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Respiratory syncytial virus (RSV) infection is a constant threat to the health of 

young children, and this is mainly attributed to the lack of effective prevention 

strategies. This study aimed to determine whether Lactobacillus (L.) mucosae, 

a potential probiotic, could protect against respiratory viral infection in a 

mouse model. Naive 3–4-week-old BALB/c mice were orally administered 

with three L. mucosae strains (2.5 × 108 CFU/mouse) 7 days before RSV 

infection (105 TCID50/mouse). Results showed that all three strains inhibited 

RSV replication and reduced the proportions of inflammatory cells, including 

granulocytes and monocytes in the blood. The L. mucosae M104R01L3 

treatment maintained stable weight in mice and increased interferon (IFN)-β 

and tumor necrosis factor (TNF)-α levels. The L. mucosae DCC1HL5 treatment 

increased interleukin (IL)-1β and IL-10 levels. Moreover, the M104R01L3 and 

DCC1HL5 strains increased the proportions of Akkermansia, Alistipes, and 

Anaeroplasma which contributed to the advantageous modulation of the 

gut microbiota. Besides, L. mucosae affected the gut levels of short-chain 

fatty acids (SCFAs) that are important for the antiviral response. L. mucosae 

1,025 increased acetate, propionate, and butyrate levels, whereas L. mucosae 

M104R01L3 increased the level of acetate in the gut. L. mucosae M104R01L3 

may protect against viral infection by upregulating the IFN-β levels in the lungs 

and its antiviral effect may be related to the increase of acetate levels in the 

gut. In conclusion, the three L. mucosae strains exerted antiviral effects against 

RSV infection by differentially regulating immune responses and intestinal 

micro-ecological balance. This study can provide a reference for studying the 

mechanisms underlying the antiviral effects of L. mucosae.
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Introduction

Respiratory syncytial virus (RSV) is an RNA virus of the 
Paramyxovirus family that causes diseases of variable severity with 
little systemic symptoms (Openshaw et al., 2017). This virus is 
responsible for most deaths due to lower respiratory viral 
infections in young children. In 2015, RSV caused lower 
respiratory tract infection in approximately 33.1 million children 
and over 100,000 deaths worldwide (Shi et al., 2017). RSV also 
threatens the health of individuals who are immunodeficient as a 
result of aging or lung transplantation (William et  al., 2003; 
Burrows et al., 2015). Although a single RSV infection cannot 
cause severe disease, compelling evidence suggests that it may 
result in a secondary bacterial infection that induces more serious 
lung damage (Damasio et al., 2015). Moreover, RSV reinfection 
easily occurs because of immune escape even though primary 
infection induces both humoral and cellular immune responses 
(Kikkert, 2020). For example, the nonstructural protein NS1 of 
RSV contributes to immune escape by inhibiting the antiviral type 
I interferon (IFN) pathway (Hijano et al., 2019). At present, no 
effective prophylactic measures can protect against RSV infections. 
Therefore, a safe, universal, and cost-effective prophylactic 
approach is needed to reduce RSV infections early in life.

The intestinal microbe has recently attracted research interest 
because it relieves the symptoms of respiratory diseases, including 
asthma and bacterial and viral infections (Wypych et al., 2019). 
Previous investigations suggest that the lung health and intestinal 
micro-ecological balance (Tulic et  al., 2016). The intestinal 
microbiota diversity in mouse models of respiratory viral 
infection is significantly altered, with increased Bacteroidetes and 
decreased Firmicutes (Groves et  al., 2018) Particularly, RSV 
infection increases the abundance of Muribaculaceae, 
Clostridiales, Odoribacteraceae, and Actinomyces (Groves et al., 
2018, 2020) and reduces that of short-chain fatty acids (SCFA)-
producing bacteria, such as Lachnospiraceae (Harding et  al., 
2020). Gut microbes also affect lung health. Viral clearance is 
delayed, and antiviral immune responses are impaired in mice 
infected with the influenza virus and treated with antibiotics (Abt 
et al., 2012). According to present research, there are two main 
pathways for intestinal microbe to influence lung health. Firstly, 
toll-like receptors (TLRs) can recognize bacterial components 
and activate the nuclear factor-kappa B (NF-κB) transcription 
factor that is a prerequisite for the expression of genes associated 
with innate immunity and inflammation (Tsay et al., 2011). The 
intestinal microbe can regulate the toll-like receptors7 signaling 
pathway to protect against influenza (Wu et al., 2013). Meanwhile, 
intestinal bacterial metabolites are important to prevent 
respiratory viral infection. For instance, desaminotyrosine, 

produced in the gut by Clostridium orbiscindens, protects hosts 
from influenza infection (Steed et al., 2017). SCFAs are common 
metabolites of the intestinal microbiota that play an important 
role in protecting against respiratory infections. Influenza 
infection contributes to bacterial superinfection by reducing the 
production of SCFAs (Sencio et  al., 2020). Especially acetate 
produced by gut microbiota protects against RSV infection by 
activating the type I IFN response (Antunes et al., 2019). SCFAs 
can regulate the balance of T cells and the immune responses 
(Trompette et al., 2014, 2018).

Lactobacillus (L.) mucosae is a common species of intestinal 
microbe that produces acetate, and L. mucosae 1,025 protects mice 
against infection with influenza A virus (Lu et al., 2021). Therefore, 
we hypothesize that L. mucosae may have antiviral effects on RSV 
infection in mice through regulating the gut microbiota and 
metabolites. The present study explored the antiviral effects of three 
L. mucosae strains in a mouse model infected with the RSV Long 
strain. The prophylactic effect of the three strains on RSV infection 
was evaluated by analyzing the clinical symptoms, immune responses, 
and gut microbiota composition. This study will contribute to explore 
the mechanisms of L. mucosae to protect against RSV infection.

Materials and methods

Bacterial strain propagation

Lactobacillus mucosae 1,025, L. mucosae M104R01L3, and 
L. mucosae DCC1HL5 strains were stored at the Culture 
Collection of Food Microbiology (CCFM) owned by Jiangnan 
University. The strains were cultured in De Man, Rogosa, and 
Sharpe medium (MRS) containing 0.05% (w/v) L-cysteine-HCl at 
37°C for 24 h in an anaerobic incubator (AW500SG, Electrotek 
Scientific Ltd., Shipley, United Kingdom). The mice were orally 
administered with 2.5 × 108 CFU of the bacterial strain suspension 
(200 μl).

Treatments and RSV infection

The animal study was reviewed and approved by the Ethics 
Committee of Yangzhou University (Approval No. 202011004). 
Female 3–4-week-old BALB/c mice (Charles River Co., Ltd., 
Beijing, China) were kept in a facility with a controlled light cycle 
(12/12 h light/dark), temperature (25 ± 2°C), and humidity level 
(50%). Mice were fed standard commercial chow and water ad 
libitum. Mice were acclimated for 10 days, then randomly assigned 
to blank, RSV, positive control, and strain groups (n = 8 each).
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Animal model of mice with RSV infection was established by 
intranasal instillation of 105 TCID50 RSV Long strain (Key 
Laboratory of Avian Infectious Diseases, Yangzhou University, 
Yangzhou, China), and mice achieved a weight loss more than 3% 
of body weight in 5 days post-infection (Antunes et al., 2019). For 
1 week before infection, all mice in the three bacterial strain 
groups were administered with 2.5 × 108 CFU of bacterial 
suspension (200 μl) daily (Kei et al., 2019). The blank and RSV 
groups were administered with an equal volume of sterile saline. 
All groups except the blank were intranasally infected with RSV 
on day 17. After infection, mice were continually administered 
with 200 μl of bacterial suspension or sterile saline for 5 days, until 
sacrificed after anesthesia on day 22 (Figure 1A). The positive 
controls were intraperitoneally injected with ribavirin on the day 
after infection. The mice were weighed daily after RSV infection 
to assess changes.

Routine blood analysis

Blood was collected from the sacrificed mice into 
anticoagulation tubes containing ethylenediaminetetraacetic 

acid (EDTA)-K2 at room temperature. Blood samples were 
evaluated using a BC-5000 Vet automated hematology analyzer 
(Shenzhen Mindray Biomedical Electronics Co., Ltd., 
Shenzhen, China).

Protein content in bronchoalveolar 
lavage fluid

Mouse lungs were lavaged three times with 0.8 ml phosphate-
buffered saline to obtain bronchoalveolar lavage fluid (BALF). The 
protein content in BALF was measured using Enhanced BCA 
Protein Assay Kits (Beyotime Biotechnology Co., Ltd., 
Shanghai China).

Histopathological analysis of lung tissue

The left lobes of the lungs were fixed in 4% paraformaldehyde 
and embedded in paraffin blocks that were cut into 5-μm sections 
and stained with hematoxylin and eosin (HE). The stained 
sections were visualized using a Pannoramic MIDI digital scanner 

A

B C

FIGURE 1

Effects of three Lactobacillus mucosae strains on weight loss and viral load in a mouse model of respiratory syncytial virus (RSV) infection. 
(A) Timeline of administering three L. mucosae strains to mouse models and infecting them with RSV. (B) Changes in body weight of mice. The 
calculation of the weight change of each mouse was taken their weight of Day 17 as the baseline. (C) Viral load in lung tissues (n = 8; *p < 0.05, 
***p < 0.001, ****p < 0.0001 vs. RSV group). Error bars indicate the means ± standard error of the mean (SEM). Differences were compared using 
one-way ANOVA, followed by Fisher’s LSD tests. P-values were adjusted using a false discovery rate. Blank, not infected with RSV. RSV, infected 
with respiratory syncytial virus and untreated.
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(3DHistech Ltd., Budapest, Hungary). The degree of histological 
damage to the lungs of four mice per group was scored on a scale 
of 0–3 (Jeffrey et al., 1991).

Viral load

Total RNA was extracted from lung tissues using the 
FastPure® Cell/Tissue Total RNA Isolation Kit (Vazyme Biotech 
Co., Ltd., Nanjing, China). First-strand cDNA was synthesized 
from total RNA using HiScript® III SuperMix for qPCR (Vazyme 
Biotech Co., Ltd., Nanjing, China). Real-time quantitative reverse 
transcription polymerase chain reaction (qRT-PCR) analysis was 
performed using iTaq Master SYBR Green Super Mix (Bio-Rad 
Laboratories Inc., Hercules, CA, United  States) and a CFX96 
Thermal Cycler (Bio-Rad Laboratories Inc.). The relative 
expression of genes was normalized to that of GAPDH and 
calculated using the 2−ΔΔCT method (Livak and Schmittgen, 2001). 
Table 1 shows the primer sequences.

Analysis of cytokine concentrations

Lung tissues were homogenized in RIPA Lysis Buffer 
(200 μl/20 mg tissue; Beyotime Biotechnology Co., Ltd., Shanghai 
China) containing a protease and phosphatase inhibitor cocktail 
(Beyotime Biotechnology Co., Ltd., Shanghai China). The 
homogenates were clarified using centrifugation at 4°C, and the 
cytokines IFN-β, tumor necrosis factor (TNF)-α, interleukin 
(IL)-1β, and IL-10 were quantified using the respective ELISA kits 
(SenBeiJia Co., Ltd., Nanjing, China). Protein results are expressed 
as BSA equivalents.

Gut microbial profiling

Fecal samples were collected using sterile tubes on day 21. 
DNA was extracted from fecal samples (frozen at −80°C) using 

the Fast DNA SPIN Kit for Feces (MP Biomedicals; Carlsbad, CA, 
United States), and the 16S rRNA gene was amplified via PCR 
using the specific primers (341F and 806R) for bacterial 
rRNA. Table 2 shows the primer sequences. The PCR products 
were purified using DNA Gel/PCR Purification Miniprep Kits 
(Beiwo Meditech Co., Ltd., Hangzhou, China). Libraries were 
constructed using a Library Prep Kit for Illumina (Illumina, San 
Diego, CA, United  States) as described by the manufacturer. 
Index-coded samples were clustered on a cBot Cluster Generation 
System (Illumina) as described by the manufacturer. The libraries 
were sequenced using an Illumina MiSeq high-flux sequencing 
platform (Illumina), and paired-end reads were generated. Finally, 
16S rRNA sequence data were processed as previously described 
(Caporaso et  al., 2010). Bioinformatics analyses included 
community diversity profiles and taxonomic differences between 
microbial communities.

Analysis of SCFA

SCFAs levels in cecal contents were measured using a GCMS-
QP2010 Ultra gas chromatograph-mass spectrometer (Shimadzu 
Corp., Kyoto, Japan) according to a previously described external 
standard method (Moreau et al., 2003). Briefly, after acidification 
with sulfuric acid, SCFAs were extracted with ether and 
dehydrated with anhydrous sodium sulfate. The supernatant was 
analyzed using gas chromatography–mass spectrometry 
(GC–MS).

Statistical analysis

Differences were compared using one-way analysis of variance 
(ANOVA), followed by Fisher’s least significant difference (LSD) 
tests. p values were adjusted using the false discovery rate. The 
error bars of the data indicate the means ± standard error of the 
mean (SEM). Gut microbial analysis was performed at online web.1

Results

Lactobacillus mucosae exerted antiviral 
effects on RSV infection

After infection, body weight of mice in the RSV group 
significantly decreased, whereas L. mucosae M104R01L3 and 
1,025 strains improved weight loss (Figure  1B). Particularly, 
L. mucosae M104R01L3 maintained stable weight in mice. And 
the impact of DCC1HL5 treatment on body weight was limited. 
The positive controls injected with ribavirin weighed less than the 
RSV group throughout the infection period. Moreover, all 

1 https://www.bioincloud.tech/

TABLE 1 Primer sequences for qRT-PCR.

Primers Forward/
reverse

Sequence (5′ to 3′)

GAPDH Forward AATGGTGAAGGTCGGTGTGAAC

Reverse GCCTTGACTGTGCCGTTGAA

RSV-F Forward GCAACCAACAATCGAGCCAG

Reverse GGCGATTGCAGATCCAACAC

TABLE 2 Primer sequences for 16S rRNA.

Primers Forward/
reverse

Sequence (5′ to 3′)

341F Forward CCTAYGGGRBGCASCAG

806R Reverse GGACTACNNGGGTATCTAAT
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L. mucosae strains significantly (p < 0.0001) suppressed the viral 
load (expressed relative to levels of the RSV F protein) in lung 
tissue homogenates on day 5 post-infection and were more 
effective than ribavirin therapy (Figure  1C). These results 
indicated that all three L. mucosae improved RSV infection, 
particularly the M104R01L3 strain, which maintained 
body weight.

Lactobacillus mucosae exerted 
anti-inflammatory effect on systemic 
inflammatory responses

The effects of L. mucosae on systemic inflammatory responses 
were explored by quantifying changes in blood cell levels via 
routine blood tests. There were no significant changes in the 
proportion of lymphocytes (lymph%) between the RSV group and 
the blank group (Figure 2A). The number of lymphocytes was 
significantly (p < 0.01) increased in the DCC1HL5 group 
(Figure  2A), whereas the M104R01L3 treatment significantly 
(p < 0.01) reduced the lymph%. RSV infection significantly 
(p < 0.01) increased the proportion of monocytes (mon%) in the 
RSV group. However, the mon% were decreased in the positive 
control and L. mucosae groups, compared with RSV group 
(Figure 2B). The proportion of neutrophilic granulocytes (gran%) 
was higher in the RSV group. Like ribavirin in the positive 
controls, three L. mucosae treatments reduced the gran%. It is 
gratifying that L. mucosae 1,025 and DCC1HL5 treatment 
recovered gran% to normal (Figure 2C). RSV infection did not 
affect platelet (PLT) counts in the blood, whereas counts increased 
in the positive control and L. mucosae groups (Figure 2D).

Overall, L. mucosae strains recovered blood levels of 
granulocytes and monocytes but increased the numbers of PLTs. 
L. mucosae M104R01L3 treatment significantly reduced the 
lymphocyte proportions in the blood.

Lactobacillus mucosae exerted different 
effects on damage and inflammation in 
the lungs

The extent of the damage was expressed using total protein in 
BALF. And the effects of L. mucosae on lung inflammation were 
explored by quantifying cytokines and histologically assessing 
HE-stained lung sections.

The levels of total protein were significantly higher in BALF 
from the RSV group than the blank group (p < 0.0001), indicating 
lung damage in the infected mice. The protein content in BALF 
was significantly decreased in the positive control group (p < 0.01), 
whereas L. mucosae did not improve this index (Figure 3A).

TNF-α and IL-1β are the pro-inflammatory cytokines. RSV 
infection increased their expression in the lungs. L. mucosae 
regulated the expression of these cytokines in lung tissues. The 
L. mucosae 1,025 treatment exhibited a downward trend in the 

levels of pro-inflammatory cytokines, whereas the M104R01L3 
treatment increased the levels of TNF-α and the DCC1HL5 
treatment increased the levels of IL-1β in the lung tissues. 
However, ribavirin noticeably downregulated the expression of 
these pro-inflammatory cytokines (Figures 3B,C). IL-10 is an anti-
inflammatory cytokine. RSV infection did not affect the levels of 
this cytokine. The concentrations of IL-10 were significantly 
increased in the 1,025 and DCC1HL5 groups (Figure 3D).

The levels of the major antiviral mediator, IFN-β, were in 
quantified lung homogenates. RSV infection did not activate the 
IFN-β response or change its concentration compared with that 
of the blank group. L. mucosae strains increased the levels of 
IFN-β. Particularly, this cytokine was significantly increased in the 
M104R01L3 group (Figure 3E).

Histological section is an important indicator to assess the 
damage and inflammation in the lungs. The sections histologically 
assessed the effects of L. mucosae treatments on pathological lung 
symptoms. The results showed perivascular infiltration of 
inflammatory cells after RSV infection compared with the blank. 
However, L. mucosae alleviated the inflammatory infiltration 
induced by viral infection. In particular, the inflammation score 
was lower for the M104R01L3 group than that of the 1,025 and 
DCC1HL5 groups (Figures 3F,G).

Hence, L. mucosae exerted different effects on host 
inflammation in the lungs. L. mucosae 1,025 strain reduced the 
expression of the pro-inflammatory cytokines and increased the 
levels of the anti-inflammatory cytokine. Specifically, IFN-β levels 
increased in the M104R01L3 group. According to histological 
sections and inflammation score, L. mucosae M104R01L3 
exhibited the best improvement in the lungs.

Lactobacillus mucosae altered the gut 
microbiota composition

Alpha-diversity indices were analyzed to determine the 
diversity of the gut microbiota among the groups. The Chao1 
index did not significantly differ among the groups (Figure 4A). 
According to the Shannon and observed operational taxonomic 
unit (OTU) indices (Figures  4B,C), RSV infection did not 
obviously change the diversity of the gut microbiota. However, 
these indices were significantly (p < 0.01) increased in the 
M104R01L3 group but not in the other groups. The Faith’s 
phylogenetic diversity (faith_pd) index of the M104R01L3 and 
DCC1HL5 groups was significantly higher than that of the RSV 
group (Figure 4D).

According to the beta-diversity analysis, RSV infection 
minimally affected the gut microbiota diversity, whereas L. mucosae 
altered the beta diversity of the gut microbiota 
(Supplementary Figure 1). The composition of the gut microbiota 
was analyzed at the phylum level to determine changes. The relative 
abundance of Bacteroidetes was higher in the 1,025 and M104R01L3 
groups (Supplementary Figure 2A), whereas M104R01L3 treatment 
decreased the abundance of Firmicutes (Supplementary Figure 2B), 
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and L. mucosae treatments had no effect on the abundance of 
Proteobacteria (Supplementary Figure 2C). DCC1HL5 treatment 
increased the relative abundance of the Verrucomicrobia family 
(Supplementary Figure  2D). Actinobacteria were more  
abundant in the RSV group than that of the blank group 
(Supplementary Figure 2E). The L. mucosae strains exerted different 
effects on gut microbiota composition at the family level using  
linear discriminant analysis effect size (LEfSe) analysis 
(Supplementary Figure  3A). At the family level, all of them  
increased the relative abundance of Erysipelotrichaceae 
(Supplementary Figures 3C–E). The abundance of Muribaculaceae 
(S24-7) was significantly higher in the 1,025 and M104R01L3 groups 
(Supplementary Figures  3C,D). The relative abundance of 
Akkermansiaceae was increased in the DCC1HL5 group 
(Supplementary Figure 3E).

The composition of the gut microbiota was analyzed at the 
genus level using LEfSe analysis. RSV infection altered the relative 
abundance of genera associated with SCFA production, including 
decreased Lachnoclostridium and Butyricimonas. And the 
abundances of Alloprevotella and Prevotellaceae NK3B31 group 
were higher than the blank group (Figure  5A). However, all 
L. mucosae groups increased the abundance of Butyricimonas, 
compared with RSV group (Figures  5B–D). Except for 
Butyricimonas, the L. mucosae 1,025 group had a higher 
abundance of Ruminococcaceae UCG-010, as well as that in the 
L. mucosae M104R01L3 group (Figures 5B,C). L. mucosae 1,025 
treatment specially reduced the levels of Prevotellaceae NK3B31 
group (Figure  5B). Furthermore, M104R01L3 and DCC1HL5 
strains exerted similar effects on gut microbiota composition; they 
increased the relative abundance of Akkermansia, Clostridium 

A B

C D

FIGURE 2

Changes in systemic immune responses. Proportions of (A) lymphocytes (Lymph%), (B) monocytes (Mon%), and (C) granulocytes (Gran%). 
(D) Platelets (PLTs) in blood (n = 8; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. RSV group). Differences were compared using one-way 
ANOVA, followed by Fisher’s LSD test. P-values were adjusted using false discovery rate. Blank, not infected with RSV. RSV, infected with respiratory 
syncytial virus and untreated.
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sensu stricto 1, Rikenellaceae RC9, Turicibacter, and 
Ruminiclostridium 9. Notably, the DCC1HL5 strain enriched the 
gut microbiota of mice with Adlercreutzia spp. The M104R01L3 
treatment resulted in a higher abundance of Alistipes and 
Anaeroplasma (Figures  5C,D). These results indicated that 
L. mucosae strains modulated gut microbiota differently at the 
genus level.

Correlation analysis were performed between the gut 
microbiota and cytokines, using Spearman’s rank correlation 
coefficient, to determine the impact of the gut microbiota on host 
inflammatory cytokines to RSV infection. The levels of TNF-α, 
IL-1β, and IFN-β were positively correlated with the abundances 
of Clostridium sensu stricto 1, Faecalibaculum, Turicibacter, 
Lactococcus, and Escherichia-Shigella. The abundances of 
Prevotellaceae NK3B31 were positively correlated with the levels 
of TNF-α and IL-1β. However, the abundances of Lachnospira and 
Bacteroides were negatively correlated with the levels of these 
pro-inflammatory cytokines. In addition, the abundances of 
Catabacter, Akkermansia, and Rikenellaceae RC9 were positively 
associated with increased TNF-α expression. The abundances of 
Enterococcus and Alistipes were positively correlated with the levels 
of IL-1β. And the TNF-α levels were negatively correlated with the 
levels of Muribaculum, Ralstonia, and Coprococcus 2. In particular, 
the abundances of Angelakisella were positively correlated with the 
IFN-β level and the abundances of Lachnospira were negatively 
correlated with this cytokine. The IL-10 levels were positively 
correlated with Ruminococcaceae UCG-014 and Intestinimonas, 
while it was negatively correlated with Oscillibacter, 

Lachnospiraceae UCG-006, Acetatifactor, A2, and Harryflintia 
(Figure 5E). To sum up, the upregulations of pro-inflammatory 
cytokines were positively correlated with the abundances of 
Clostridium sensu stricto 1, Faecalibaculum, Turicibacter, 
Prevotellaceae NK2B31, Lactococcus, Catabacter, Akkermansia, 
Rikenellaceae RC9, Enterococcus, and Alistipes. And the 
abundances of Lachnospira, Bacteroides, Muribaculum, Ralstonia, 
and Coprococcus 2 were negatively correlated with the levels of 
these cytokines. The levels of anti-inflammatory cytokine were 
positively correlated with Ruminococcaceae UCG-014 and 
Intestinimonas; negatively correlated with Oscillibacter, 
Lachnospiraceae UCG-006, Acetatifactor, A2, and Harryflintia.

Lactobacillus mucosae strains affected 
SCFA production

SCFAs are effective intestinal metabolites for alleviating 
respiratory diseases, including viral infections (Antunes et al., 
2019). The levels of acetate, propionate, and butyrate were 
measured in cecal contents using GC–MS. RSV infection 
decreased all the levels of SCFAs, especially acetate and butyrate 
(Figures 6A–C). The results showed that 1,025 and M104R01L3 
strains increased the concentrations of SCFAs, particularly acetate 
(Figure 6A). Acetate levels were higher in the M104R01L3 group 
than that in the other groups. And the 1,025 strain significantly 
increased the levels of propionate (Figure 6B). Furthermore, the 
1,025 strain generated the most butyrate among all groups, 
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FIGURE 3

Impact of three Lactobacillus mucosae strains on cytokine levels and lung damage. Levels of (A) total protein in BALF, (B) TNF-α in lung tissues, 
(C) IL-1β in lung tissues, (D) IL-10 in lung tissues, and (E) IFN-β in lung tissues. (F) Inflammation scores of lung tissues (n = 4). (G) Lung sections 
stained with hematoxylin and eosin. Arrows, perivascular inflammatory infiltration. Original magnification ×400. (n = 8, except (F); *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 vs. RSV group). Error bars show the means ± standard error of the mean (SEM). Differences were compared 
using one-way ANOVA, followed by Fisher’s LSD test. P-values were adjusted using a false discovery rate. Blank, not infected with RSV. RSV, 
infected with respiratory syncytial virus and untreated.
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although other strains also triggered increased butyrate 
production (Figure 6C). Particularly, 1,025 strains significantly 
increased all the levels of SCFAs.

Discussion

Gut microbiota and probiotics exert preventive and alleviating 
effects on respiratory diseases, including viral and bacterial 
infections; however, the mechanisms are still not completely 
understood. According to the gut–lung axis theory, the gut 
microbiota influences lung health by generating soluble microbial 
components and metabolites that are transported via circulation 
(Wypych et al., 2019). Therefore, understanding gut microbial 
alterations that protect against respiratory diseases could 
contribute to the clinical applications of probiotics. L. mucosae 
modulates immune system tone (Ryan et al., 2019), and strain 
1,025 significantly protects against influenza A infection (Lu et al., 

2021). The present study investigated the prophylactic effects of 
three L. mucosae strains against infection with RSV Long strain. 
The results showed that all three strains significantly decreased 
viral load in the lungs, through different effects on cytokine levels 
and routine blood parameters. It is indicated that L. mucosae have 
various mechanisms to inhibit RSV replication and exert 
prophylactic effects against RSV infection.

The antiviral mechanisms of three strains of L. mucosae 
were explored by evaluating IFN-β levels as an indicator of the 
type I IFN response. Type I IFNs are major antiviral effectors 
that mediate antiviral responses, including the Mx GTPase 
pathway and the 2′,5′-oligoadenylate synthetase-directed 
ribonuclease L pathway (Sadler and Williams, 2008). Proteins 
of RSV may be an important means of inhibiting antiviral type 
I IFN expression through multiple pathways, thus promoting 
viral replication (Hijano et al., 2019). RSV does not induce 
strong, long-term immunity because of innate immune 
evasion; this leads to recurrent infections with the same or 

A D

B C

FIGURE 4

Impact of three Lactobacillus mucosae strains on the alpha-diversity of the gut microbiota. (A) Chao1, (B) observed operational taxonomic units 
(OTUs), (C) Shannon, and (D) Faith’s phylogenetic diversity indices. (n = 8; *p < 0.05, **p < 0.01 vs. RSV group). Differences were compared using one-
way ANOVA, followed by Fisher’s LSD test. p values were adjusted using a false discovery rate. Blank, not infected with RSV. RSV, infected with 
respiratory syncytial virus and untreated.
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different strains of RSV (Paul et  al., 2006). In the present 
study, RSV infection did not increase IFN-β expression in the 
lungs. However, M104R01L3 treatment, but neither 1,025 nor 
DCC1HL5 treatments, significantly increased IFN-β levels. 
This indicated that M104R01L3 treatment could activate type 
I  IFN expression in the lungs to inhibit viral replication. 
Moreover, both M104R01L3 and DCC1HL5 treatments 
increased the levels of TNF-α in the lungs. This 
pro-inflammatory cytokine has been regarded as a factor that 
exacerbates illness. However, TNF-α plays a protective role 
against RSV infection (Neuzil et al., 1996). It enhances the 
expression of the TLR and retinoic acid-inducible gene 
I (RIG-I) signaling pathways, which stimulate more cytokine 
and chemokine production in lung epithelial cells (Matikainen 
et  al., 2006). Infants infected with RSV have less TNF-α 
synthesis than healthy infants, implying an impaired early 
innate immune response (Kreso et  al., 2010). Anti-TNF-α 
treatment leads to a higher RSV lung viral load compared with 
that in the controls (Groves et al., 2020). According to these 

results, M104R01L3 and DCC1HL5 treatment may protect 
against RSV infection through a TNF-α-dependent pathway.

Based on the IL-1β concentrations in the lungs, it was 
speculated that DCC1HL5 treatment may induce the expression 
of TNF-α associated with IL-1β, which is a pro-inflammatory 
cytokine involved in innate immunity. Moreover, IL-1β induces 
TNF-α-mediated inflammatory responses in lung epithelial cells 
by improving TNF receptor surface expression in epithelial cells 
(Saperstein et al., 2009). IL-1β indirectly influences viral clearance 
by activating the TLR7 signaling pathway (Abdul-Cader et al., 
2018). The small hydrophobic (SH) protein of RSV inhibits TNF 
signaling, and recombinant RSV without an SH gene increases the 
levels of IL-1β and TNF (Russell et  al., 2015). In terms of 
DCC1HL5 treatment, IL-1β might be  a critical factor for 
regulating immunity and protecting against RSV infection. 
Probiotics increase the levels of inflammatory cytokines in the 
lungs when they inhibit RSV replication. A regulated 
inflammatory response is necessary for pathogen elimination. 
Probiotics might regulate the expression of pro- and 
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FIGURE 5

Impact of three Lactobacillus mucosae strains on the relative abundance of bacterial genera and correlation analysis. Linear discriminant analysis 
effect size (LEfSe) comparison of gut microbes at the genus level between (A) blank and RSV groups, (B) 1,025 and RSV groups, (C) M104R01L3 
and RSV groups, and (D) DCC1HL5 and RSV groups. (E) Correlations between cytokines and gut microbiota. (n = 8; *p < 0.05, **p < 0.01, ***p < 0.001). 
Blank, not infected RSV. RSV, infected with respiratory syncytial virus and untreated.
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anti-inflammatory factors to balance immune responses. For 
example, treatment with L. rhamnosus CRL1505 induces TNF-α 
production while increasing IL-10 levels, leading to an effective 
and safe response against RSV infection (Yohsuke et al., 2013). In 
this study, DCC1HL5 treatment upregulated IL-10 secretion in the 
lungs, but not M104R01L3; M104R01L3 treatment might regulate 
this balance through different pathways. Moreover, the regulation 
of pro- and anti-inflammatory factors is not synchronous, which 
unliked L. rhamnosus CRL1505. M104R01L3 and DCC1HL5 
treatments protect against RSV infection by activating 
inflammatory responses. In contrast, L. mucosae 1,025, a potential 
anti-inflammatory probiotic, decreased and increased the levels of 
pro- and anti-inflammatory cytokines, respectively. Surprisingly, 
L. mucosae 1,025 did not induce IFN-β expression. These results 
suggested that the antiviral mechanism of L. mucosae 1,025 is 
independent of both type I IFN and inflammatory responses. The 
mechanism by which L. mucosae 1,025 inhibits viral replication 
remains unknown and requires further investigation.

In the present study, RSV infection led to low lymphocyte 
counts in the blood with no significant difference. RSV infection 
restrains the development of cytotoxic responses, such as the 
induction of lymphocyte apoptosis (Roe et  al., 2004) and 
alteration in dendritic cell function (Guerrero-Plata et al., 2006). 
The mechanism of apoptosis induced by RSV is responsible for 
the low lymphocyte counts. Lymphopenia during measles 
infection is thought to induce T cell immunosuppression, like 
RSV infection (O’Donnell and Carrington, 2002). T cell 
proliferative responses, the development of CD8+ T cell memory, 
and CD8+ T cell infiltration might be inhibited by RSV (Chang 
and Braciale, 2002). The increased lymphocyte levels in the 
DCC1HL5 group suggested that it might activate the systemic 

immune response. However, this requires further investigation. 
Interestingly, M104R01L3 treatment significantly decreased 
lymphocyte levels, which might be the result of redistribution in 
the lungs (Smith et al., 2001). Whether M104R01L3 treatment 
affects lymphocytes in accordance with this hypothesis requires 
further investigation. Neutrophils are critical effector cells of the 
innate immune system and are the predominant inflammatory 
cells recruited to the respiratory tract (Galani and Andreakos, 
2015). They are also associated with disease severity in RSV 
infections (Kozo et  al., 2005). Although neutrophils possess 
various defensive strategies that protect against pathogens, they 
may also cause collateral damage to host tissue (Cortjens et al., 
2016). In the present study, all treatments, except for M104R01L3, 
observably decreased and recovered the level of neutrophilic 
granulocytes to the normal level. Appropriate neutrophil 
apoptosis is important for the resolution of inflammation (Driss 
and Filep, 2010). Platelets have a variety of transmembrane 
receptors, including TLRs and TNF receptors, which might 
be associated with the regulation of immune responses (Zamani-
Rarani et  al., 2022). During COVID-19, platelets play an 
important role in the host’s antiviral responses (Trugilho et al., 
2022). Interestingly, the levels of blood platelets significantly 
increased after ribavirin and L. mucosae strains treatments. The 
activation of platelets might contribute to damage repair and 
increase antiviral responses. Besides, the alteration of platelets 
might be  due to the change in gut microbiota composition 
(Joseph et al., 2021). Future studies are needed to explore the 
mechanisms of increasing platelets in L. mucosae treatments.

This study indicated that L. mucosae can modulate systemic 
immune responses to alleviate inflammation induced by 
RSV infection.

A B C

FIGURE 6

Levels of SCFAs in mouse ceca. (A) Acetate. (B) Butyrate. (C) Propionate (n = 8. *p < 0.05, **p < 0.01, ***p < 0.001 vs. RSV group). Error bars indicate the 
means ± standard error of the mean (SEM). Differences were compared using one-way ANOVA followed by Fisher’s LSD test. p values were 
adjusted using a false discovery rate. Blank, not infected with RSV. RSV, infected with respiratory syncytial virus and untreated.
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The gut microbiota plays a critical role in protecting against 
pathogen infection through modulating the innate and adaptive 
immune responses. According to the gut–lung axis theory, RSV 
infection alters gut microbiota and metabolites. The alpha 
diversity is lower, and beta diversity significantly differs in the 
gut microbiota of patients with severe disease after RSV infection 
compared with that in the controls (Harding et  al., 2020). 
However, RSV infection did not markedly affect either alpha or 
beta diversity in this study. The M104R01L3 and DCC1HL5 
strains changed the composition of the gut microbiota, but 
L. mucosae 1,025 had little effect. Our analysis of the gut 
microbiota also suggested that the distinct immunoregulatory 
and antiviral activities mediated by L. mucosae during RSV 
infection might be associated with distinct bacterial genera. The 
abundance of Butyricimonas, which converts carbohydrates to 
butyrate, plays an important role in maintaining a beneficial gut 
environment during RSV infection. The three L. mucosae strains 
restored the abundance of Butyricimonas. In the L. mucosae 
1,025 group, the abundance of Butyricimonas might have been a 
major factor that resisted RSV infection when the strain 
supplement also increased the abundance of Ruminococcaceae 
UCG-010. Butyricimonas was negatively correlated with the 
IL-1β and IL-6 levels but positively correlated with those of 
TNF-α and IL-10 (Lee et al., 2018; An et al., 2021). In this study, 
the levels of pro-inflammatory cytokines were negatively 
correlated with the abundances of Prevotellaceae NK3B31, which 
were reduced in the L. mucosae 1,025 group compared with the 
RSV group. The anti-inflammatory mechanism of L. mucosae 
1,025 may be  associated with the enrichment of both 
Butyricimonas and Ruminococcaceae UCG-010 and the decrease 
of Prevotellaceae NK3B31. Although the abundances of 
Butyricimonas and Ruminococcaceae UCG-010 also increased in 
the M104R01L3 and DCC1HL5 groups, other genera may play a 
greater role in modulating inflammation and resisting viral 
infections. M104R01L3 and DCC1HL5 treatments increased the 
abundances of Turicibacter and Clostridium sensu stricto 1, which 
are considered pro-inflammatory taxa (Wang et al., 2017; Ma 
et al., 2018). The results of the correlation analysis indicated that 
enriched Turicibacter and Clostridium sensu stricto 1 might 
contribute to the increased levels of IL-1β and TNF-α in the 
M104R01L3 and DCC1HL5 groups. Turicibacter might 
be associated with bile acid metabolism (Kemis et al., 2019), 
while RSV infection downregulates the metabolism of primary 
and secondary bile acids (Groves et  al., 2020). In addition, 
Akkermansia, a promising probiotic candidate, increased in 
M104R01L3 and DCC1HL5 groups. This genus exerted 
beneficial effects during H7N9 infection (Hu et al., 2020). In the 
present study, Akkermansia might play a beneficial role in 
protecting mice against RSV infection by inducing TNF-α 
expression. These results suggested that these strains might help 
the host fight off virus infection by increasing the abundance of 
Akkermansia. Except these genera, M104R01L3 characteristically 
increased the abundances of Alistipes and Anaeroplasma, which 
are prime candidates for effective anti-inflammatory probiotics 

(Beller et al., 2020; Parker et al., 2020). The increase of Alistipes 
might be associated with the increased levels of blood platelets 
(Joseph et al., 2021). In addition, Faecalibaculum, Lactococcus, 
and Catabacter were increased in the M104R01L3 group, which 
might have contributed to the upregulated IFN-β. The DCC1HL5 
treatment increased the abundance of Adlercreutzia, an equol-
producing bacteria (Bian et  al., 2017). Adlercreutzia and its 
metabolites can increase anti-inflammatory capacity in the host 
(Wei et al., 2018). Our results suggested that L. mucosae protected 
the host from RSV infection associated with alteration of the gut 
microbiota composition.

The host interacts with microbiota-derived metabolites that 
are important for protection against pathogens. SCFAs, 
produced by the gut microbiota, regulate immune and antiviral 
responses that protect the host against respiratory infections. In 
the present study, RSV infection reduced the levels of SCFAs, 
especially acetate and butyrate. L. mucosae treatment 
significantly increased SCFA concentrations after RSV infection. 
Combined with the gut microbiota findings, the modulation of 
SCFA-producing bacteria contributed to the changes in cecal 
SCFAs. Unmetabolized SCFAs enter the lungs via the peripheral 
circulation (Wypych et  al., 2019; Sencio et  al., 2020). The 
antiviral mechanisms of the type I IFN response in lung tissues 
may be overcome by SCFAs in different ways. Probiotics protect 
against RSV-induced pathology through IFN-β derived from 
alveolar macrophages, which is attributed to increased acetate 
level (Ji et al., 2021). Acetate also exerts its effects on epithelial 
cells (Antunes et al., 2019). In addition to acetate, butyrate can 
induce a type I  IFN response (Patel et  al., 2012), and this 
correlates with the production of desaminotyrosine (Bastiaan 
et  al., 2018), which is associated with the activation of type 
I IFN signaling that ameliorates influenza infection (Steed et al., 
2017). Based on the upregulation of IFN-β expression in lung 
tissues, M104R01L3 treatment might recover the type I  IFN 
response to protect against RSV infection by increasing gut 
levels of acetate. Furthermore, SCFAs also enter the bone 
marrow, which is the main site of immune cell development 
(Dang and Marsland, 2019). As RSV evades the adaptive 
immune response by skewing the balance of T helper type 1 
(Th1)/Th2 toward a Th2-specific immune response (Becker, 
2006), recovering the balance of T cells might inhibit RSV 
replication. Circulatory SCFAs can modulate dendritic cell 
hematopoiesis and functionality in the bone marrow and impair 
Th2 differentiation (Trompette et al., 2014). Moreover, SCFAs 
improve the host response to influenza infection by dampening 
deleterious neutrophil-dependent immunopathology with 
antiviral CD8+ T cell responses enhanced by increasing T cell 
metabolism. SCFAs can prevent neutrophil influx into the 
airways by retaining them in the bone marrow (Trompette et al., 
2018). Based on these previous studies, this research indicates 
that L. mucosae may restore SCFAs levels to decrease neutrophil 
levels in the blood. Besides, Butyrate and propionate induce 
peripheral forkhead box protein P3 (FoxP3+) regulatory T cells, 
which promote influenza-specific T follicular helper. Butyrate 
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is an immune-suppressant via reducing the expression of 
co-stimulatory surface molecules and impairs T cell activation 
(Stricker et al., 2022). And the increased levels of SCFAs might 
inhibit the production of pro-inflammatory cytokines (Kruk 
et  al., 2022). In the L. mucosae 1,025 group, butyrate and 
propionate might contribute to the anti-inflammatory and 
antiviral effects (Anderson and Reiter, 2020).

According to the gut–lung axis theory, L. mucosae M104R01L3 
might activate the type I IFN responses by increasing the levels of 
acetate in the gut to inhibit the virus replication. The microbiota-
derived acetate might activate the antiviral activity in the 
pulmonary epithelial cells via the peripheral circulation. 
L. mucosae 1,025 might decrease the inflammation by increasing 
the levels of butyrate and propionate that were transported via 
circulation. However, L. mucosae DCC1HL5 exerted fewer effects 
on SCFAs levels, its mechanisms of protecting against RSV 
infection might associated with the increase of Turicibacter and 
Clostridium sensu stricto 1 in the gut.

Conclusion

Three L. mucosae strains exerted antiviral effects on RSV 
infection by regulating the host immune responses and gut 
microbiota composition. Among the three strains, L. mucosae 
1,025 treatment exhibited anti-inflammatory effects during RSV 
infection. M104R01L3 treatment induced the type I IFN response 
to protect against viral infection, whereas DCC1HL5 regulated the 
balance between anti- and pro-inflammatory cytokine levels. This 
study showed that L. mucosae prevent respiratory viral infection 
via various mechanisms, and gut microbiota and metabolites play 
essential roles. The findings of the present study can contribute to 
the future development of probiotics as prophylactic agents for 
RSV infections.
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