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The mobile colistin-resistance (mcr)-1 gene is primarily detected in 

Enterobacteriaceae species, such as Escherichia coli and Salmonella enterica, 

and represents a significant public health threat. Herein, we  investigated 

the prevalence and characteristics of mcr-1-positive E. coli (MCRPEC) in 

hospitalized companion animals in a pet hospital in Shanghai, China, from May 

2021 to July 2021. Seventy-nine non-duplicate samples were collected from 

the feces (n = 52) and wounds (n = 20) of cats and dogs and the surrounding 

hospital environment (n = 7). Seven MCRPEC strains, identified using screening 

assays and polymerase chain reaction, exhibited multidrug-resistant 

phenotypes in broth-microdilution and agar-dilution assays. Based in whole-

genome sequencing and bioinformatics analyses, all seven isolates were 

determined to belong to sequence type (ST) 117. Moreover, the Incl2 plasmid 

was prevalent in these MCRPEC isolates, and the genetic environment of the 

seven E. coli strains was highly similar to that of E. coli SZ02 isolated from 

human blood. The isolates also harbored the β-lactamase gene blaCTX-M-65, and 

florfenicol resistance gene floR, among other resistance genes. Given that 

horizontal transfer occurred in all seven strains, E. coli plasmid transferability 

may accelerate the emergence of multidrug-resistant bacteria and may 

be transmitted from companion animals to humans. Therefore, the surveillance 

of MCRPEC isolates among companion animals should be strengthened.
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Introduction

Antibiotics have remained a key means of treating bacterial 
infections in humans and animals; however, bacterial resistance 
reduces the effectiveness of treatment, posing a serious threat to 
public health (Sun et al., 2020). In particular, the continued spread 
of multidrug-resistant (MDR) bacteria has caused high morbidity 
and mortality rates worldwide. In fact, an estimated 10 million 
people will die as a result of drug-resistant infections by 2050 
(O’Neill, 2016). Antimicrobial resistance (AMR) and antibiotic-
resistance genes (ARG) pose multi-faceted challenges and are 
among the greatest threats to human health in the 21st century 
(Torres et al., 2021). Meanwhile, colistin was once reintroduced as 
the last resort against MDR and carbapenem-resistant infections 
(Shen et  al., 2019) and is, thus, included in the World Health 
Organization’s list of antibiotics of critical importance in human 
medicine (World Health Organization, 2019). Bacterial resistance 
to colistin is thought to be  acquired by chromosomal point 
mutations (Carroll et  al., 2019). Moreover, colistin-resistance 
mechanisms are related to modulation of the bacterial cell surface, 
including variations in LPS structure, or due to shedding of the 
capsular polysaccharides that bind, or trap, colistin (Olaitan et al., 
2014). However, the first plasmid-mediated colistin-resistance 
gene, mobile colistin-resistance 1 (mcr-1), was first reported in 
China in 2015 (Liu et al., 2016), thereby breaking the “last line of 
defense,” and increasing the threat of ARGs to public health.

Several mcr-1 variants (mcr-1 to mcr-10) have been identified 
(Hussein et al., 2021) with plasmid-mediated colistin-resistance 
genes having been reported in 47 countries as widely distributed 
in humans, animals, water, food, and the environment (Shen et al., 
2020). Escherichia coli is the most prevalent species harboring 
mcr-positive isolates, followed by Salmonella enterica and 
Klebsiella pneumoniae. The mcr-1 gene is widely distributed in 
three major plasmid types, namely, IncI2, IncHI2, and IncX4 
(Nang et al., 2019). A previous study revealed that the tandem 
configuration of ISApl1-mcr-1 with different components enables 
a more diverse genetic context for mcr-1 (Yu et  al., 2017). 
Meanwhile, comparative analyses of pMCR_1410 and pHNSHP45 
revealed that conjugative plasmid transfer genes may be involved 
in interspecies plasmid transfer (Zhao and Zong, 2016), suggesting 
the potential spread of mcr-1 to a more diverse bacterial pool.

Drug-resistant bacteria can spread from animals to humans 
through direct contact, the food chain, and the environment 
(World Health Organization, 2014). In recent years, mcr-1 and its 
variants have primarily been detected in livestock such as pigs and 

cattle (Wang et al., 2019, 2021; Cheng et al., 2021; Liu et al., 2022), 
and increasingly in companion animals, in China (Wang et al., 
2018; Zhang et al., 2019, 2021; Lei et al., 2021). In fact, Mcr-1 has 
been found in 8.7% of Enterobacteriaceae isolates from companion 
animals in Beijing, and mcr-1-positive E. coli (MCRPEC) 
transmission between companion animals via close contact has 
been observed in a pet shop in Guangzhou (Zhang et al., 2016; Lei 
et  al., 2017). Importantly, colistin is routinely used for the 
treatment of bacterial infections in both humans and companion 
animals, while MCRPEC strain transmission occurs readily via 
close contact. Thus, to assess the potential risk of transmitting 
resistant bacteria to humans, it is necessary to accurately 
determine whether companion animals host bacteria carrying the 
mcr-1 gene. Therefore, in the current study, we investigate the 
prevalence and characteristics of MCRPEC isolates from 
companion animals at a typical pet hospital in Shanghai, China.

Materials and methods

Sample collection and bacterial 
identification

As a first-tier city in China, Shanghai has a large population 
of pet owners; therefore, it was selected as a representative city for 
this study, and a typical pet hospital in the city was selected. With 
the consent of the pet owners, 79 non-duplicate samples 
(environment: n = 7, fecal: n = 52, wounds: n = 20) were collected 
from 22 cats and 9 dogs and the general clinic environment 
between May 2021 and July 2021. To identify colistin-resistant 
gram-negative strains, the samples were enriched in Mueller–
Hinton (MH) broth (Landbridge, Beijing, China) at 37°C for 24 h, 
without shaking; thereafter, they were inoculated on MacConkey 
agar (Landbridge, Beijing, China) supplemented with 2 mg/L 
colistin (Meilun Biotechnology Co. Ltd., Dalian) and 30 mg/L 
vancomycin (Meilun Biotechnology Co. ltd. Dalian) and cultured 
at 37°C for an additional 24 h. Single, pure colonies were 
subsequently selected and inoculated into 500 μl of fresh Luria-
Bertani broth containing 2 mg/L colistin (Hu et al., 2022). The 
presence of mcr genes was confirmed using polymerase chain 
reaction (PCR) with primers that amplify mcr-1 to mcr-10 
(Mentasti et al., 2021). PCR with 16S rDNA primers was used to 
identify the species, as described previously (Srivastava et  al., 
2008). The mcr-positive strains were stored at −80°C until 
further use.

Antimicrobial susceptibility testing for 
MCRPEC

Broth-microdilution and agar-dilution assays were performed 
to determine the minimum inhibitory concentrations (MICs) of 
colistin and 10 antibiotics (cefotaxime, ceftiofur, gentamicin, 
amikacin, ciprofloxacin, meropenem, florfenicol, tetracycline, 

Abbreviation: AMK, amikacin; AMR, antimicrobial resistance; CEF, ceftiofur; 

CIP, ciprofloxacin; CL, colistin; CTX, cefotaxime; ERIC-PCR, enterobacterial 

repetitive intergenic consensus PCR; FFC, florfenicol; GEN, gentamicin; 

MCRPEC, mcr-1-positive E. coli; MDR, multidrug-resistant; MEM, meropenem; 

MH, Mueller–Hinton; MIC, minimum inhibitory concentration; PCR, 

polymerase chain reaction; PTZ, piperacillin-tazobactam; ST, sequence type; 

TCY, tetracycline; TGC, tigecycline.
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tigecycline, and piperacillin-tazobactam Meilun Biotechnology 
Co. Ltd., Dalian) as recommended by the Clinical and Laboratory 
Standards Institute (CLSI)1 and the European Committee on 
antimicrobial susceptibility testing (EUCAST).2 Escherichia coli 
ATCC25922 was used as the quality-control strain. According to 
a previous report, bacteria resistant to three or more antibiotics 
were considered to be MDR strains (Zhao et al., 2021).

Plasmid conjugation assays

The transferability of the colistin-resistance gene mcr-1 was 
determined using filter mating with sodium azide-resistant E. coli 
J53 as the recipient strain and the MCRPEC isolates as the donor. 
During the logarithmic growth phase, the recipient and donor 
strains were mixed in a volume ratio of 1:3. A sterilized 0.45 μm 
microporous filter membrane was applied to MH medium, and 
the mixture was spread onto the membrane. After culturing at 
37°C for 12 h, transconjugants were selected on MacConkey agar 
containing 4 mg/L colistin and 200 mg/L sodium azide and 
confirmed using enterobacterial repetitive intergenic consensus 
(ERIC)-PCR and PCR analysis of mcr-1 (Liu et al., 2020; Shafiq 
et al., 2022).

Whole-genome sequencing and 
bioinformatics analysis

DNA was extracted from all mcr-1-positive isolates using the 
TIANamp Bacteria DNA kit (Tiangen Biotech Co. Ltd., Beijing, 
China), according to the manufacturer’s instructions. Whole-
genome sequencing was performed by Annoroad Gene 
Technology (Beijing, China) on the NovaSeq 6,000 S4 sequencing 
platform with NovaSeq  6,000 S4 Reagent kit V1.5. Bacterial 
genome assembly was performed using the SPAdes software 
(version 3.11) (Bankevich et al., 2012), and the draft sequence was 
annotated using PATRIC (version 3.6.9)3 (Antonopoulos et al., 
2019). The virulence factors and AMR genes of the strains were 
analyzed using the ResFinder and VirulenceFinder tools of the 
Center for Genomic Epidemiology.4 The relationship with 
MCRPEC was evaluated using core-genome alignments and 
phylogenetic trees, constructed using Parsnp with the 
neighbor-joining method, and visualized using the online tool 
iTOL 6.5.75 (Hu et al., 2022). The genetic environment of mcr-1 
was investigated using the Easyfig 2.2.215 tool (Sullivan et al., 
2011). The comparative genomic map was generated using the 
BRIG 0.9516 tool (Alikhan et al., 2011).

1 https://clsi.org

2 https://eucast.org

3 https://patricbrc.org/

4 www.genomicepidemiology.org

5 https://itol.embl.de

Results

MCRPEC isolation and genus 
identification

Colistin-resistant bacteria were detected in 56 of the 79 
samples. Seven MCRPEC isolates were identified using PCR with 
multiple primers (dogs: n = 2, cats: n = 5; Table 1).

Antimicrobial susceptibility profiles

The resistance profiles of the seven MCRPEC isolates to 
various antimicrobials are shown in Table 1. All seven isolates 
exhibited multidrug resistance, including resistance to colistin, 
cefotaxime, and florfenicol. The MIC of florfenicol was 
256 mg/L. Three isolates (L25cr-2, L30cr-1, and L36cr-1) were also 
resistant to gentamicin. All seven isolates were susceptible to 
amikacin, ciprofloxacin, tigecycline, piperacillin-tazobactam, 
and ceftiofur.

Plasmid conjugation assay

Conjugation assay results revealed that the mcr-1-carrying 
plasmid from all seven isolates was successfully transferred to 
recipient E. coli J53 cells. After three repeated conjugation 
experiments, the transfer success rate reached 100% 
(Supplementary Table S1).

Genomic epidemiology

Multi-locus sequence typing assigned all seven isolates to the 
ST117 sequence type (ST; Figure 1). The genetic environment of 
the seven E. coli strains was highly similar to that of E. coli SZ02 
isolated from human blood (GenBank accession number: 
KU761326.1; Figure 2). All strains were identified to have the 
same plasmid combination and the same serotype. The six mcr-1-
positive plasmids were identified as Incl2 plasmids. However, the 
plasmids in L25cr-2 were difficult to characterize owing to their 
short sequences (Supplementary Table S1). All MCRPEC isolates 
harbored the common structure of nikA-nikB-mcr-1-PAP2 
(Figure 3) that is reportedly readily transferred horizontally to 
different plasmids (Shen et  al., 2019, 2020). Mobile genomic 
elements (ISKpn8, ISKpn19, ISKpn24, ISEc1, ISEc38, ISEc39, 
ISEc48, ISEc59, IS30, IS102, IS421, IS629, IS911, IS1006, ISSfl10, 
MITEEc1, cn_5813_IS911, and cn_3566_ISEc1) co-existed in the 
seven MCRPEC isolates (Supplementary Table S1). However, no 
ISApl1 insertion sequences were observed upstream or 
downstream of mcr-1. Plasmid conjugative transfer genes (traA, 
traD, traJ, traG, traE, traH, traL, pilL, pilU, pilR, pilQ, pilN, pilM, 
pilP, pilS, pilT, and pilV) and those associated with the type IV 
secretion system (virB1, virB2, virB8, virB10, virB11, and virD4) 
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TABLE 1 Antimicrobial susceptibility profiles of 7 mcr-1-positive Escherichia coli (MCRPEC) isolates from companion animals at a pet hospital in 
Shanghai, China.

Isolate Species Source Animal 
procedure

Minimum inhibitory concentration (mg/L)

MEM CL AMK CIP GEN CTX TGC PTZ FFC CEF TCY

L23cr-1 E. coli Dog feces Blood test 0.007 8 1 1 4 8 ≤ 0.015 1 256 8 0.5

L25cr-2 E. coli Cat feces Sterilization operation 0.007 8 1 1 8 16 0.25 1 256 8 ≤ 0.25

L27cr-1 E. coli Cat feces Soft tissue contusion 0.007 8 1 1 4 8 0.25 1 256 8 ≤ 0.25

L30cr-1 E. coli Cat feces Sterilization operation ≤ 0.004 16 1 1 8 8 0.5 1 256 8 0.5

L36cr-1 E. coli Cat feces Medical checkup 0.007 16 1 1 8 8 0.25 1 256 8 ≤ 0.25

L40cr E. coli Dog wound Abdominal surgery 0.007 8 1 1 4 8 0.25 2 256 8 ≤ 0.25

L52cr-1 E. coli Cat feces Sterilization operation 0.007 8 1 1 4 8 0.25 1 256 8 ≤ 0.25

Minimum inhibitory concentrations indicating resistant isolates are shown in bold text. The drug resistance breaking points of MEM, TCY, and FFC were according to Clinical and 
Laboratory Standards Institute standard. The drug resistance breaking points of CL, AMK, CIP, GEN, CTX, TGC, CEF, and PTZ were according to the European Committee on 
antimicrobial susceptibility testing standard. AMK, amikacin; CEF, ceftiofur; CIP, ciprofloxacin; CL, colistin; CTX, cefotaxime; FFC, florfenicol; GEN, gentamicin; MEM, meropenem; 
PTZ, piperacillin-tazobactam; TCY, tetracycline; TGC, tigecycline.

were located in the mcr-bearing plasmids, facilitating mcr-1 
transfer to other bacteria.

Distribution of AMR and 
virulence-associated genes among 
mcr-1 isolates

Whole-genome sequencing analysis revealed that all 
MCRPEC strains carried additional resistance genes (Figure 1). In 
addition to mcr-1, aminoglycoside resistance genes [aac(3)-IVa, 
aph(3′)-IIa, aph(3′)-Ia, and aph(4)-Ia], a trimethoprim resistance 
gene (dfrA14), fosfomycin resistance gene (fosA), tigecycline 
resistance genes (tet(A) and tet(J)), and sulfonamide resistance 
genes (sul1 and sul2) were present in the seven isolates. All strains 
contained the β-lactamase gene (blaCTX-M-65) and the florfenicol 
resistance gene (floR) (Figure 1).

The seven isolates were screened for virulence factor genes 
using the VirulenceFinder tool (version 2.0); the associated gene 
profiles are presented in Supplementary Figure S1. Many virulence 
genes, namely fimbrial-related genes (papB/C/D/E/F/G/H/I/J/K 

and yfcV), heme absorption–related genes (chuT/U/V/W/Y), a 
secretion system gene (espL1), and vacuolating autotransporter 
toxin gene (vat), as well as those encoding the siderophore 
receptor (fyuA), aerobactin synthetases (iucA/B/C/D and iutA), 
common pili (ecpA/B/C/D/E/R), and type I fimbriae (fimA/B/C/
D/E/F/G/H/I) were present in all seven MCRPEC strains. 
However, tetracycline resistance genes [tet(A) and tet(J)], and vat 
were only isolated in the five cat samples.

Discussion

Reports on the emergence of AMR, particularly colistin-
resistance, are increasing worldwide (Shafiq et  al., 2019). 
Meanwhile, the close contact between humans and companion 
animals may lead to bacterial horizontal transmission. However, 
the presence of ARGs in companion animals was not previously 
investigated in-depth (Chen et al., 2019). Nevertheless, mcr-1 has 
previously been detected in companion animals in China, with an 
average detection rate of 6.9% (Zhang et al., 2016, 2021; Lei et al., 
2017, 2021; Wang et  al., 2018). E. coli is a common pathogen 

FIGURE 1

Phylogenetic tree (left) showing the genetic relationship, multi-locus sequence typing (MLST), and antimicrobial resistance genes of 7 mcr-1-
positive Escherichia coli isolates from seven non-duplicate samples (feces and wounds) obtained from 5 cats and 2 dogs at a pet hospital in 
Shanghai.
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isolated from companion animals (Mathers et al., 2015). In this 
study, MCRPEC isolates were found in 7/79 samples collected 
from companion animals and a veterinary clinic environment. 
Meanwhile, colistin had not been used in the veterinary hospital. 
Moreover, the seven host animals, from which the MCRPEC 
isolates were obtained, were housed in the same hospital ward, 
suggesting that mcr-1 (or the resistant E. coli strain harboring it) 
was circulating among these animals and their environment. This 
hypothesis was further supported by assessing the E. coli clonality 
from different dogs and cats.

Owing to the daily movement and living environment of 
companion animals, we suspect that the presence of mcr-1 in this 
hospital originated from direct contact with humans, other 
animals, flies, or via ingestion of contaminated food sources. In 
fact, transfer of mcr-1 from animals to humans was demonstrated 
by a MCRPEC case that was reportedly isolated from a human 
who had been in contact with farm animals, with no travel 

history (Izdebski et al., 2016). Moreover, all MCRPEC isolates 
were successfully transferred to E. coli J53 via conjugation in this 
study. Indeed, successful conjugation transfers have been 
reported for clinical, as well as environmental, samples in China 
(Christie, 2016; Yang et al., 2017; Liu et al., 2020). Given that 
mcr-1 was of the same plasmid type and our conjugation transfer 
experiments were successful, we  believe that horizontal gene 
transfer of mcr-1-harboring plasmids is the most likely 
transmission route among animals in the pet hospital. This 
transferability of E. coli plasmids may lead to accelerated ARG 
flow and promotion of MDR bacteria emergence.

MCRPEC isolates are typically resistant to multiple antibiotic 
classes (Donà et al., 2017). This was demonstrated in the current 
study, as mcr-1 was found to co-exist with other important 
resistance genes [aac(3)-IVa, blaCTX-M-65, fosA3, and floR], which 
may be related to the use of other antibiotics (e.g., florfenicol and 
penicillin). In fact, all seven MCRPEC isolates were MDR isolates. 

FIGURE 2

Multiple circular sequence alignments of reference plasmids with homologous overlapping strain groups identified in this study. The ring 
represents the corresponding plasmids shown in the legend. The reference plasmid is pmcr1_IncI2 (GenBank accession number: KU761326.1).
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FIGURE 3

Genetic environment analysis of the 7 mcr-1-positive strains from samples obtained from a pet hospital in Shanghai, China, and reference strains. 
Arrows indicate the transcription direction. Shared regions with a high degree of sequence similarity are indicated in gray. Red arrows denote mcr-
1, green arrows indicate other antibiotic-resistance genes, blue arrows indicate type IV secretion system genes, and orange arrows indicate other 
genes.

Importantly, all antibiotics tested, herein, excluding florfenicol, are 
also commonly administered to humans, which provides high 
selection pressure for MDR bacteria. However, in this study, 
although the L36cr-1 isolate harbored several resistance genes, the 
host animal (a cat) was only 1 month old and had not yet received 
any antibiotics. Hence, this animal may have become infected with 
this isolate via nosocomial or community contact, as the host 
animal lived in a city and moved around frequently.

All seven MCRPEC isolates had lost the ISApl1 sequence on both 
sides of mcr-1, resulting in a structure lacking ISApl1, which many 
further reduce chromosomal integration, thereby increasing the 
stability of mcr-1 in plasmid vectors and facilitating its widespread 
dissemination (Du et al., 2020; Mohsin et al., 2021). This finding, 
combined with the plasmid conjugation assay results, suggests that 
other mobile genetic elements (such as the type IV secretion system, 
pil, and ter) and mcr-1 may have played an important role in its 
horizontal transmission in the seven strains. In fact, all seven strains 

harbored a type IV secretion system gene. Plasmid-mediated 
conjugated antibiotic-resistance and virulence gene transfer between 
different bacterial genera requires the type IV secretion system, 
wherein type IV pili enhance conjugative plasmid transfer (Christie, 
2016; Kohler et al., 2018). Hence, the type IV secretion system can 
lead to an explosive emergence of multidrug resistance among 
populations of clinically significant pathogens (Cascales and Christie, 
2003). Therefore, the surveillance of bacteria containing type IV 
secretion systems must be emboldened.

In a previous study (Li et  al., 2016), we  found a similar 
segment (nikA-nikB-mcr-1-pap2) among plasmids of strains from 
both humans and animals, further supporting the hypothesis that 
mcr-1 can readily spread between humans and companion 
animals. Furthermore, all plasmids had the same ST, indicating 
that mcr-1 was likely derived from a single source, and suggesting 
the occurrence of E. coli clonal and vertical transmission in this 
area. The coexistence of horizontal and vertical transmission in 
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these seven MCRPEC strains may increase the risk of mcr-1 
transmission, thereby posing a threat to human health.

This study had certain limitations, our experiment was limited to 
detecting the prevalence of mcr-1 in a small area. Nevertheless, these 
results highlight the need for urgent implementation of a wide-range 
surveillance plan in other regions of China. Furthermore, other 
important emerging resistance genes in companion animals should 
be monitored to better quantify their risk to human health.

In summary, the observed spread of mcr-1  in companion 
animals could be  attributable to the horizontal and vertical 
transmission of plasmids. We demonstrated that MCRPEC from 
companion animals represents a potential risk to human health by 
highlighting the possible transmission of mcr-1. This gene confers 
colistin-resistance to E. coli, thereby limiting clinical treatment 
options for humans. To prevent the spread of mcr-1 from having 
a negative impact, minimizing the opportunities for mcr-1-
harboring strains to infect and proliferate in humans is necessary. 
Therefore, surveillance programs should be implemented globally 
to monitor the prevalence of MCRPEC in companion animals, 
standards for rational antibiotic use in companion animals must 
be established, and pet owners must be encouraged to adhere 
strictly to veterinary-directed antibiotic regimens.
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