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Potato, the world’s most popular crop is reported to provide a food source for

nearly a billion people. It is prone to a number of biotic stressors that a�ect

yield and quality, out of which Potato Virus Y (PVY) occupies the top position.

PVY can be transmitted mechanically and by sap-feeding aphid vectors. The

application of insecticide causes an increase in the resistant vector population

along with detrimental e�ects on the environment; genetic resistance and

vector-virus control are the two core components for controlling the deadly

PVY. Using transcriptomic tools together with di�erential gene expression

and gene discovery, several loci and genes associated with PVY resistance

have been widely identified. To combat this virus we must increase our

understanding on the molecular response of the PVY-potato plant-aphid

interaction and knowledge of genome organization, as well as the function

of PVY encoded proteins, genetic diversity, the molecular aspects of PVY

transmission by aphids, and transcriptome profiling of PVY infected potato

cultivars. Techniques such as molecular and bioinformatics tools can identify

and monitor virus transmission. Several studies have been conducted to

understand the molecular basis of PVY resistance/susceptibility interactions

and their impact on PVY epidemiology by studying the interrelationship

between the virus, its vector, and the host plant. This review presents

current knowledge of PVY transmission, epidemiology, genome organization,

molecular to bioinformatics responses, and its e�ective management.
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Introduction

Potato (Solanum tuberosum L.) is a fundamental source

of nutrient-providing food crops across the world. It occupies

the third position globally in terms of consumption after rice

and wheat (Soare and Chiurciu, 2021). Like other crops, potato

production and productivity are also affected by diverse biotic

and abiotic stresses that lead to yield losses (Bond, 2014). The

major abiotic stressors that affect potato crops are drought,

heat, nutrient deficiency, salinity, and cold/frost stress. Some

biotic stressors cause diseases like late blight and bacterial

wilt; among insect pests, sucking pests include aphids, thrips,

whiteflies, mites, hoppers, borers like potato tuber moths, and

potato cyst nematodes (Singh et al., 2020) and are considered

to be utmost important (Handayani et al., 2019). Generally, the

potato has been reported to be susceptible to a high number

of pathogens and pests including more than fifty viruses and

viroids (Harahagazwe et al., 2018). Among all, Potato leafroll

virus (PLRV), Potato Virus Y (PVY), Potato Virus A (PVA),

Potato Virus S (PVS), Potato Virus M (PVM), Potato Virus X

(PVX), Potato aucuba mosaic virus, Potato mop-top virus, and

Alfalfa mosaic virus (AMV) were reported to have significant

damage potential. Different aphid species, PVY strain, and

infesting host range is detailed in Table 1.

The vegetative method of propagation increases the
susceptibility of potatoes to plant pathogens. Among different

viruses, PVY (Potyviridae, containing 160 species) (Wylie
et al., 2017; ICTV Report on Virus Classification Taxon

Nomenclature, 2020) is ranked fifth across the world’s top
ten most important plant viruses (Scholthof et al., 2011) and

considered to be economically harmful (Valkonen, 2007). Other

Solanaceous hosts of PVY include tomato (Noha et al., 2018),

pepper (Moodley et al., 2019), and tobacco (Guo et al., 2017).

PVY is genetically composed of RNA (positive-strand of 9.7 kb

in size) containing around 3,061 amino acids (Kreuze et al.,

2020), and it occurs in almost all potato growing areas. PVY

has been reported to be vertically transmitted from infected

plants to offspring sexually through seeds or vegetatively

through tubers, and from infected plants to the other plants

of the same generation (horizontally), either by aphids or by

mechanical contacts of adjacent plant parts (Da Silva et al.,

2020). Additionally, plants grown from PVY infected tubers

have a slow growth rate, resulting in seed degeneration that

leads to a qualitative and quantitative reduction in potato

yield (Hegde et al., 2021). Different aphid species have been

reported to transmit PVY in a non-circulative and non-

persistence manner with differential transmission efficiency

(Lacomme et al., 2017). Infection by PVY on potatoes causes

mild to severe symptoms including mottling, mosaics, yellows,

rogues, necrosis, leaf malformation, plant defoliation, and potato

tuber necrotic ring spot diseases (PTNRD) (Nie et al., 2012).

Depending on environmental conditions and genetic diversities

of both PVY (the virus strain) and the concerned host plant,

the intensity, and type of these symptoms were also observed

to vary (Lacomme et al., 2017). The severe economic impact

of PVY on potato across different countries were reported as

30–40 % in India, 16.5% in Ireland, 34% in Canada, 37% in

Kenya, 40–44% in Poland and the USA, and about 50% in China

(Gray et al., 2010; Wang et al., 2011; Were et al., 2013; Hasiow-

Jaroszewska et al., 2014; Hutton et al., 2015; Jailani et al., 2017).

Despite several management strategies with insecticides and

host plant resistance for aphid management, it’s incurable under

field conditions. Effective prophylactic measures are focused on

preventing or slowing down the virus spread by using resistant

cultivars (Dupuis et al., 2019) of healthy plant material (Funke

et al., 2017) or through the eradication of diseased plants

from the field. Millions of dollars have been invested in vector

management worldwide specifically through chemical control,

yet, the development of resistance in the aphid population and

indiscriminate use of insecticides have had severely detrimental

effects on the environment as well as on beneficial organisms.

Thus, it is crucial to understand the interactions between the

aphids and PVY and to disrupt the inter-relationship among

them which can be a unique approach to managing the

virus-vector complex. Among the prophylactic controls, early,

sensitive, and specific detection through phytosanitary actions

are the most effective (Rubio et al., 2020). Although molecular-

based diagnostic techniques can be an effective identification

tool, the large genetic diversity among viral species is considered

to be a severe constraint (Glais et al., 2017). Although there

is wide research on PVY transmission, diversity, detection,

and molecular aspects available, the present review provides

a comprehensive insight into potato viruses with a focus on

PVY and their characteristic mode of transmission, genome

organization, protein function, genetic diversity, molecular and

bioinformatics aspects of transmission by aphids, methods

used in detection and characterization, transcriptomics level of

response, identification and monitoring of virus transmission,

and vector control strategies.

PVY and their characteristic mode of
transmission

Aphid infestation and PVY infections decrease the quality

and quantity of potato yields (Scholthof et al., 2011) and

result in the degeneration of seed tubers that hinders potato

cropping and seed production. Different species complexes

of aphids were found to transmit PVY in a non-circulative,

non-persistent (NCNP) manner with differential relative

transmission efficiency (Lacomme et al., 2017; Da Silva et al.,

2020; Hegde et al., 2021). The most crucial factors influencing

PVY transmission are: (1) the acquisition source of the

virus; (2) the transmissibility range of virus strains by the

aphids/mechanical agents; (3) the reception of the viral strain

through the aphid vector from the inoculated plants; (4) the
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TABLE 1 Aphid species that transmit PVY and their host range.

Sl. No. PVY strain Host range Aphid species Country Reference

1 PVYO−O5 and PVY NA−N Potato Aphis fabae South America Fuentes et al., 2019

2 PVYO Potato Aphis fabae, Acyrthosiphon pisum,

Myzus persicae

World wide Lorenzen et al., 2006

3 PVYU Potato NA Brazil Janzac et al., 2015

4 PVYC Pepper, potato NA NA Kerlan and Moury, 2008

5 PVYN :O Potato, pepper Aphis nasturtii North America, Austrelia Singh et al., 2003; Piche et al., 2004;

Crosslin et al., 2005;

Rodriguez-Rodriguez et al., 2020

6 PVY N Wilga Tobacco Myzus ascaionicus, Sitobion

graminum

Europe Verbeek et al., 2010; Crosslin, 2013

7 PVYNTN Potato Myzus ascaionicus, Aphis fabae Switzerland Boquel et al., 2011; Dupuis et al., 2019

8 PVYN Potato, Tobacco Myzus persicae, Metopolophium

albidum, Macrosiphum euphorbiae,

Hyperomyzus lactucae

North America, Africa,

New Zealand

Fox et al., 2017

growth and development of the aphid on the host plants,

followed by inoculation, acquisition, and transmission of PVY

(Bosquee et al., 2018); and finally, (5) the aphid vectors

transmitting PVY. Furthermore, PVY transmission is also

influenced by temperature, (relative) humidity (Chung et al.,

2016), and atmospheric gas concentration (Dáder et al., 2016;

Bosquee et al., 2018). These environmental factors could change

the vector-virus interaction, and thus the aphid behavior, plant

susceptibility, and/or virus replication in PlantScan would

ultimately be changed (Van Munster, 2020). So, knowledge of

the factors affecting the transmission efficiency of aphid vectors

is crucial in understanding epidemiology and improving the

control of viral diseases.

Process of acquisition and transmission
through aphid

The feeding and transmission process comprises systematic

events from starving, acquisition accession period (AAP),

inoculation accession period (IAP), and virus retention inside

the vector body. Starving before feeding and inoculation

increase the non-persistent viral transmission efficiency in

aphids (Powell, 1993). Starving enhances the feeding behavior

and appetite of aphids (Jimenez et al., 2017). Diverse viral

transmission studies using starved aphids (for 2–3 h) were

reported to increase the transmission efficiency and decrease

the AAP and IAP (Fereres and Moreno, 2009). Optimally,

the aphids were observed to have an AAP and IAP of 1–

30 s. The virulence of Myzus persicae remains from 2 to

4 h depending on the number of host plants visited, feeding

duration, and the retention period. As the non-persistent

viral transmission is of lower efficiency and less host specific

(Pirone and Harris, 1977), the feeding behavior of aphids,

compatibility with the helper component, and/or availability

of receptors are major determinants (Uzest et al., 2007) of

PVY transmission (Nanayakkara et al., 2012). These parameters,

though, affect aphid feeding behavior, transmission efficiency,

and virus epidemiology, yet, molecular properties of the aphid

determines the final transmission and severity of PVY.

Host range

A wide diversity of plants have been listed as natural PVY

hosts and comprise 495 species of plants from 72 genera

belonging to 31 families including edible crops such as potato,

tomato, pepper, and eggplant, in addition to 211 species within

9 genera of the Solanaceae family. Additionally, Amaranthaceae,

Fabaceae, Chenopodiaceae, Compositae, and Brassicaceae were

also reported to be host species of PVY (Kaliciak and Syller,

2009). The host diversity was reported to indicate differential

evolutionary routes by natural selection pressure, together with

mutation and recombination (Moury and Desbiez, 2020).

Genome organization and proteins

Like other potyviruses, PVY is filamentous having flexuous

virus particles (700 nm × 11–13 nm) and a single-stranded

positive sensed RNA genome (+ssRNA), encapsulated with the

coat protein of 2,000 units of the same monomer (30 kDa).

The RNA genome contains 9,700 nucleotides ending with a

viral protein genome-linked (VPg) at the 5′ end and a poly-

A tail at the 3′ end. Furthermore, VPg is a multifunctional

protein at the 5′ terminus of+RNA and acts mainly as a primer

during RNA synthesis in a variety of+ssRNA viruses, including

potyviridae where the poly-A in 3′ of RNA terminus (mRNA and
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+RNA viruses) that has only adenine bases and is involved in

gene expression. The PVY genome is reported to contain two

open reading frames (ORF), including the main ORF that is

translated to a large polyprotein which ultimately terminates in

10 functional proteins, and the small ORF, otherwise known as

Pretty Interesting Potyviridae ORF (P3N-PIPO or PIPO), that

is a +2 frameshift within the main ORF and is translated into

another protein of smaller size (Quenouille et al., 2013; Valli

et al., 2018).

Genetic diversity and strains

Genetic variation in RNA viruses including PVY is known

as quasispecies and these are the results of mutations,

recombination, and selection pressures from hosts, viruses, and

importantly virus-vector interactions (Domingo and Perales,

2019). Shortly after penetration into the host cell, the functional

mRNA of the PVY genome is translated and this process lacks

all kinds of proofreading activity (Elena et al., 2011), which is a

major reason for higher mutation and genetic diversity of RNA

viruses, especially PVY (Wolf et al., 2018). Higher mutation

rates along with extreme virus diversity make the PVY more

adaptable to environmental as well as host-specific conditions

as compared with DNA viruses (Duffy, 2018). Random genetic

drift that occurs in the process of horizontal transmission by the

plant sap suckers leads to a reduction in virus diversity and has

immense importance in viral evolution (Betancourt et al., 2008).

Natural resistance gene pools have been targeted for breeding

PVY resistant cultivars, as the intensive potato cropping along

with injudicious pesticide application have led to crop failure.

These factors altogether contributed to the mutant emergence

and strain diversity in PVY (Funke et al., 2017; Dupuis et al.,

2019). Further diverse PVY genetic strain development could

be attributed to mutation, recombination, reassortment in the

multipartite virus, and selection pressure from host, virus, and

vector interactions (Kutnjak et al., 2015; Domingo and Perales,

2019). Although resistance genes are being deployed against

PVY, they are capable of breaking the resistance and creating

new genetic strains by interacting with PVY populations in

highly divergent ways, exhibiting rapid co-evolution or stable

associations (Karasev and Gray, 2013; Quenouille et al., 2013).

Molecular basis of PVY transmission

Non-persistent transmission of PVY by aphids

Transmission of plant viruses may occur in four ways,

i.e., non-persistent; semi-persistent; persistent circulative; and

persistent propagative, depending on the localization of the

vector, the time required for virus acquisition along with

retention, and potential transmission of the viral load (Sylvester,

1980). The non-persistent (stylet borne) viruses have a shorter

acquisition period, from seconds to a few minutes, while semi-

persistent viruses require several hours for acquisition, and once

inoculated the vector loses its transmission capacity until the

next acquisition (Dietzgen et al., 2016). Over 20 species of aphids

were potential transmitters of PVY and colonize and multiply

on solanaceous hosts (Boiteau et al., 1988). The complex

mechanism of virus-vector association requires a continuum

of suitable molecular cum biochemical interactions with the

host plant for successful establishment and transmission. The

strategies involved in virus-vector association can be broadly

differentiated into two categories, i.e., capsid strategy and helper

strategy (Figure 1). In the former, the coat protein (CP) of the

virus has been observed to interact directly with the binding

sites (receptors) present in the stylet of the aphid; in the

latter mechanism, an additional non-structural protein namely

HC-Pro (helper component proteinase) induces the binding

between CP and the aphid receptor component, thus creating a

reversible “molecular bridge” that leads to effective infection by

the aphid vector. The binding process is governed by multiple

factors such as environmental factors, aphid species, aphid-virus

interactions, the site of binding, the molecular configuration

of the binding site, and the viral protein structure. The PVY

genome comprises dsRNA of nearly 10 kb size that on further

polyadenylation forms a single open reading frame (ORF)

of large polyprotein of 340–368 kDa size. This ORF, upon

activation by the viral proteases, produces 10 diverse proteins

of differential functions including: P1 (protein 1 protease), NIa-

Pro (nuclear inclusion A protease), HC-Pro; P3 (protein 3), 6K1,

and 6K2 (six kilodalton peptides); CI (cytoplasmic inclusion);

NIb (nuclear inclusion B/RNA-dependent RNA polymerase);

CP (Adams et al., 2005). Furthermore, in the transmission of

cucumoviruses such as the cucumber mosaic virus (CMV),

the viral CP alone binds to the aphid stylet to induce aphid-

mediated transmission (Gadhave et al., 2020), while in PVY

transmission the non-structural VPg (viral protein genome-

linked) was reported to have a covalent association with the 50-

terminal in the Helper strategy (Adams et al., 2005). The PVY

like potyviruses require a more intricate association between

CP and HC-Pro to establish a successful association between

the virus and aphid stylet (Valli et al., 2018). HC-Pro is the

key regulator as it contains three overlapping regions governing

multiple functions like interactions among plants, aphids, and

virions, amplification of the potyvirus in the aphid vector,

suppression of the gene silencing, systemic movement of the

viral load within the plant phloem, development of symptoms,

and ultimately the cleavage and activation of proteins through

protease activity (Anandalakshmi et al., 1998). Genome-wide

variation analysis of potyviruses suggests that these contain

diverse hypervariable areas in key parts of the genome such

as P1, HC-Pro, P3, VPg, NIb, CP, NIb-CP junction, and NIa

protease (Deepti et al., 2019) that enrich the virus mutationally

and are helpful in adapting diverse hosts. Phylogenetic analysis

of CP sequences (from 176 potyviruses) further confirms the
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role of HC-Pro in direct/indirect interaction between virions

and aphid stylets, which enables retention of virus, and further

inoculation (Valli et al., 2018). Thus, a mutation in either HC-

Pro or CP of potyviruses can alter aphid transmissibility. The

viral genome undergoes autoproteolytic reactions, catalyzed by

two proteinases, P1 and HC-Pro, at the respective C termini

(Verchot et al., 1991), while the remaining cleavage reactions

are catalyzed by the NIa-Pro, an evolutionary homolog of

the picornavirus 3C proteinase (Carrington and Dougherty,

1987a,b). The proteins are multifunctional (Mahajan et al.,

1996) and their conserved regions include the HC-Pro and NIb,

while the variable regions include P1, P3, and CP. It has been

reported that P3 exhibits low homology between species, with

variations observed between P3 proteins of different potyviruses

(Aleman-Verdaguer et al., 1997). P3, the conserved protein was

observed to play an important role in the virus’ functioning,

mostly associated with the cytoplasm of potyvirus-infected cells.

A highly conserved DAG motif of CP interacts with either the

PTK motif or its functionally similar motif/s (C-terminus) of

HC-Pro (Huet et al., 1994) to provide binding of HC-Pro to

the coat protein of virions. Furthermore, another equivalent

motif, i.e., the KITC motif (N-terminus), was reported to be

critical for virus retention in the stylets of aphids (Huet et al.,

1994). Both the interactions in the C-terminus and N-terminus

are essential for the potyvirus transmission by aphids and

successful colonization on the solanaceous hosts (Blanc et al.,

1997). Further studies also confirmed that certain genera of

Potyviridae like rymovirus, Poacevirus, and tritimovirus are not

transmitted by aphids due to a lack of suitable amino acid motifs

for proper binding (Wylie et al., 2017), so they are transmitted

in a semi-persistent manner by the eriophyid mites. Another

virus, Rose yellow mosaic virus (RoYMV) from the monotypic

genus Roymovirus was reported to lack the DAG motif in the

CP, and the substituted HC-Pro motifs PTK and KITC by the

C-2x-C motif at the N-terminus, favors transmission by the

eriophyid mite (Wylie et al., 2017). Regarding another virus

of the bevemovirus genus, i.e., Bellflower venial mottle virus

(BVMV), the DTG motif similar to DAG is found near the N-

terminus of CP, but it lacks the PTK and KITC motifs, so it is

non-transmissible by the aphid vectors (Wylie et al., 2017). The

detailed structure of the PVY coat protein is depicted in Figure 2.

Further details of individual proteins along with their genome

size and functions are detailed in Table 2.

PVY molecular responses in plants: A spectrum
of results from sensitivity to resistance

The intricate relationship between host plants and viruses

involves the interaction of numerous systems, including (1) viral

regulation of host components essential for effective infection,

(2) plant defensive mechanisms, and (3) the counter-defense

mechanisms of viruses to evade plant defenses. The inter-

relationship among these factors is a suitable determinant

FIGURE 1

In the former, coat protein (CP) of virus interact directly with the
binding sites (receptors) present in the stylet of aphid; in later, an
additional non-structural protein namely HC-Pro (helper
component proteinase) induces the binding between CP and
aphid receptor component, thus creates a reversible “molecular
bridge” that leads to e�ective infection by the aphid vector. In
relation to aphid transmission, HC-Pro N-terminal domain
(KITC—Lysine/Isoleucine/Threonine/Cysteine) is involved in
specific binding to an aphid’s stylet tip (acrostyle); while it’s
C-terminal domain (PTK-Proline/Threonine/Lysine) is involved
either directly or indirectly in HC-Pro binding to the DAG motif
(Aspartic acid/Alanine/Glycine) at the CP N-terminus.

of reactions among the compatible interaction of virus or

incompatible host interaction. In response to aphid infestation,

susceptible plants develop a diverse local and systemic infection,

while leaves of tolerant plants undergo mild symptoms (Cooper

and Jones, 1984). Replication of the virus and further spreading

are reported to be restricted in the defense response by an

incompatible reaction. Resistance to PVY can be categorized

into three types: extreme resistance (ER), hypersensitive reaction

(HR), and tolerance. The presence of susceptible genes (S-

genes) along with apparent signs and minimal necrotic lesions

enable the plants to be extremely resistant; meanwhile, local

necrotic lesions were observed in hypersensitive reactions (HR),

and plants that overcome the aphid infestation and viral

transmission and grow adequately are considered to be tolerant

(Valkonen, 2015). Although, ER, HR, tolerance, and susceptible

responses were well-documented in potato, there have been no

reports of natural S-gene mediated resistance to date. In the

event of ER response, potato plants exhibit no symptoms or very

minimalmicroscopic lesions in certain genotypes (Valkonen and

Palohuhta, 1996). Suppression of virus multiplication in infected

potato cells and limited cell-to-cell movement was observed in

ER response (Seo et al., 2014). The first R gene (Rysto gene),

which confers ER response to PVY in potato, was identified

and functionally described (Grech-Baran et al., 2019), and it was

reported to encode an intracellular nucleotide-binding leucine-

rich repeat (NLR) receptor with an N-terminal Toll/interleukin-

1 receptor (TIR) domain (TIR-NLR) that imparts resistance to
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FIGURE 2

Potyvirus proteins and their functions (Mishra et al., 2014). P1 Proteinase—Cell to cell movement; HC-Pro— Aphid mediated transmission, cell to
cell movement; P3—Role in replication; CI—Genome replication (RNA helicase), membrane attachment, ATPase activity, cell to cell movement;
VPg—Genome replication (Primer for initiation of RNA synthesis); NIa—Major Proteinase; NIb—Genome replication (RNA-dependent RNA
polymerase [RdRp]); CP—RNA encapsidation, involved in vector transmission, cell to cell movement; 6K1, 6K2—Possible roles in RNA replication,
regulatory function, inhibiting NIa nuclear translocation.

PVY and PVA in potato and tobacco plants. Another R gene

against PVY was identified from pepper (Capsicum annuum)

(Kim et al., 2017). Another dominant gene, Pvr4, encodes a

protein of the LRR receptor with an N-terminal coiled-coil

domain (CC-LRR) and imparts ER (Dogimont et al., 1996).

Some key downstream signaling processes like activation of

resistance and immunity are mediated by TIR-NLRs via the

lipase-like protein Enhanced Disease Susceptibility 1 (EDS1)

(Aarts et al., 1998) and CC-NLR protein N requirement gene 1

(NRG1) (Castel et al., 2019; Grech-Baran et al., 2019). Among

diverse qualitative changes in resistant genotype PW363, stress-

responsive proteins were found to be the most prevalent (Szajko

et al., 2018).

HR resistance is distinguished from ER by predominant

localized tissue necrosis caused by programmed cell death

(PCD). This HR was introduced into potato from wild relatives,

Ny, Nc, and Nz, imparting resistance to PVYO (ordinary

strains), PVYC (C strains), and PVYZ (Z strains), respectively

(Valkonen, 2015). The defensive reaction initiated from

the synthesis of reactive oxygen species (ROS) followed by

the production of hydrogen peroxide and the activation

of numerous genes (Balint-Kurti, 2019) in the Ny-1-

mediated resistance of cv. Rywal, 1-day post-inoculation

(dpi) (Baebler et al., 2014). HR-mediated resistance is governed

by Mitogen-activated protein kinase kinase 6 (MKK6), and

downstream targets MAPK4 (Mitogen-activated protein

kinase 4), MAPK6, and MAPK13 (Lazar et al., 2014).

Inhibition of MKK6 was demonstrated to enhance PVY

concentrations in infected potato plants, indicating its key

role in potato virus immunity (Dobnik et al., 2016). The

host—PVY interaction is reported to be determined by

diverse factors, namely the host genotypes, viral strains, and

environmental circumstances, and they appear as various

responses in terms of the multiplication of viruses and the

progression of disease symptoms. The details of symptoms

appearing on the inoculated leaves 6 dpi in selected potato

cultivars in an optimal environment are given in Figure 3

(Baebler et al., 2020).

The results of the interaction among host—PVY in the same

potato genotype change based on PVY strain, as demonstrated

by PVYN and PVYNTN (cvs. Igor and Nadine) (Kogovšek

et al., 2010) and PVYN−Wilga and PVYNTN in cv. Etola (Yin

et al., 2017). In contrast, the manifestation of symptoms in

HR response to PVYN605-GFP, PVYNTN, and PVYN−Wilga did

not vary in the cultivar Rywal (Lukan et al., 2020). Numerous

abiotic factors also influence the outcome of the interaction

(Makarova et al., 2018) and, in combination, infections with

different viruses. The molecular mechanisms underlying those

results are critical for resistance breeding without growing

trade-offs and agronomic practice adaptability. Plant molecular

responses to PVY were compared and connected to recognized

molecular pathways of plant defense. The viral effector protein

produced upon aphid infestation is recognized by the R-gene,

which activates an array of defense responses, i.e., MAPK,

Salicylic Acid (SA), and Reactive Oxygen Species (ROS). The

resistance process is activated by the pathogenesis-related
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TABLE 2 Potyvirus proteins and their functions (Hu et al., 2011; Hillung et al., 2013; Revers and Garcia, 2015; Lacomme et al., 2017; Valli et al., 2018).

Sl. No. Protein Function

1 P1 Accessory factor for virus amplification, stabilizes CP, stimulate HC-pro silencing suppression, Binds RNA.

2 HC-Pro Helper factor for aphid transmission, RNA silencing suppression, Enhancement of yield of virus particles, HC proteinase,

resistance breaking, virus movement.

3 P3 Virus amplification, host adaptation and pathogenicity, resistance breaking.

4 P3N-PIPO Viral cell to cell movement.

5 6K1 Modulation of P3 activity? Exact function is unknown. Role in potyviral infection.

6 CI RNA helicase, RNA replication, pinwheel formation (forms the cylindrical cytoplasmic inclusions), virus movement, cell

to cell movement, binds RNA.

7 6K2 Membrane vesicles proliferation, membrane targeting to ER-types membrane, replication, systemic movement.

8 VPg Genome-linked protein, primer of RNA replication, RNA translation, cell-to-cell and systemic virus movement, nuclear

inclusion, nuclear transport, resistance breaking, symptom modification.

9 NIa Cysteine proteinase, DNAse, small nuclear inclusion protein A, serine-like proteinase activity: cleave

P3-6K1-CI-6K2-Nia-Nib-CP, PrimeRNA synthesis, required for systemic infection, nuclear transport, cell-to-cell and

systemic movement, resistance breaking.

10 NIb Large nuclear inclusion protein B, RNA replicase, Viral replication, nuclear transport, Symptom modification.

11 CP Coat protein (protection of genomic RNA), cell-tocell and systemic movement, aphid transmission, virus encapsidation

and virus assembly, regulation of viral RNA amplification, seed transmission, symptom modification, translation.

FIGURE 3

Interaction between potato and Potato Virus Y depicting incompatible and compatible resistance and susceptibility reaction in di�erent potato
varieties. Di�erential reactions (Extreme resistance, hypersensitive resistance, tolerance and sensitivity) are determined by the host genotype,
viral strain, and environmental factors, and appear as varied responses in terms of virus replication and disease morphologies. Images
representing symptoms on leaves 6 days after inoculation in selected cultivars of potato in optimum environment condition (Modified from
Baebler et al., 2020).

genes (PR 1) and β-1, and 3-glucanase gene (BGLU), which

results in the strengthening of the cell wall, accumulation, and

deposition of callose and photosynthesis transient induction

in case of HR- mediated Resistance. Similarly, in case of ER,

N requirement gene 1 (NRG 1) is needed for biochemical

activation downstream and it depends on Enhanced Disease

Susceptibility (EDS 1). Finally, BGLU is involved in the viral

defense. Tolerant interactions can occur as a result of a

failure to recognize an R-gene (e.g., TPN1) or cochaperone

(e.g., Hop/Sti1) essential for viral replication. SA has a crucial

function in the development of the tolerance reaction in

plants against PVY. There is no involvement of ROS, PR1,
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BGLU, or callose deposition, but temporary photosynthetic

activation and metabolite reallocation were detected. The

viral effector protein is identified by an ineffective R gene

in sensitive interactions that further results in a delayed or

altered downstream production of ROS, SA, and jasmonic

acid/ethylene (JA/ET) signaling. Moreover, the same viral

protein leads to the activation of proteins like PR1 and

BGLU, which governs the virus-vector interaction. However,

in this case, no cell wall strengthening or callose deposition

was observed.

Transcriptome and small RNA profiling of PVY
infected potato cultivars

The damage caused by PVY along with PLRV and other

viruses has been observed to vary from 10% to entire

crop loss (Warren et al., 2005). The virus infection can be

measured by the transcriptome analysis by analyzing the highly

regulated genes (upregulated and downregulated) in potato

(host) -virus complexes. The positive log fold changes were

governed by upregulated genes, while the negative log fold

changes were by downregulated genes. PVY-induced altered-

gene expression in the potato cultivars was estimated. The

total RNA from both viruliferous and healthy potato cultivars

was extracted and converted to complementary DNA (cDNA)

by Real Time PCR. RNA-Seq libraries for all samples were

prepared and sequencing was done in HiSEQ 4000 lane

with paired-end chemistry of 150 bp. The tagged cDNA

libraries were pooled in equal ratios and used for 2 ×

150 bp end sequencing. Flow cells for Illumina HiSeq 4000

instruments were loaded with Illumina clusters and sequencing

was performed. Read filtration and assessment of differential

gene expression were done with annotation and functional

enrichment analysis of differentially expressed genes (DEGs).

Highly up- and downregulated DEGs of potato cultivars were

selected to validate the differential gene expression data by

RNA-Seq analysis. The CT values provided by quantitative

Reverse Transcription PCR (qRT-PCR) for both endogenous

genes and targeted genes were used to calculate the log2-

fold changes (Livak and Schmittgen, 2001). In upregulation,

the quantity of mRNA or protein production increases for

viruliferous as compared to healthy crops. The total number

of genes influenced by PVY infection was calculated to be

highest, i.e., 5,730, in resistant potato cultivars (53 percent

upregulated and 47 percent downregulated), and 4,238 in

susceptible cultivars (46 percent upregulated and 54 percent

downregulated). In total, 1,285 genes for bacteria, 4,591 for

fungus, 4,218 for nematode, 2,356 for insects, 4,892 for cold,

3,456 for heat, 2,878 for salt, and 4,241 for drought stressors

were found to have involvement in virus-vector interaction,

indicating maximum involvement of differentially regulated

genes in potato-PVY transmission interaction (Osmani et al.,

2019).

Gene ontology (GO) analysis

Gene Ontology (GO) is a bioinformatic initiative

undertaken to unify the representation of gene and gene

product attributes across species that utilizes different

gene annotations against the UniProt GO database (http://

geneontology.org/). By GO enrichment analysis the altered

processes and functions of the vector in response to the

virus are defined. The numbers of DEGs were reported to

be involved in biological-cellular-molecular functions, and

biological processes can be estimated by conducting the GO

enrichment analysis. Cellular components involve different

organelle membranes, protein complexes, and the connecting

synapses; while biological processes include DEGs governing

diverse cellular processes like a response to diverse stimuli,

signaling, bio-metabolic processes, biological regulation, and

signal transduction. Furthermore, in the molecular functions

category, DEGs are associated with diverse catalytic activity,

binding, transduction, antioxidant, and transporter activities.

Molecular and bioinformatics interaction of
host plant-aphid-PVY transmissions

The CP of PVY was examined by Moury and Simon (2011)

to identify positive selection connected with trade-offs between

several fitness features that have implications in adaptation

processes by using the dn/ds (non-synonymous/synonymous

substitution rates) ratio and numerous potential positively

chosen codon were identified using technologies like PAML

(Phylogenetic Analysis using Maximum Likelihood) and hyphy

(Hypothesis testing using phylogenies) in PVY N clade at codon

positions 25 and 68. Furthermore, a volunteer plant of potato

(cv. Diacol-Capiro) was infected with PVY and the potato leaf

roll virus (PLRV) (Medina Cárdenas et al., 2017). In this study,

researchers observed the effectiveness of RT-PCR (RT-qPCR)

and next-generation sequencing (NGS). These results were

helpful in different viral strain identification in natural reservoirs

like weeds and stray plants, thus can be effective for enabling

integrated management of plant viruses in potato. Another

multiomics investigation involving the tolerant interaction

of potato with PVY was deciphered by Stare et al. (2019)

using cv. Desiree. They examined the dynamism at molecular,

transcriptomics, sRNAomics, degradomics, proteomics, and

hormonomics stages and captured the virus-vector interaction.

The measures of accumulation of virion, photosynthetic

activity, and phenotyping of the symptoms were compared

with its transgenic counterpart, NahG-Desiree, which cannot

accumulate salicylic acid, which plays a significant role in

plant defense. For each genotype and time point, they utilized

the empirical Bayesian technique and identified differentially

expressed genes between healthy and PVY-inoculated plants.

The SEQUEST method was used to identify the proteins for the

proteomics analysis and differentially abundant proteins were

identified. The entire piece has been uploaded to FAIRDOMhub.
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Data from microarrays, sRNA-Seq, and degradome-Seq can be

found in the Gene Expression Omnibus (GEO) collection at the

NCBI. ProteomeXchange has proteomics data with the identifier

PXD0152215 accessible. This investigation offers further clarity

into the processes underlying the potato’s tolerant response

to viral infection and can serve as a starting point for future

research on the regulation of plant immunity. Based on the VPg

Gene, Mao et al. (2019) conducted research on the phylogenetic

analysis of the PVY infection by following a Bayesian approach

and 177 nucleotide sequences from the viral genome linked

protein (VPg) gene which was reported to interact with the

plant eukaryotic translation initiation factor 4E (eIF4E). The

results confirmed that the VPg gene of PVY has been evolving

at a rate of 5.60–10−4 subs/site/year, which is comparable

to that of other plant-infecting RNA viruses. Additionally,

they discovered a correlation between genetic variations and

geographical locations, indicating that the evolution of this virus

is significantly influenced by geographically linked factors or

epigenetic factors. Two distinct methods were utilized to find

probable recombination events in VPg sequences in order to

examine the role of recombination in PVY evolution. First, using

SplitsTree 4.13.1’s NeighborNet algorithm, we executed a split-

decomposition network analysis and got the pairwise homoplasy

index (Huson, 1998). Moreover, potential recombinant and

parental sequences were identified using RDP, BOOTSCAN,

MAXCHI, CHIMERA, SISCAN, GENECONV, and 3SEQ type

algorithms (Martin et al., 2015). The generated datasets can be

further found in MK144421-MK144464, NCBI.

Deepti et al. (2019) investigated potyviruses’ genome-wide

variation and examined the genomic and polyprotein diversity

in all species of potyvirus. The results demonstrated that

the potyvirus genome is strongly under negative selection

and, for the first time, that the number of locations under

positive selection is correlated with the host range. Recombinant

nucleotide sequences were detected using RDP4 (Martin et al.,

2015) and the sequences with recombination breakpoints were

evaluated using six distinct methods: RDP, GENECONV, 3SEQ,

SISCAN, MAXCHI, and BOOTSCAN. MAFFT version 7.3 was

used for its tree-based progressive technique to study MSA

(Multiple Sequence Alignments); gaps from the alignment were

eliminated using GapStrip/Squeezev2.1.0; the best-fit nucleotide

and protein replacement model was selected based on the

lowest Bayesian Information Criterion (BIC) by PhyML 3.0’s—

(Phylogenetic analysis usingMaximum likelihood) SmartModel

selection (Lefort et al., 2017). The genomic or polyprotein

sequence alignment obtained fromMAFFT was utilized for SNP

or SAP identification in the polymorphic study of each virus

species. In a variant call format (VCF), the extraction of the type

and location of each replacement and hierarchical clustering for

sequence variation groups were also carried out (Danecek et al.,

2011; Wickham et al., 2013). The structural foundation for the

multitasking character of the PVY coat protein was explored by

Kezar et al. (2019). The near-atomic structure of PVY’s flexuous

virions was determined using cryoelectron microscopy, which

also revealed a previously unrecognized lumenal interaction

between prolonged C-terminal portions of the coat protein units

and viral RNA. These structures provided the initial proof of

the flexibility of the amino- and carboxyl-terminal regions of

the coat protein. They demonstrated their function in PVY

infectivity by mutational analysis and in planta tests, and they

provided an explanation for the coat protein’s (CP) capacity to

carry out numerous biological functions, thus reconfirming the

importance of CP in aphid mediated viral transmission. Da Silva

et al. (2020) investigated how different transmission methods

have differential effects on the PVY transmission, and impact on

population structure by using a deep sequencingmethod in plant

parts like leaves and tubers of three PVY strains transmitted

both by horizontal (aphid and mechanical) and vertical (by

tubers) modes. The findings suggest a crucial influence of virus

transmission methods on the within-plant diversity of virus

populations and offer quantitative fundamental information

on transmission mediated virus diversity in plants, where

various transmission techniques are anticipated to influence the

structure of a virus population and subsequently its evolution.

Using R v3.6.1 to plot the changes in the frequency of each

SNP in the viral population, structures were identified and SNP

frequency trajectories were grouped into heat maps for each

lineage using the Heatmap.2 toolkit after eliminating SNPs that

occurred at a frequency of at least 10% in at least two different

lineages to conduct a more thorough search for potentially

positively selected SNPs. Another study by Tiwari et al. (2021) on

the genome sequencing of the potato virus vector foxglove aphid

(Aulacorthum solani Kaltenbach) sheds light on the virulence

genes. In all, 16,610 genes out of 22,021 predicted genes had

putative roles associated with other aphids, primarily Myzus

persicae, Acyrthosiphon pisum, and Diuraphis noxia. Insecticide

resistant genes, virus transmission genes, transcription factors,

and mitochondrial genes were among the virulence genes they

discovered. Other virulence genes included those for defense and

detoxification, salivary genes, and chemoreceptors. Additionally,

analysis of the GO and KEGG pathways revealed that genes were

enriched mostly for molecular function and signal transduction,

respectively. A phylogenetic examination of 12 aphid species

demonstrated genetic divergence, and A. solani is closely linked

toM. persicae.

Identification and monitoring of
virus transmission

Myriad approaches are possible to demonstrate that a plant

virus is transmitted by a certain vector, depending on the virus,

vector, transmission modes, and accessible instruments. In brief,

vector transmission bioassays have indeed been conducted to

investigate vector affinity, vector recognition and performance,

and vector transmission control for various plant viruses.
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Bioassays are the most ancient way of studying viruses, and they

provide vital information on epidemiology and management

strategies (Dijkstra and Jager, 1998). The feeding of aphids

(and/or other sucking insects) on a synthetic diet using parafilm

is a commonly used bioassay in viral transmission research. The

electrical penetration graph (EPG) is a tool used by biologists

to explore the interactions between insects (thrips, aphids, and

leafhoppers) and host plants. It was invented and revised by

Mclean and Kinsey (1964) and Tjallingii (1978, 1988). The

EPG system utilizes insects (sucking insects) and plants as

electric circuit modules, recording electric currents once the

insects begin feeding (Figure 4). During intracellular salivation,

the EPG signal contains three unique sub-phases: II-1, II-2,

and II-3, that are related to the acquiring (II-3) and infection

(II-1) of NCNP viruses (Martin et al., 1997; Powell, 2005).

This (EPG) approach was used to determine unique AAP for

aphid species and to explain the transmission processes (Powell,

2005; Boquel et al., 2011). Using the EPG equipment, Boquel

et al. (2011) evaluated the time between aphid placement on

the plant and the first probe, as well as the AAP for a few

aphids and PVY. Transmission Electron Microscopy (TEM) has

also expanded the identification and diagnosis of plant viruses

(Ammar et al., 1994). PVY and other non-circulative, non-

persistent potyviruses were found in aphid stylets (Wang et al.,

1996). The bridge theory and the role of HC were also discussed.

Immunological detection methods were by far the most popular

detection methods prior to the advent of molecular approaches,

and they are still the preferred method in routine viral detection

testing. Since 1978, the enzyme-linked immunosorbent assay

(ELISA) (Clark and Adams, 1977) has been used in various

investigations to identify plant viruses, including PVY, in the

bodies of vectors. It is possible to detect plant viruses using

a variety of molecular methods, including polymerase chain

reaction (PCR). A next generation sequencing (NGS) technology

provides a number of opportunities for detecting, identifying,

quantifying, and studying viruses, viroids, and microbes, as well

as their ecology, epidemiology, replication, and transcription

(Cao et al., 2017; Rubio et al., 2020). Zhang et al. (2013) detected

PVY in stylets as a way of determining vector virus transmission

capacity. They observed PVY in 38% of M. persicae individual

stylets, which is similar to PVY transmission by M. persicae,

however, the information on transmission efficiency came from

another study by Moreno et al. (2007). Boquel et al. (2013)

performed RT-PCR to identify PVY in the stylet to determine

the effect of mineral oil on the viral acquisition and found a

reduction in virus in the stylet of treated aphids. Kim et al.

(2016) used an RT-PCR aided boiling procedure to find PVY

in the complete body of a single aphid. RNAi has been utilized

as a potent laboratory tool to investigate biological processes

and gene functioning in many organisms. Furthermore, it is

a potential tool in both the medical and agricultural fields for

gene therapy and insect control, respectively (Agrawal et al.,

2003; Huvenne and Smagghe, 2010; Zhu, 2013; Setten et al.,

2019; Wesley and Luciano, 2019). Some viruses have found

mechanisms to defeat the plant RNAi defense system as a result

of an evolutionary relationship between host plant RNAi and

target viruses. The multipurpose HC-Pro, for example, which

is implicated in aphid transmission of potyviruses, may also

decrease plant RNAi defense mechanisms (Lewsey et al., 2009;

Rodamilans et al., 2018; Pollari et al., 2020).

Vector control strategies

Pesticides alter vector behavior, which can result in

reduced or greater PVY transmission rates through increased

death, decreased probing, or increased flight and movement.

Pesticides and antagonists that can diminish the prevalence

of persistently transmitted PLRV are ineffective over non-

persistently transmitted PVY since they do not kill the vectors

quickly to avoid transmission (Shanks and Chapman, 1965;

Boquel et al., 2015). Straw mulch considerably decreased

the incidence of PVY in descendent tubers, with reductions

extending from 50 to 70% in all 3 years. Straw mulching may

affect aphid sight and lowers the distinction between vegetation

background canopy (Doring and Schmidt, 2007; Döring, 2014).

The use of mineral oil shortened the period of PVY retention in

the stylet ofM. persicae from 17 h to only 2min (Wróbel, 2009).

RNAi is a molecular technique that targets gene expression

in organisms by producing and delivering dsRNA (Figure 5)

(Aalto et al., 2007; Carthew and Sontheimer, 2009; Lam et al.,

2015; Kanakala and Ghanim, 2016). The RNAi pathway is

activated by the introduction of dsRNA (Fang et al., 2020).

When dsRNA strands are recognized in a cell, they are cleaved

into small interfering RNA (siRNA, 19–24 nucleotides) by

the RNase III ribonuclease Dicer. The siRNAs subsequently

form the RNAi-induced silencing complex RISC by interacting

with an enzyme system (containing Argonaute proteins). RISC

undergoes conformational modifications, allowing the lead

strand of the siRNA inside the complex to identify the base

and pair with the corresponding area on the targeted mRNA

sequence. This complementary sequence-specific base pairing

results in the breakdown or inhibition of the targeted mRNA’s

translation. RNAi has been used to discover receptors of

NCNP aphid-transmitted plant viruses such as potyviruses,

cucumoviruses, and Caulimovirus (Liu et al., 2015; Liang and

Gao, 2017; Webster et al., 2017, 2018; Deshoux et al., 2018,

2020). RNAi-based suppression of chaperone-usher pathway

(Cup) genes has been used for pest management (Shang et al.,

2020) as well as physiological research, such as metamorphosis

(Jan et al., 2017). RNAi has also been used to limit plant

viral transmission by suppressing virus replication in its

vector (Fang et al., 2020). In RNAi research, dsRNA delivery

techniques including microinjection, feeding, and soaking have

all been utilized to assure dsRNA delivery to insects. It has

been established that improved administration by feeding
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FIGURE 4

EPG studies on potato-aphid interactions showing PVY transmission. (A) Depicts EPG system set-up with waveform pattern, (B) Represents
typical waveforms corresponding to di�erent feeding phase and several potential drop (pd) phases are depicted according to di�erent feeding
functions. (Adopted from Martin et al., 1997).

FIGURE 5

RNAi mediated gene silencing and direct dsRNA uptake for management of PVY. (A) Foliar spray of artificial exogenous dsRNA to the potato
plant, (B) Piercing-sucking stylets acquire the virus from the phloem tissues of the plant, (C) Uptake of dsRNA to the cells of aphid, (D) The
cellular RNAi mechanism of gene silencing in insects is illustrated. The RNAi molecular mechanism began in the cell with the Dicer 2 (Dcr2)
enzyme cleaving dsRNA into short 21-24 nucleotide small interfering RNA (siRNA) duplexes. Following that, siRNAs are bound by Argonaute 2
(Ago2) proteins, which assemble the siRNA duplexes into the RNA-induced silencing complex (RISC), a multiprotein-siRNA structure. The RISC
then mediates the cleavage of mRNA transcripts complementary to the integrated guide strand, thereby silencing the target gene and blocking
protein translation (Modified from Cooper et al., 2019).

using artificial nanoparticles to safeguard dsRNA or modified

microorganisms that create dsRNA improves the efficiency of

RNAi in insects (Yu et al., 2013; Kolliopoulou et al., 2017;

Christiaens et al., 2020). Some of the shortcomings of the RNAi

technique can be overcome with the availability of modern

genome editing technologies such as CRISPR-Cas (Clustered

Regularly Interspaced Short Palindromic Repeats-Cas). Instead

of using temporary mRNA knockdown to explore gene

functions, they might be entirely knocked out using genome

editing (Cooper et al., 2019; Le Trionnaire et al., 2019).

Aphid genome editing methodology was recently disclosed (Le

Trionnaire et al., 2019; Tyagi et al., 2020). This is a fantastic tool

that will tremendously aid research into the interactions between

aphids and viruses, among other things.
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Apart from RNAi (Pooggin, 2017), recent advancements

in CRISPR-Cas system-mediated DNA or RNA

editing/interference in plants enabled them as key components

of plant protection (Cao et al., 2020). CRISPR-Cas13 was used

to confer broad spectrum resistance by Zhan et al. (2019) to

protect potato plants from PVY by designing sgRNAs targeting

P3 (a membrane protein involved in pathogenicity, movement,

systemic infection, and virus replication), CI (which forms the

laminate cytoplasmic inclusion bodies, involved in infection and

virus movement), NIB (an RNA-dependent RNA polymerase

(RdRp) that participates in the replication of the viral RNA)

and CP (which is active in virion assembly, cell-to-cell and

systemic movement, and vector transmission) encoding regions

of PVY RNA. The transgenic potato lines with the greatest

Cas13a-sgRNA expression levels were chosen for the PVY

challenge. Transgenic potato plants expressing P3, CI, NIB, or

CP expressed Cas13a-sgRNA with more than 99% less virus

accumulation than WT (non-transformed control plants). WT

potato plants at 25 dpi showed typical PVY mosaic symptoms,

whereas the edited plants exhibited no disease symptoms.

Transgenic potato Cas13a/sgRNA expression level directly

correlated with viral resistance. The transgenic plants also faced

other PVY strains (PVYN and recombinant PVYN:O) that

expressed CP-sgRNA. In transgenic plants, virus titers were

reduced by more than 90%. In addition, it was tested whether

the PVY-resistant transgenic plants had resistance to other non-

related potyviruses such as Potato Virus A and Potato Virus S that

share little in common with PVY. The spacer sequences of PVA

and PVS were <35% similar to their respective targets when

compared with their respective sgRNA sequences. As far as virus

accumulation is concerned, there was no significant difference

between wild type potato plants and transgenic potatoes

expressing CP-sgRNA. Further, the interference performance

in transgenic lines with maximum and minimum expression

profiles were compared and PVY inhibition was found to be

positively correlated with the LshCas13a/sgRNA transcriptional

dynamics. A sgRNA designed against a conserved region was

found to confer broad-spectrum viral resistance. Meanwhile,

introducing the CRISPR-Cas13a into potato plants was found

to confer high-level PVY resistance. Moreover, CRISPR-Cas9

technology targeting mutation of the coilin gene (Makhotenko

et al., 2019) created PVY resistance. Over expression of the

eukaryotic translation initiation factor, eIF4E enabled potato

resistance to PVY (Gutierrez Sanchez et al., 2020) by modifying

the viral replication process. Further, noble possible targets for

antiviral strategies like plant translation factors (eIF4A-like

helicases, eIF3, eEF1A, and eEF1B) that specifically interact

with viral RNAs and proteins and regulate various aspects of

the infection cycle. Many naturally occurring plant recessive

resistance genes have been mapped to mutate in isoforms of

translation initiation factors eIF4E and eIF4G. The involvement

of eIF4E in imparting natural resistance through genes like

pvr1/pvr12 and pot-1 in Capsicum spp (point mutations) and

Solanum habrochaites plants, respectively, was also documented

(Sanfaçon, 2015).

Building resistance against PVY:
Breeding tools and strategies

Developing disease-resistant crops and reducing agricultural

losses due to pathogens require an understanding of the

plant immune system. In potato breeding, there are so many

desirable features to look for in a cultivar. Breeders have

the challenge of combining high yield and acceptable quality

features with resilience to a wide range of diseases and pests

in different countries. Along with this, the autotetraploid

nature of Solanum tuberosum adds extra difficulty to the

breeding procedure (Solomon-Blackburn and Barker, 2001).

This challenge has been addressed, in part, by creating multiplex

resistant parents that carry 3–4 copies of the dominant resistance

gene (triplex/quadruplex) (Bradshaw and Mackay, 1994). As

long as these resistant parents cross with a susceptible one,

the offspring will be resistant as well. PVY genetic resistance

is now derived from three distinct sources, each of which

confers severe resistance to a diverse range of PVY strains

(Valkonen, 1994; Chikh-Ali et al., 2020). These are derived from

S. stoloniferum (Rysto) (Ross, 1958), S. tuberosum ssp. andigena

(Ryadg) (Munoz et al., 1975), and S. chacoense (Rychc) (Asama,

1982). Three genes (Ryadg, Rysto, and Rychc) derived from

wild species and inserted into a cultivated variety offer extreme

resistance to PVY. Rychc is only reported to be found in a small

number of varieties in North America, while Rysto and Ryadg

are both frequently employed in breeding efforts around the

world (Elison et al., 2021).

PVY had a novel source of genetic resistance from three

diploid biparental potato populations. Using a developmental

and reproductive toxicology (DaRT) study of the 08H1 cross,

the 05H1 and 08H1 populations were found to be resistant to

PVY due to the presence of a single dominant gene located on

chromosome 9 (Torrance et al., 2020). The majority of plant

resistance genes encode NLR receptors, which bind nucleotides

intracellularly. TIR-NLRs are genes that have an N-terminal

TIR domain, while CCNLRs contain an N-terminal coiled coil

domain (Jones et al., 2016). For the detection and assembly of

full-length genes encodingNLR that co-segregate with resistance

traits, Pacific Biosciences’ single-molecule real-time sequencing

(SMRT RenSeq) (Witek et al., 2016) is a valuable technique.

When it comes to monitoring NLR sequences, SMRT RenSeq

technology (Grech-Baran et al., 2020) is more reliable and

less expensive than whole-genome sequencing (Novy et al.,

2017; Slater et al., 2020). Improvements in marker technologies,

especially the marker-assisted selection and bulked segregant

analysis (BSA) can be used (Michelmore et al., 1991). The

molecular marker related to Rychc was found in five russet
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breeding clones (Elison et al., 2021; Ross et al., 2021). The PVY-

resistant cultivars Konafubuki (Hosaka et al., 2001), Harimaru

(Fujimatsu et al., 2018), and the breeding line Saikai 35 have

all been developed by Japanese breeders using Rychc (Mori

et al., 2012). Identifying existing populations in search of novel

genetic markers is anticipated to be extremely beneficial as

more and more valuable features are discovered and genetic

markers are created. Transgenic resistance can be produced

utilizing non-pathogen-derived sequences using a variety of

other methods. Non-specific (wide-spectrum) resistance is

claimed to be generated by several of them, which may offer

significant advantages if paired with more specific transgenic

resistance (Solomon-Blackburn and Barker, 2001). One usage

of host or pathogen-derived transgenes is to insert genes that

are lacking from an existing cultivar. NewLeaf
R©

series of

cultivars are based on known cultivars like as “Russet Burbank”

and Shepody, which have been reworked for “NatureMark.”

Pesticide resistant insects (Colorado beetle) and disease resistant

pathogens (PLRV and PVY) can be found in their genomes

(Monsanto, 1997). Crop breeding efforts around the world are

increasingly focusing on developing crops that are resistant to

disease. There are numerous issues facing global agriculture,

such as climate change and an increasing human population,

which necessitate a better understanding of plant defense

responses to viruses.

Conclusion

The PVY transmission dynamics are complex and reported

to be governed by a multitude of factors and their associated

interactions. There is much work to be done to enable

better understanding of all the mechanisms at a molecular,

biochemical, and bioinformatics level. PVY has been reported

to have both horizontal as well as vertical transmission

modes (Hegde et al., 2021) by different aphid species in a

non-circulative and non-persistence manner with differential

transmission efficiency (Lacomme et al., 2017). Diverse vector

management strategies were adopted worldwide, especially

through chemical alternatives, yet the development of resistance

in aphid populations and indiscriminate pesticide usage has had

severely detrimental effects on the environment as well as on

beneficial organisms. This necessitates a suitable understanding

of the inter-relationship between potato, aphid, and PVY that

can be further exploited to manage the virus-vector complex.

Although molecular based techniques have been identified and

are in use (Glais et al., 2017), molecular responses of PVY in

plants, Gene Ontology (GO) analysis, and bioinformatics of

host plant-aphid-PVY transmissions can open up new ways

to culminate the vector as well as the vector-mediated virus

transmission. Furthermore, aphid mediated PVY transmissions

illustrated stronger genetic drawbacks than mechanical modes

of transmission. In this regard, virus population, viral-host

association, intra-host movement of the virus, and within-plant

diversity of virus populations can be the focus of research that

will further provide quantitative and qualitative evidence for

understanding the complex transmissions. Differential breeding

approaches can be adopted additionally, which will help develop

resistant/tolerant cultivars, and thus can help in the adoption of

more environmentally friendly management strategies.

Future prospective

Viral transmission studies are a well-established approach to

investigating the control of diseases. They become an area of

research prioritization in recent years due to higher mutation

rates among viruses. The following considerations should be the

prime objectives in the current scenario:

1. Adopting a suitable diagnostic tool for proper

identification (Glais et al., 2017) can be useful in

understanding PVY and their characteristic mode of

transmission (by various strains), genome organization

and protein function, genetic diversity, molecular and

bioinformatics aspects of PVY transmission by aphids,

methods used in detection and characterization of

PVY (Medina Cárdenas et al., 2017), transcriptomics

level of response, identification, and monitoring of

virus transmission, and vector control strategies in an

exclusive manner.

2. Farmers should focus efforts on detecting and monitoring

diseased plants and removing virus infected plants from

the field. Nevertheless, depending on the cultivar, virus

diseased plants can bemissed during visual observations, in

particular in the early stages of cultivation. Therefore, there

is a need for fast and objective disease detection. Disease

symptoms can be detected with machine vision techniques

using hyperspectral cameras. Early detection of diseased

plants with modern vision techniques can significantly

reduce costs. Laboratory experiments in the past showed

that hyperspectral imaging clearly could distinguish healthy

from PVY infected potato plants. A hyperspectral line-scan

camera can be used and a convolutional neural network

could be adapted for hyperspectral images (Polder et al.,

2019).

3. Growing potato cultivars resistant to PVY offers the easiest

and most cost-effective solution to preventing the losses

caused by PVY. In search of broad-spectrum resistance

to PVY, the marker-assisted selection provides an efficient

approach for the selection of traits governed bymajor genes

or quantitative trait loci (QTLs) with large effects. Thus,

resistance breeding approaches can be followed to adopt an

eco-friendly management strategy.

4. Regarding genetically engineered resistance based on RNA

silencing, the basal antiviral defense system of plants
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along with CRISPR-Cas13a can provide protection to

potatoes against PVY (Nasr-Eldin et al., 2019). Although

various methods were used to silence RNA molecules

through artificial feeding or injection, expressing virus

siRNA molecules in plant hosts for insect feeding can

be the best approach for developing RNAi-based pest

control methods. CRISPR-Cas9 targeted mutation of the

coilin gene, overexpression of eIF4E, and expression of

LshCas13a/sgRNAs can further be helpful in this approach

to impart resistance/tolerance to PVY. The use of silencing

genes will be effective in controlling persistent viruses, since

the genes involved in transmission will be silenced, and

the vector itself can be controlled as well, allowing control

of not only persistent viruses but also non-persistent and

semi-persistent ones.

5. Recently, new breeding techniques have been utilized to

knock-out potato genes/factors like eukaryotic translation

initiation factors [elF4E and isoform elF(iso)4E)], that

interact with viruses to assist viral infection, and vacuolar

invertase, a core enzyme in CIS (Miroshnichenko et al.,

2020). In this context, CRISPR technology is predicted

to reduce the cost of potato production and is likely

to pass through the regulatory process being marker-

and transgene-free (Hameed et al., 2020). Under new

breeding techniques, Pathogen-Derived Resistance (PDR)

can be obtained by targeting coat protein (CP) regions

using chimeric CP, RNA silencing, and Hp RNAi

(Hairpin RNA interference), which can provide higher

resistance to PVY. The HCpro region can be targeted

through Hp-RNAi, which will reduce the virus titer

(Hameed et al., 2020). Further host-gene mediated PVY

resistance can be obtained through targeting the Y-1

gene, eIF4E-1 allele, and Nz gene to achieve systemic

cell death and resistance against PVY (Vidal et al.,

2002; Cavatorta et al., 2011; Chikh-Ali et al., 2014).

The major limiting factors in the target selection in

RNAi are the possible risks of off-site targeting in

RNAi, loss of transgene expression (integrations in the

untranslated genomic region, introns), and the presence

of natural polymorphism. RNAi-mediated gene silencing

provides selective but non-absolute specificity. Off-site

targeting risks can arise when transgene-derived siRNAs

silence host genes due to sufficient nucleotide sequence

complementarity (Casacuberta et al., 2015). Further, off-

target silencing might result in unanticipated phenotypic

alterations along with linkage drag that have a considerable

influence on agronomic performance or have other

negative impacts on host genes (Jackson and Linsley,

2010). In this context, various bioinformatic tools have

been developed to overcome shortcomings that can

computationally predict efficient sgRNA targeting sites

avoiding any offsite targeting. For precise targeting,

some web-based tools like CRISPR Design, Cas-OFFinder,

CCTop, CHOPCHOP, E-CRISP, CROP-IT, CRISPR-PV2.0,

CRISPRPLANT, and SYNTHEGO can be utilized (Hameed

et al., 2020).

6. Altering host plant-insect vector-virus interaction is the

most effective way to achieve potential success in PVY

control. Physio-morphological changes were reported as

a result of the virus spreading to nearby cells that lack

active defense systems. Although a variety of passive

and active defense systems against plant pathogens were

detected earlier, physio-chemical and molecular analyses

of the plant-pathogen interaction are still in infancy

(Whitham et al., 2006; Nasr-Eldin et al., 2018). Altered

plant-pathogen interaction can modify viral replication,

which ultimately induces diverse pathogenesis-dependent

defensive reactions (O’Donnell et al., 2003). Moreover,

plants’ natural defense mechanisms can be artificially

induced using biotic or biotic elicitors, and thus viral

diseases can be controlled, promoting systemic acquired

resistance (SAR) (Falcioni et al., 2014).

Thus, the current review emphasizes a holistic approach

involving the adoption of suitable identification, resistance

breeding approaches including new breeding techniques,

identifying the active defensive pathways and aphid elicitors

involved in pathogen transmission, which will ultimately be

helpful for solanaceous growers.
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