharide biosynthesis), etc. 
(Figure  7B). These results indicated that bacterial markers in 
signature-HC and signature-CA might play important roles in 
functional alterations of CRC.

Microbial functional changes in CRC

The microbiome-based functional alterations on different 
status were examined. Using Fold-Change (FC > 5 or FC < 0.2) and 
Wilcoxon rank-sum test (p < 0.1), 10, 26, 4, 8, 2, and 13 pathways, 

which had significant differences between CRC and HC groups, 
were identified in FengQ, ThomasAM_2018a, ZellerG, 
ThomasAM_2018b, YuJ and VogtmannE, respectively. A total of 
four pathways were consistently dysregulated in CRC group in at 
least two datasets (Figure 7C). Similarly, 18, 9, and 7 pathways, 
which had significant difference between CRC and CA groups, 
were identified in ThomasAM_2018a, FengQ and ZellerG, 
respectively. Comparing with CA group, four pathways had 
consistent dysregulated direction in CRC group in at least two 
datasets (Figure 7D). In the two sets of dysregulated pathways, 
CMP-N-acetylneuraminate biosynthesis I  (eukaryotes) and 
L-lysine fermentation to acetate and butanoate were significantly 
increased in CRC group compared to both HC and CA groups.

Discussion

This study comprehensively assessed the alterations of gut 
microbiome from HC, CA to CRC across six metagenomic 
cohorts from different regions, and identified six and four 
universal genera with significantly different abundance between 
CRC and HC or CA at the genus level. Based on these universal 
genera, two RF models were constructed to distinguish CRC from 
HC or CA and validated in five metagenomic cohorts and six 16S 
rRNA gene sequencing datasets. The two RF models were also 
specific to CRC against metabolic diseases. Moreover, a concise 
RF model on three common intestinal genera (Porphyromonas, 
Parvimonas and Peptostreptococcus) distinguished CRC from HC 
or CA with AUC of 0.87 and 0.67, respectively, which would serve 
as a promising clinical tool for non-invasive diagnosis of 
CRC. Functional gene family analysis showed that CRC-associated 
KO categories were significantly related to bacterial markers in 
signature-HC and signature-CA and mapped to malignancy-
associated pathways.

It has long been reported that fecal bacteria could serve as 
biomarkers for non-invasive diagnosis of CRC, such as 
F. nucleatum, Escherichia coli, and Bacteroides fragilis (Yu et al., 
2017; Abdelrahman et  al., 2019; Shen et  al., 2021). However, 
previous and this work revealed that large variations of microbes 

TABLE 2 The demographic information of metabolic diseases datasets.

Dataset Group (Number) Age (Mean) BMI (Mean) Sex (F%/M%) Technology Country

PRJEB13679 nonIBD (7) 46.43 NA 42.86/57.14 16S rRNA United States

UC (88) 40.14 NA 57.47/42.53

CD (167) 35.84 NA 41.57/58.43

HMP2 nonIBD (429) NA NA 45.22/54.78 Shotgun United States

UC (459) 23.73 NA 61.22/38.78

CD (750) 19.75 NA 63.07/36.93

PRJDB9293 HC (23) 47.83 NA 0.00/100 16S rRNA Indonesia

Obese (27) 45.04 NA 0.00/100

T2D (25) 52.08 NA 0.00/100

QinJ HC (174) 41.67 23.03 51.73/48.27 Shotgun China

T2D (170) 53.52 23.67 37.65/62.35

https://doi.org/10.3389/fmicb.2022.1005201
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2022.1005201

Frontiers in Microbiology 13 frontiersin.org

existed among studies, indicating the necessity of cross-studies 
analysis. Metagenomic sequencing and 16S rRNA gene sequencing 
are the two most useful techniques for studying gut microbiota. 
For metagenomic sequencing, the coverage of taxonomy is highly 
dependent on reference genomes and possibly miss some species 
without known genomes or marker genes, which thus produce 
biases in relative abundance estimation. In 16S rRNA gene 
sequencing, microbiota usually annotated to the genus level and 
the abundance of microbiota is affected by sample concentration, 
PCR cycle number, amplification primers, etc. However, few 
microbial markers can be applied to both techniques. As far as 
we know, this is the first study to explore diagnostic biomarker for 

CRC in the metagenomic sequencing studies and 16S rRNA gene 
sequencing studies. The universal microbial biomarkers across 
populations and technologies in this study would be with great 
potential application in varieties of clinical scenarios.

Notably, three common intestinal genera (Porphyromonas, 
Parvimonas and Peptostreptococcus) in the signature-HC and 
signature-CA, were sharply increased from HC and CA to CRC 
at the genus level, which were all previously reported as oral 
pathogens. Increased Porphyromonas has been reported in CRC 
patients from different populations (Wang et al., 2012; Ahn et al., 
2013). Parvimonas and Peptostreptococcus have been also 
identified to be  associated with CRC (Flemer et  al., 2017; 
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FIGURE 7

Functional gene family and pathways analysis in metagenomic sequencing datasets. (A) Correlation network between six bacterial markers and 
differential KO categories between CRC and HC. (B) Correlation network between four bacterial markers and differential KO categories between 
CRC and CA. The correlation was evaluated by Spearman. Circle represented KO categories and diamond represented bacterial markers. Red or 
green edges represented negative or positive correlation. Nodes with the same color share the same KEGG pathway. Consistently dysregulated 
pathways between CRC and HC (C) or CA (D). The overlapped pathways were marked in red.
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Yu et  al., 2017). In addition, another oral pathogen, 
Fusobacterium, which was sharply increased in CRC samples in 
FengQ cohort, has been found to be enriched in stools samples 
from patients with CA and CRC (Marchesi et al., 2011; Castellarin 
et al., 2012; Kostic et al., 2013). These results suggested that an 
oral–gut translocation route was associated with CRC, which 
need further studies to confirm the relationship and elucidate the 
possible mechanism of these genera in CRC.

Functional gene family analysis revealed that bacterial markers 
in signature-HC and signature-CA were significantly correlated with 
most of the CRC-associated KO categories, suggesting that the 
changes of bacterial markers in CRC may lead to alterations in some 
functional gene family. Notably, Anaerostipes was negatively 
correlated with many KO categories in CRC, while other six bacterial 
markers in signature-HC and signature-CA were positively related 
with the CRC-associated KO categories. Moreover, we also found 
that the above KO categories were mapped into some malignancy-
associated pathways, such as pathways related to lipopolysaccharide 
(LPS), sulfur metabolism. LPS is a gram-negative bacterial antigen 
that activates TLR4 and induces immunosuppressive factors and 
apoptosis resistance, thereby promoting immune escape in human 
CRC cells (Li et al., 2014). Wu et al. have found that LPS accelerates 
glycolysis through the nuclear factor-κB/snail/hexokinase3 signaling 
axis to promote CRC metastasis (Wu et al., 2021a), and Liu et al. have 
found that activation of p38 mitogen-activated protein kinase 
pathway by LPS aggravates postoperative intestinal obstruction in 
CRC patients (Liu et  al., 2022). Collectively, LPS might play an 
important role in the progression of CRC. A variety of molecular 
species constituted with sulfur atoms are essential to oxidation/
reduction (redox) reactions to generate the energy and biomass for 
tumor growth (Ward and DeNicola, 2019).

The functional analysis showed that L-lysine fermentation to 
acetate and butanoate was significantly increased in CRC compared 
to HC and CA groups. Previous studies have found that butyrate, as 
the preferred energy source for colon cells, maintains mucosal 
integrity, reduces pro-inflammatory cytokines, and induces 
apoptosis in colorectal cancer cell lines (Klampfer et al., 2003; Inagaki 
and Sakata, 2005; Bordonaro et al., 2008; Lazarova et al., 2014). Gao 
et al. found that CRC patients was characterized by a reduction of 
butyrate-producing bacteria (Gao et al., 2021) and Weir et al. found 
that butyric acid was significantly higher in the feces of healthy 
individuals (Weir et al., 2013). However, conflict results are observed 
in recent studies. For example, Thomas et al. have found that the 
CRC-enriched microbiome is positively associated with metabolic 
pathways that convert different amino acids into L-lysine 
fermentation to acetate and butyrate pathway (Zeller et al., 2014; 
Thomas et al., 2019). In this study, L-lysine fermentation to acetate 
and butanoate was also found to be enriched in CRC. Nevertheless, 
other pathways for butanoate-producing, which jointly influenced 
the total amount of butanoate, such as pyruvate fermentation to 
butanoate and 2-methylbutanoate biosynthesis, were reduced in 
CRC (Supplementary Table S9). Moreover, the alteration in relative 
abundance of pyruvate fermentation to butanoate and 
2-methylbutanoate biosynthesis was higher than that in L-lysine 
fermentation to acetate and butanoate. Hence, the alteration of total 

amount of butanoate in CRC and the vital mechanism of butanoate 
synthesis needs to be further investigated.

Being a bioinformatics paper, there were some weaknesses in this 
study. First, animal or cell experiments are needed to confirm the 
impact of specific gut microbiota and pathways associated with 
CRC. Second, although we  identified the significantly different 
intestinal flora from hundreds of samples across multiple metagenomic 
and 16S rRNA gene sequencing datasets, prospective study with more 
samples is needed to validate the diagnostic values of the two 
signatures for CRC. Third, in order to obtain the universal microbial 
markers which can be applied to both 16S rRNA gene sequencing and 
metagenomic sequencing data, we  only constructed universal 
diagnostic markers at the genus level. More detailed taxonomic model 
at the species or functional gene family level is needed.

Conclusion

Two RF models based on six and four universal microbial 
markers were effective and robust to discriminate CRC from HC 
or CA in cross-cohorts, regardless of geographic and technical 
variance, which could serve as an effective clinical indicator for 
diagnosis of CRC.

Data availability statement

The 16S rRNA sequencing data can be found in online 
database. The names of the database and accession  
number(s) can be found below: SRA - PRJNA464414, PRJEB6070, 
PRJNA280026,PRJNA290926, PRJNA430990, Microbiome 
Biomarker CRC - Zackular. The metagenomic sequencing data 
can be found in curatedMetagenomicData Rpackage.

Author contributions

Study conception and design were performed by HZ, JW, and 
LA. Material preparation, public data collection, and analysis were 
performed by HZ. The first draft of the manuscript was written by 
HZ. Supervision and revision was done by LA and TC. All authors 
contributed to the article and approved the submitted version.

Funding

This work was supported by the Joint research program of 
health and education in Fujian Province (2019-WJ-32), the 
Natural Science Foundation of Fujian Province (2020J01600), the 
open project for Fujian Key Laboratory of Medical Bioinformatics 
(FKLMB-202001), the National Natural Science Foundation of 
China (no. 62102065), Joint Funds for innovation of science and 
Technology, Fujian province (2022J05055) and Fujian Medical 
University Research Foundation of Talented Scholars 
(XRCZX2022003).

https://doi.org/10.3389/fmicb.2022.1005201
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2022.1005201

Frontiers in Microbiology 15 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1005201/
full#supplementary-material

SUPPLEMENTARY FIGURE S1

The flow chart of this study.

SUPPLEMENTARY FIGURE S2

Boxplots of α-diversity in six metagenomic sequencing datasets. 
(A) Shannon index of α-diversity; (B) Simpson index; All boxplots represent 
the 25th–75th percentile of the distribution; the median is shown in a thick 
line at the middle of the box. Green, HC samples; Pink, CA patients; Blue, 
CRC patients; ***: p < 0.001, **: p < 0.01, *: p < 0.05, ns: p > 0.05.

SUPPLEMENTARY FIGURE S3

PCoA of samples based on Bray–Curtis distance in six metagenomic 
sequencing datasets. p-values of β-diversity based on Bray–Curtis 
distance were calculated with PERMANOVA.

SUPPLEMENTARY FIGURE S4

Dispersion of samples based on Bray–Curtis distance in six metagenomic 
sequencing datasets. (A) FengQ cohort. (B) ThomasAM_2018a cohort. 
(C) ThomasAM_2018b cohort. (D) VogtmannE cohort. (E) ZellerG cohort. 
(F) YuJ cohort.

SUPPLEMENTARY FIGURE S5

Genera that abundance were significantly altered with disease 
progressed. (A) ZellerG cohort. (B) ThomasAM_2018a cohort.

SUPPLEMENTARY FIGURE S6

The performances of signature-HC and signature-CA compared to other 
publications. (A) The average AUC of signature-HC resulting from study-
to-study transfer validation and the AUC values of the published models 
in six metagenomic datasets. (B,C) The boxplots of AUC values for study-
to-study transfer validation of signature-HC (signature-CA) and RF 
models proposed by Thomas et al. All boxplots represent the 25th–75th 
percentile of the distribution; the median is shown in a thick line at the 
middle of the box.
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