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Fertilizer application is the most common measure in agricultural production, 

which can promote the productivity of crops such as cucumbers, but the 

problem of excessive fertilization occurs frequently in solar greenhouses. 

However, the effects of fertilization levels on cucumber rhizosphere soil 

microbes and metabolites and their relationships are still unclear. In order to 

determine how fertilization levels affect the rhizosphere microenvironment, 

we set up four treatments in the solar greenhouse: no-fertilization (N0P0K0), 

normal fertilization (N1P1K1), slight excessive fertilization (N2P2K2), and 

extreme excessive fertilization (N3P3K3). The results showed that fertilization 

treatments significantly increased cucumber yield compared to no-

fertilization, but, the yield of N3P3K3 was significantly lower than that of 

N1P1K1 and N2P2K2. Fertilization levels had significant effects on rhizosphere 

microorganisms, and pH, NH4
+-N and AP were the main environmental 

factors that affected the changes in microbial communities. The total PLFAs, 

the percentages of fungi and arbuscular mycorrhizal fungi (AMF) were 

significantly reduced and bacteria percentage was significantly increased in 

N3P3K3 compared to other fertilization treatments. Differential metabolites 

under different fertilization levels were mainly organic acids, esters and 

sugars. Soil phenols with autotoxic effect under fertilization treatments were 

higher than that of N0P0K0. In addition, compared with soil organic acids and 

alkanes of N0P0K0, N2P2K2 was significantly increased, and N3P3K3 was not 

significantly different. This suggested that cucumber could maintain microbial 

communities by secreting beneficial metabolites under slight excessive 

fertilization (N2P2K2). But under extremely excessive fertilization (N3P3K3), 

the self-regulating ability of cucumber plants and rhizosphere soil was 

insufficient to cope with high salt stress. Furthermore, co-occurrence network 

showed that 16:1ω5c (AMF) was positively correlated with 2-palmitoylglycerol, 

hentriacontane, 11-octadecenoic acid, decane,4-methyl- and d-trehalose, 

and negatively correlated with 9-octadecenoic acid at different fertilization 

levels. This indicated that the beneficial microorganisms in the cucumber 

rhizosphere soil promoted with beneficial metabolites and antagonized with 
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harmful metabolites. But with the deepening of overfertilization, the content 

of beneficial microorganisms and metabolites decreased. The study provided 

new insights into the interaction of plant rhizosphere soil metabolites and soil 

microbiomes under the different fertilization levels.

KEYWORDS

excessive chemical fertilizer, rhizosphere, microbials PLFAs, metabolites, cucumber, 
solar greenhouse

Introduction

With the constantly increasing of greenhouse area in recent 
years, greenhouse vegetable cultivation has gradually become an 
important component and future trend in vegetable production 
(Zhang et al., 2017). However, some problems have also arisen 
accordingly. One of them is the overuse of fertilizer by farmers to 
increase agricultural output (Zhang et al., 2012). China accounts 
for about 9% of global cropland, but consumes more than 30% of 
the world’s fertilizers (Chen et al., 2019). Excessive fertilization can 
lead to soil salinization, acidification and groundwater pollution 
(Tang et al., 2018; Li et al., 2019; Bindraban et al., 2020; Chynoweth 
et  al., 2021). Muhammad et  al. (2008) and Yuan et  al. (2007) 
explained that the accumulation of salinity in soil not only has a 
direct negative impact on crops. It also has a significant inhibitory 
effect on microbial respiration, resulting in impaired microbial 
metabolic function and indirectly affecting crop growth. 
Inappropriate soil inputs had been reported to disturb the balance 
between beneficial microbes and metabolites and pathogenic 
microbes and harmful metabolites (Shen et al., 2010; Chen et al., 
2019). It was reported that soil microbial communities and soil 
metabolites composition were closely related to plant–soil health 
(Reinhold-Hurek et  al., 2015; Dong et  al., 2018). Therefore, 
research on how chemical fertilizer application affects soil 
microorganisms and metabolites in the rhizosphere is crucial for 
the long-term sustainability of solar greenhouses.

Soil microbes are key drivers of biogeochemical cycles, energy 
turnover, and plant growth (Mohanram and Kumar, 2019). 
Microbial diversity is one of the most important soil health 
indicators (Wang et al., 2020), it varies with plant, season, soil 
type, and fertilizer management mode (Garbeva et  al., 2004; 
Zhang et  al., 2012; Li et  al., 2021). The key responses of soil 
microbiota to fertilizers can be  revealed by analyzing 
microorganisms (Islam et al., 2011). The 10 year field trial results 
clearly show that long-term nitrogen fertilization affects soil pH, 
thereby significantly altering most dominant soil bacterial species 
(Ren et  al., 2020). As well as excessive phosphorus fertilizers 
reduced microbial diversity and significantly altered microbial 
community structures and compositions, phosphorus levels also 
interfered with the complexity of soil bacterial and fungal 
symbiosis networks (Cheng et  al., 2022). Moreover, soil 
metabolomics provides a window into microbial behavior, as the 

metabolites secreted by microbes and the residual decomposition 
products of microbes are the main components of the soil 
metabolome (Jones et al., 2014). Microbial metabolism includes 
many simultaneous anabolic and catabolic reactions that inform 
biochemical activities within the entire soil microbiota 
(Muhammad et al., 2008; Poeplau et al., 2016). Previous studies 
had shown that fertilization affects the diversity of soil microbial 
functions (Shen et  al., 2010; Hao et  al., 2020), and certain 
microbial metabolic processes, such as carbohydrate and amino 
acid metabolism (Li et al., 2021).

In addition to the metabolites secreted by microorganisms 
and the decomposition of microbial residues, root exudates of 
plants are also the main components of rhizosphere soil 
metabolites (Badri and Vivanco, 2009; Song et al., 2020; Smercina 
et al., 2021). Plant roots secrete a large number of low molecular 
weight and high molecular weight compounds into the 
surrounding soil, including sugars, organic acids, amino acids and 
other secondary metabolites. These rhizosphere sediments 
account for 10% of the plant net photosynthetically fixed carbon 
(Mohanram and Kumar, 2019). They are important carbon 
substrates for soil microorganisms near the roots (Wallace, 1994; 
Yuan et al., 2016), and as signaling molecules to influence the 
complex interactions between plants and rhizosphere microbes 
(Badri and Vivanco, 2009; Mohanram and Kumar, 2019; Phour 
et al., 2020). Plants can secrete root exudates and change root 
morphology to influence and recruit the specific microbial 
communities (Reinhold-Hurek et al., 2015; Dong et al., 2018). It 
was recently found that rhizosphere fungal community assemblage 
and species coexistence differ from bulk soils, caused by changes 
in root exudates under different nitrogen inputs (Wang et  al., 
2022). Therefore, understanding the effects of fertilizer usage on 
rhizosphere metabolism is helpful to further understand the 
effects of fertilizer on soil microbial community and its 
interactions with plants.

In order to clarify the effect of excessive NPK fertilization on 
soil microorganisms and metabolites, and to provide a basis for 
reasonable fertilization of cucumbers in solar greenhouse. In this 
study, the main cultivated crop in solar greenhouse, cucumber was 
used as the experimental material, and four fertilization levels 
were set to conduct pot experiments. The aim was to (1) elucidate 
the effect of excessive chemical fertilizer application on cucumber 
rhizosphere soil microbial PLFAs and metabolites in solar 
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greenhouse, and to (2) reveal the interaction between microbial 
communities and metabolites under different fertilization levels.

Materials and methods

Soil preparation and sampling

This experiment was carried out in a solar greenhouse 
(41°310 N–123°240E) of Shenyang Agricultural University, China. 
The cucumber variety was “Jinyou 30,” and the soil used in the 
experiment was garden soil that has never been planted with 
cucurbit vegetables. The soil chemical properties are as follow: 
pH = 7.21, soil organic matter (SOM) = 17.8 g kg−1, available N 
(AN) = 105 mg kg−1, available P (AP) = 112.8 mg kg−1, and available 
K (AK) = 121.5 mg kg−1, were determined by the Bao’s Method 
(Bao, 2000). According to the national survey and test results of 
vegetable fertilization (Li et al., 2019). Four fertilization levels were 
set in the pot experiment (each pot contained 14 kg air-dried soil), 
including no-fertilization (N0P0K0), normal fertilization 
(N1P1K1), slight excessive fertilization (N2P2K2), and extreme 
excessive fertilization (N3P3K3). The four treatments were 
implemented in a randomized design with five replications. The 
specific fertilization amounts were shown in Table 1. Except for 
the fertilization levels, other cultivation and management 
measures were the same.

The first crop was planted in September 2017, the second in 
March 2018, and the third in September 2018. In this experiment, 
samples were collected from the five replicates for each treatment 
after the third crop. Leaf, stem, and root of cucumber were 
separated and dried in an oven at 65°C for 48 h until reaching a 
constant weight for measuring dry weights. The fourth leaf of 
cucumber was collected for determining photosynthetic pigments 
according to Lichtenrhaler’s method (Lichtenthaler and Welbum, 
1983). Yield was the total fruit fresh weight per plant during 
cucumber growth. In this study, we took out the entire root system 
from the pot, after removing the bulk soil around the root system, 
we use a brush to gently collect the soil attached to the cucumber 
root. After picking out the plant residues, the soil was sieved 
through a 2 mm mesh and divided into three subsamples. The first 
subsample was freeze-dried and stored at −80°C for microbial 
PLFAs and metabolites measured, the second subsample was 
placed at 4°C to measure soil enzymes activities, and the third 
subsamples was air-dried to determine the soil chemical properties.

Soil chemical properties and enzymes 
activities determination

Soil pH (soil:H2O 1:2.5) was measured with pH meter 
(sartorius, Germany). SOM was determined by potassium 
dichromate volumetric method. AP was measured by 
molybdenum blue spectrophotometry method. AK was 
determined by atomic adsorption spectrophotometer. The total N 
(TN) was measured by Kjeldahl method. After the soil digestion 
with HNO3, HCl and HF, total phosphorus (TP) was determined 
with an ultraviolet spectrophotometer and total potassium (TK) 
was determined with atomic absorption flame spectrophotometer 
(Bao, 2000). NH4

+-N and NO3
−-N were extracted with 1 mol·L−1 

KCl and measured using a continuous colorimetric flow system 
(Skalar SAN++ system, Netherlands) (Zhou et al., 2010). Urease 
was measured by indophenol blue colorimetric method. 
Polyphenol oxidase was determined by iodine titration and 
neutral phosphatase activities were determined by phenyl 
disodium phosphate colorimetry (Guan, 1986; Zhang et al., 2011).

PLFA analysis

The microbial PLFAs were measured according to previous 
methods (Bossio, 1998; Briar et  al., 2011). Briefly, lipids were 
extracted from 8 g of freeze-dried soil using a mixed extract 
(phosphate buffer:chloroform:methanol mixture, 0.8:1:2, v/v/v), 
and separated PLFAs from neutral lipids and glycolipids fatty acids 
using a SPE silica column (Supelco Inc, Bellefonte, PA). Using 19:0 
methyl ester as internal standard. PLFAs were measured using gas 
chromatograph (Agilent 6850 Series, USA) equipped with the 
Sherlock microbial identification system (MIDI Inc., Newark, 
USA). Specific PLFA fingers could represent specific microbial 
communities, and the classification results of PLFAs were shown 
in Supplementary Table S1 (McKinley et al., 2005; Aciego Pietri 
and Brookes, 2009; Bach et al., 2010).

Soil metabolite profiling analysis

The soil metabolite extraction method was modified 
according to Song et al. (2020). Briefly, 1 g freeze-dried soil 
was placed in 5 ml Eppendorf tube, added 1 ml 
methanol:H2O = 3:1 (v/v), 1 ml ethyl acetate, and 10 μl 
0.5 mg ml−1 adonitol dissolved in deionized water (internal 
standard) sequentially. Samples were homogenized at 45 Hz 
for 4 min and sonicated in ice water for 5 min. Then 
centrifuged at 12000r for 15 min at 4°C. All the supernatants 
were dried completely in vacuo at 28°C, and then dissolved in 
60 μl of methoxylamine hydrochloride (15 mg ml−1 in pyridine) 
followed by 30 min of incubation at 80°C. Then, 80 μl of 
BSTFA (with 1% TMCS) was added to each sample and 
incubated for 90 min at 70°C. Finally, The derivatized sample 
was analyzed using GC–MS (7890A-5795C, Agilent, Palo Alto, 

TABLE 1 The amount of fertilizer used in the experiment treatments.

Treatment N (g·plant−1) P2O5 
(g·plant−1)

K2O 
(g·plant−1)

N0P0K0 0.00 0.00 0.00

N1P1K1 4.30 4.00 4.38

N2P2K2 8.60 8.00 8.75

N3P3K3 12.90 12.00 13.13
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Calif., USA) system equipped with Agilent HP-5MS column 
(30 m × 250 μm × 0.25 μm). The injection volume was 1 μl, the 
helium gas flow rate was 1 ml min−1. The injector temperature 
and ion source temperature were at 250 and 230°C, 
respectively. The oven program was as follows: the initial 
temperature was kept at 50°C for 2 min, raised to 120°C at a 
rate of 5°C min−1, then hold for 2 min at 120°C, increased to 
180°C at a rate of 6°C min−1 and hold for 2 min, and finally 
increased to 250°C at a rate of 4°C min−1 and hold for 12 min.

The quality control (QC) sample was prepared by pooling 
10 μl aliquots of all samples to check the stability of the instrument 
throughout the analysis. Compound identification was performed 
by mass comparison with NIST 08 (http://www.nist.gov) mass 
spectrometry library. The detailed classification information of 
metabolites was shown in Supplementary Table S2.

Statistical analysis

Significant differences in plant growth parameters, soil 
chemical properties, soil enzymes activities, soil microbial PLFAs 
and relative abundance of classified soil metabolites among 
fertilization treatments were examined using one-way analysis of 
variance (ANOVA) and mean values were compared with 
Duncan’s multiple range test (p < 0.05) using the SPSS version 19.0 
software package (SPSS, Inc., Chicago, IL, United States). The 
histograms were drawn using origin 2019b. The partial least-
square discriminant analysis (PLS-DA) based on metabolomics 
data were performed using SMICA-P software (version 14.0). The 
differential metabolites were selected by a variable importance 
(VIP) > 1 and p < 0.05 (Jia et al., 2019). Using vegan (Oksanen 
et  al., 2013) and ggplot2 (Wickham, 2011) packages to draw 
redundancy analysis (RDA) and heatmap based on microbial 
PLFAs data in R v.4.1.0. The correlation and visualization between 
microbial PLFAs and differential metabolites were performed 
using R and Cytoscape 3.7.2 software.

Results

Plant growth

Different fertilization levels had an obvious effects on 
cucumber plant morphology (Figure  1A). Compared with 
no-fertilization, fertilization led to a significant increase in 
cucumber yield, and the yield of N1P1K1 and N2P2K2 were 
significantly higher than that of N3P3K3 (Figure 1B). Fertilization 
significantly increased the chlorophyll contents in leaves, and the 
chlorophyll a under N2P2K2 treatment and the chlorophyll b 
under the N2P2K2 and N3P3K3 treatments were significantly 
higher than those under the other treatments (Figure  1C). In 
addition, the plants dry weights under fertilization treatments 
were significantly higher than those under no-fertilization 

treatment. However, from N1P1K1 to N3P3K3 treatments, leaf 
and root dry weights decreased significantly overall (Figure 1D).

Soil chemical properties and enzymes 
activities

Soil pH decreased significantly, and contents of NH4
+-N, 

NO3
−-N, AP, AK, TN, TP and TK significantly increased with the 

increase of chemical fertilization. In addition, the SOM contents 
under N3P3K3 treatment were significantly higher than those 
under the N0P0K0 and N1P1K1 treatments (Table 2).

The effect of different fertilization levels on soil enzyme 
activities were shown in Figure  2. The activity of polyphenol 
oxidase decreased first and then increased with the fertilization 
rates. Among the four treatments, the activity of polyphenol 
oxidase in N1P1K1 was the lowest and that in N2P2K2 was the 
highest (Figure 2A). With the increase of fertilization, the activities 
of urease and neutral phosphatase both increased first and then 
decreased significantly, and the highest points of enzyme activities 
were N2P2K2 and N1P1K1, respectively (Figures 2B,C).

Soil microbial community structure

In this study, total PLFAs first increased and then decreased 
with fertilization rate, and among the four fertilization treatments, 
total PLFA was significantly highest under N1P1K1 and lowest 
under N3P3K3 (Table  3). The percentage of bacteria was 
significantly higher under N3P3K3 treatment than other 
treatments. The percentages of fungi and arbuscular mycorrhizal 
fungi (AMF) were significantly lower under N3P3K3 treatment 
than other treatments. In addition, the percentages of 
actinomycetes under N1P1K1 and N2P2K2 treatments were 
significantly higher than those under N0P0K0 and N3P3K3 
treatments (Table  3). A total of 22 PLFAs were detected in 
rhizosphere soils under different fertilization gradients 
(Figure  3A). Amongst them, the relative abundance Gram-
negative bacteria (16:0, 18:1ω7c, 18:1ω5c and 16:1ω7c), Gram-
positive bacteria (i15:0, i17:2ω9c, cy19:0, a15:0 and i16: 0), 
actinomycetes (10Me16:0), and fungi (18:1ω9c, 16:1ω5c) were all 
more than 3%, and they accounted for 82.67–83.17% of the total 
PLFAs. Notably, the relative abundances of 16:1ω5c, 18:1ω7c and 
18:1ω9c decreased with increasing fertilizer application 
(Figure 3A).

RDA showed that no-fertilization and fertilization treatments 
were clearly distinguished along the first axis with described 
55.75% of variations in the microbial PLFAs. Furthermore, the 
microbial PLFAs of N1P1K1 and N2P2K2 treatments were 
clustered together, and along the second axis which described 
14.61% of variations significantly distinguished with the N3P3K3 
treatment (Figure 3B). With the increment of fertilization, the pH 
(p = 0.001) decreased significantly, the NH4

+-N (p = 0.0464) and 
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AP (p = 0.016) increased significantly, which had the obviously 
effects on the changes of microbial communities (Figure 3B).

Soil metabolites

A total of 69 metabolites were detected and identified in all 
treatments, the specific information of soil metabolites listed in 

Supplementary Table S2. The PLS-DA score plot showed the soil 
metabolites under four fertilization levels were clearly 
distinguished, the first and second axis, respectively, described 
17.8% and 14.1% of variations in the metabolites (Figure  4), 
Metabolites were divided into 10 categories according to their 
molecular structures (Figure 5A). Soil sugars and esters contents 
were significantly lowest under N3P3K3 treatment than other 
treatments. The content of organic acids of N2P2K2 treatment was 

A B

C D

FIGURE 1

The effects of different fertilization levels on (A) plant images, (B) cucumber yields, (C) leaf photosynthetic pigments, and (D) plant dry weights. 
Values are means ± SEM (n = 5). Different letters above the bars indicate statistically significant differences at p < 0.05.

A B C

FIGURE 2

The effects of different fertilization levels on soil enzymes activities. Values are means ± SEM (n = 5). Different letters above the bars indicate 
statistically significant differences at p < 0.05.
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significantly higher than those of N0P0K0, N1P1K1 and N3P3K3 
treatments. The content of alkanes under N2P2K2 treatment was 
significantly higher than those under N0P0K0 and N1P1K1 
treatments. In addition, phenols and nitriles contents were 
significantly higher under fertilization treatments than N0P0K0 
treatment, and others content were significantly higher under 
N3P3K3 treatment compared to N0P0K0 treatment (Figure 5A).

The relative abundance of differential metabolites among four 
fertilization treatments were shown in heatmap (Figure 5B). In 
our study, the main differential metabolites were organic acids, 
esters, sugars, etc. Specifically, the relative abundances of 
formamide, N,N-diethyl-, octanoic acid, decane,4-methyl- and 
dibutyl phthalate were gradually increased, while the relative 

abundances of d-trehalose, 2-palmitoylglycerol and 
2-methyloctacosane were gradually down-regulated with 
fertilization addition rates (Figure 5B).

Correlations between the soil 
metabolism and microbial PLFAs

To further elucidate the relationship between microbial PLFAs 
and metabolites under different fertilization levels, a correlation 
network was constructed (Figure 6). There were more negative 
correlations than positive correlations between soil microbial PLFAs 
and differential metabolites (22 positive correlations and 27 negative 

TABLE 2 The effects of different fertilization levels on soil chemical properties.

Treatment pH NH4
+-N NO3

−-N AP AK TN TP TK SOM

(mg·kg−1) (mg·kg−1) (mg·kg−1) (mg·kg−1) (g·kg−1) (g·kg−1) (g·kg−1) (g·kg−1)

N0P0K0 7.31 ± 0.01a 4.99 ± 0.23c 4.99 ± 0.56d 39.63 ± 0.92d 106.47 ± 5.54c 1.39 ± 0.01b 0.69 ± 0.05d 14.96 ± 0.21c 16.29 ± 0.06b

N1P1K1 7.19 ± 0.02b 9.06 ± 1.16bc 47.26 ± 5.20c 84.42 ± 2.29c 138.73 ± 4.53c 1.39 ± 0.02b 1.11 ± 0.09c 17.36 ± 0.36ab 16.21 ± 0.19b

N2P2K2 7.09 ± 0.04c 12.20 ± 1.74b 142.14 ± 6.64b 129.38 ± 4.86b 269.95 ± 22.68b 1.40 ± 0.01b 1.36 ± 0.02b 16.95 ± 0.48b 16.39 ± 0.13ab

N3P3K3 6.81 ± 0.04d 35.54 ± 1.80a 169.64 ± 6.73a 162.27 ± 5.82a 339.17 ± 19.44a 1.52 ± 0.01a 1.74 ± 0.05a 18.37 ± 0.34a 16.78 ± 0.10a

Values are means ± SEM (n = 5). Different letters between all treatments indicate statistically significant differences at p < 0.05.

A B

FIGURE 3

The effects of different fertilization levels on soil microbial communities. (A) Heatmap of relative abundance of microbial PLFAs, reddish color 
indicates increased metabolites content while bluish color indicates decreased metabolites content. (B) Redundancy analysis (RDA) of the 
rhizosphere microbial PLFAs with soil chemical properties, Significant variables via forward selection are labeled with asterisk (**, and * represent 
p < 0.01, and 0.05, respectively).
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correlations). The most relevant metabolites with microbial PLFAs 
were oleamide, phosphoric acid and decane,3,8-dimethyl. The 
microbial PLFAs closely related to metabolites were 18:1ω9c, 

18:1ω5c, 16:1ω5c and i17:2ω9c. Specifically, 18:1ω9c was positively 
correlated with decane,3,8-dimethyl-, 11-octadecenoic acid, 
benzaldehyde,3,5-dimethyl- and dibutyl phthalate, and negatively 
correlated with heptadecanenitrile, O-toluic acid, octanoic acid, 
decane,4-methyl-, acetamide,N,N-diethyl-, oleamide and hexanoic 
acid. 18:1ω5c was positively correlated with heptadecanenitrile, 
O-toluic acid and octanoic acid, and negatively correlated with 
oleamide, hexadecane,7,9-dimethyl- and decane,3,8-dimethyl-. 
i17:2ω9c was positively correlated with 11-octadecenoic acid and 
heneicosane, and negatively correlated with formamide,N,N-
diethyl-, dibutyl phthalate, oleamide and decane,3,8-dimethyl-. And 
16:1ω5c was positively correlated with 2-palmitoylglycerol, 
hentriacontane, 11-octadecenoic acid, decane,4-methyl- and 
d-trehalose, and negatively correlated with 9-octadecenoic acid.

Discussion

Appropriate nutrient inputs in crop production systems can 
help to increase crop yields. It has been reported that at least 30 to 

FIGURE 4

The partial least squares-discriminant analysis (PLS-DA) of soil 
metabolites under different fertilization levels.

A B

FIGURE 5

(A) Relative abundance of classified metabolites under different fertilization levels. Values are means ± SEM (n = 5). Different letters above the bars 
indicate statistically significant differences at p < 0.05. (B) Heatmap of differential metabolites under different fertilization levels, reddish color 
indicates increased metabolites content while bluish color indicates decreased metabolites content, * represent differential metabolites for three 
fertilization treatments compared to no-fertilization (VIP > 1 and p < 0.05).
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50% of crop yield can be  attributed to commercial fertilizer 
nutrient inputs (Stewart et al., 2005). In this study, the yields of 
N1P1K1 and N2P2K2 were significantly increased by 5.69- and 
5.40-fold compared to N0P0K0, respectively (Figure 1). Chemical 
fertilizers are frequently applied in much bigger amounts than 
crops are actually consumed to improve crop yields. This resulted 
in excess of N, P and K in the soil, which could cause soil obstacles 
and affect crop productivity (Dong and Lin, 2020). The results of 
this study are consistent with this, the cucumber yield of N3P3K3 
was much lower than those of N1P1K1 and N2P2K2 (Figure 1).

Excessive fertilization led to soil nutrient accumulation and 
soil acidification (Table  2). In addition, polyphenol oxidase 
activity of N2P2K2 was significantly higher than other fertilization 
treatments (Figure 2A). Polyphenol oxidase is common redox 
enzyme related to decomposing toxic substances in soil, and plays 
a role in soil environmental remediation (Fioretto et al., 2000; 
Borowik et al., 2014; Grosso et al., 2016). It was reported that in 
addition to adversely affecting the soil, excessive fertilization could 
stimulate some self-healing abilities of soil, but this ability 
decreased with the severity of excessive fertilization. Urease and 
phosphatase were common indicators that were used to evaluate 
the ability of microorganisms to utilize nitrogen and phosphorus 

(Adetunji et  al., 2017). The urease and neutral phosphatase 
activities under fertilization treatments were significantly higher 
than under N0P0K0 treatment (Figures  2B,C), this might 
be caused by the low soil nutrient content of N0P0K0 treatment. 
However, the activities of urease and neutral phosphatase of 
N3P3K3 were significantly lower than those of N2P2K2 and 
N1P1K1 treatments, indicating that the soil nutrient utilization 
ability would decrease under excessive fertilization.

Fertilizer addition had a significant effect on rhizosphere 
microbial PLFAs (Figure  3A). Total PLFAs of N3P3K3 were 
significantly lower than other treatments (Table 3). This might 
be related to soil acidification and nitrate accumulation caused by 
excessive fertilization (Table 2; Figure 3B). It was consistent with 
previous studies that soil acidification and high salinity stress 
could negatively impact the composition and function of soil 
microbial communities, leading to the attenuation of microbial 
biomass (He et al., 2007; Kamble et al., 2014; Wei et al., 2017; 
Becker et al., 2020). The majority of bacteria were better suited to 
nutrient-rich and highly available carbon sources, while fungus 
appeared to be more capable of utilizing stubborn carbon sources 
(He et al., 2007; Grosso et al., 2016). Accordingly, as fertilizer input 
increased, the percentage of bacteria increased, while the 

FIGURE 6

Co-occurrence network of the microbial PLFAs and differential metabolites under different fertilization levels. A connection indicates a strong 
correlation (spearman correlation analysis, p < 0.05), the stronger the spearman correlation, the thicker the line. The size of each node is 
proportional to the number of connections, the blue and red lines indicate negative and positive relationships, respectively.

TABLE 3 The effects of different fertilization levels on soil total PLFA and percentage of microbial PLFAs.

Treatment Total PLFA 
(nmol·g−1 soil)

Bacteria (%) Gm+ (%) Gm− (%) Fungi (%) AMF (%) Actinomycetes (%)

N0P0K0 125.13 ± 3.05b 73.35 ± 1.55b 41.95 ± 3.07b 31.39 ± 1.76ab 6.62 ± 0.48a 3.95 ± 0.36a 13.15 ± 0.65b

N1P1K1 143.08 ± 3.37a 72.20 ± 0.72b 39.04 ± 0.54b 33.16 ± .79a 6.63 ± 0.23a 3.54 ± 0.22a 15.23 ± 0.37a

N2P2K2 120.55 ± 4.63c 71.62 ± 0.41b 39.57 ± 0.49b 32.05 ± 0.45ab 6.56 ± 0.12a 3.65 ± 0.14a 15.89 ± 0.21a

N3P3K3 96.14 ± 7.99d 76.92 ± 1.63a 48.27 ± 3.01a 28.65 ± 1.44b 4.66 ± 0.42b 2.19 ± 0.35b 12.54 ± 1.09b

Values are means ± SEM (n = 5). Different letters between all treatments indicate statistically significant differences at p < 0.05. AMF: arbuscular mycorrhizal fungi.
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percentage of fungi decreased (Table  3). In addition, the 
percentage of AMF was significantly lower under N3P3K3 
treatment than other treatments (Table 3). AMF is a ubiquitous 
soil microorganism that can form a mutualistic symbiotic 
relationship with plant roots, transferring immobile phosphorus 
resources from great distances to the vicinity of roots (Lin et al., 
2012). However, in the case of nutrient sufficiency or even overuse, 
plants do not need to rely on AMF symbiosis to obtain nutrients, 
so the relative abundance of AMF decreases with the amount of 
fertilization (Table 3). In the study, the relative abundances of 
16:1ω5c, 18:1ω7c, 18:1ω9c decreased with increasing fertilization 
rates, suggesting that they could serve as main microbial markers 
sensitive to excessive fertilization (Figure 3A). Similarly, 18:1ω7c 
(gram-negative bacteria) has been reported to respond negatively 
to nitrogen addition (Liu et al., 2015).

Soil metabolites are substances produced by plant 
photosynthesis, secreted by roots into the rhizosphere soil, and 
transformed by soil microbial communities. Metabolites play 
important roles in regulating both plant growth and soil microbial 
communities (Son et al., 2016; Lu et al., 2022). Previous studies 
have shown that different fertilization levels have significant 
effects on soil rhizosphere metabolite profiles (Figure  5). 
Fertilization affects the root morphology and root exudates of 
grassland plants to improve plant fitness (Lemanski and Scheu, 
2014). Phenols are generally considered to be  highly active 
autotoxins. It has been reported that the accumulation of phenols 
in soil can inhibit the growth and development of plants, which 
are among the key reasons for continuous cropping obstacles 
(Deng et  al., 2017; Wu et  al., 2017). In the study, soil phenol 
contents were higher under fertilization treatments than that 
under no-fertilization treatment (Figure  5A), elucidating that 
fertilizer inputs might accelerate the progression of continuous 
cropping obstacles. In addition, compared with soil organic acids 
and alkanes of N0P0K0, N2P2K2 was significantly increased, and 
N3P3K3 was not significantly different (Figure  5A). Previous 
report suggested that the secretion of organic acids might be a 
strategy for plants to recruit beneficial microorganisms in the root 
zone in response to high N input (Chen et al., 2019). Cucumbers 
tend to increase disease resistance by secreting more organic acids 
to aggregate beneficial microorganisms (Wen et al., 2020). Alkanes 
could fight microbial pathogens and inhibit the reproduction of 
pathogenic bacteria (Lu et al., 2022). Plants adapt to biotic and 
abiotic stresses by altering their root-secreted chemicals to 
aggregate health-promoting microbiomes. This so-called “cry-for-
help” hypothesis provides an explanation for the feedback 
response of rhizosphere soils to stress (Rolfe et  al., 2019). 
Therefore, it was speculated that organic acids and alkanes might 
play a key role in recruiting rhizosphere growth-promoting 
bacteria (PGPR) and affecting the microbial communities to 
alleviate the stress of slight excessive fertilization (N2P2K2). 
However, in extreme excessive fertilization (N3P3K3), the self-
regulation of plants and soils might no longer be able to cope with 
high salinity stress. Because of high fertilizer input, the 
underdeveloped root system of crops communicates less efficiently 

with soil microbial communities. And in the case of poor soil 
quality, beneficial metabolites in the rhizosphere soil are more 
likely to be hijacked by parasitic microorganisms and arthropods 
(Rolfe et  al., 2019). In addition, it was worth noting that the 
content of dibutyl phthalate (DBP) was up-regulated and the 
content of d-trehalose was down-regulated with fertilizer addition 
levels (Figure  5B). DBP might threaten the stability of soil 
microbial communities and functions, sustainable development 
of agriculture and human health (Xu et  al., 2008). Extensive 
application of chemical fertilizers and pesticides in agriculture 
might lead to the accumulation of DBP in soil (He et al., 2015). 
Trehalose as a protective agent could positively affect plant growth 
and overcome the adverse effects of salt stress (Jain and Roy, 2009; 
Sadak et al., 2019). However, with the increase of fertilizer input, 
trehalose content also decreased, which might be related to the 
decrease in the abundance of nitrogen-fixing microorganisms 
capable of synthesize trehalose with higher fertilizer application 
(Garg and Chandel, 2011).

The correlation between rhizosphere microorganisms and 
metabolites is very important for the homeostasis of soil 
environment. In the study, it was found that there were more 
negative correlations than positive correlations between 
microorganisms and differential metabolites under different 
fertilization levels (Figure 6). Because rhizosphere metabolites are 
the most easily consumed and utilized carbon sources by 
microorganisms (Yuan et  al., 2016). In this study, 18:1ω9c, 
18:1ω5c, 16:1ω5c and i17:2ω9c in rhizosphere microbial PLFAs 
were more closely related to metabolites under different 
fertilization levels (Figure  6). Notably, 16:1ω5c (AMF) is a 
beneficial microorganism that forms a symbiotic relationship with 
plant roots (Lin et al., 2012). Its relative abundance decreased 
significantly with increasing fertilizer inputs (Figure 3A). In this 
study, AMF was positively correlated with esters 
(2-palmitoylglycerol), alkanes (hentriacontane, decane,4-
methyl-), organic acids (11-octadecenoic acid) and sugars 
(d-trehalose), and negatively correlated with organic acids 
(9-octadecenoic acid) (Figure 6). It has been reported that plant 
esters are most likely transferred from host plants to AMF in the 
form of 2-palmitoylglycerol (Kameoka et  al., 2019), so 
2-palmitoylglycerol was significantly positively correlated with 
AMF. Alkanes was known to be strong resistant to plant pathogens 
(Lu et  al., 2022). 11-Octadecenoic acid has broad-spectrum 
antibacterial activity, showing dose-dependent antioxidant activity 
(Alqahtani et al., 2019). And sugars were not only carbon source 
that utilized by microorganisms, but also modulates the 
chemotaxis of rhizosphere bacteria (Eilers et al., 2010; Jin et al., 
2019). In addition, 9-octadecenoic acid, which was significantly 
negatively correlated with AMF, had been shown to be autotoxin, 
affecting germination and seedling growth in wheat and Sinapis 
arvensis (Tahir et al., 2018). This indicated that with the increase 
of fertilization amount, the contents of beneficial microorganisms 
and metabolites in the rhizosphere soil decreased. Excessive 
fertilization had an adverse effect on the rhizosphere soil  
environment.
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Conclusion

Excessive fertilization led to enrichment of soil nutrients and soil 
pH decreased. Compared with other treatments, total PLFAs content, 
arbuscular mycorrhizal fungi (AMF) content and fungi percentage 
were significantly decreased, while percentage of bacteria was 
significantly increased under N3P3K3. Compared with soil organic 
acids and alkanes of N0P0K0, N2P2K2 was significantly increased, 
and N3P3K3 was not significantly different. In addition, the yield of 
N1P1K1 and N2P2K2 were significantly higher than that of N3P3K3. 
This suggested that the fertilization of N1P1K1 was more reasonable, 
as N2P2K2 did not significantly improve yield. The non-decreased 
yield of N2P2K2 might be due to the fact that cucumber maintained 
normal growth and yield by secreting beneficial metabolites (organic 
acids and alkanes) to alleviate the adverse effects on microorganisms 
of slight excessive fertilization. The significant decrease in N3P3K3 
yield was closely related to the decrease of beneficial microorganisms 
and metabolites in the rhizosphere soil with the amount of 
fertilization. These results not only clarified the effect of excessive 
NPK fertilization on soil microorganisms and metabolites, but also 
provided a theoretical basis for guiding the rational use of chemical 
fertilizers and promoting the sustainable development of cucumber 
production in solar greenhouse.
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