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Type 1 secretion systems play important roles in pathogenicity of Gram-negative
bacteria. However, the substrate secretion mechanism remains largely unknown. In
this research, we observed the sequence features of repeats-in-toxin (RTX) proteins,
a major class of type 1 secreted effectors (T1SEs). We found striking non-RTX-motif
amino acid composition patterns at the C termini, most typically exemplified by the
enriched “[FLI][VAI]” at the most C-terminal two positions. Machine-learning models,
including deep-learning ones, were trained using these sequence-based non-RTX-
motif features and further combined into a tri-layer stacking model, T1SEstacker, which
predicted the RTX proteins accurately, with a fivefold cross-validated sensitivity of ∼0.89
at the specificity of ∼0.94. Besides substrates with RTX motifs, T1SEstacker can
also well distinguish non-RTX-motif T1SEs, further suggesting their potential existence
of common secretion signals. T1SEstacker was applied to predict T1SEs from the
genomes of representative Salmonella strains, and we found that both the number
and composition of T1SEs varied among strains. The number of T1SEs is estimated to
reach 100 or more in each strain, much larger than what we expected. In summary, we
made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified
common sequence-based features at the C termini, and developed a stacking model
that can predict type 1 secreted proteins accurately.

Keywords: T1SS, T1SE, RTX proteins, T1SEstacker, prediction, deep learning

INTRODUCTION

Type 1 secretion systems (T1SSs) are uniquely distributed in Gram-negative bacteria, which can
secrete various substrate proteins through the two bacterial cell membranes by one step (classical)
or two steps (non-classical) into extracellular milieu (Smith et al., 2018b; Spitz et al., 2019). A T1SS
is composed by three elementary components—an ATP-binding cassette (ABC) transporter located
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in the inner membrane, an outer membrane factor (OMF), and a
membrane fusion protein (MFP) connecting the ABC transporter
(Kanonenberg et al., 2018). A wide variety of proteins are secreted
through this oligomeric secretion channel to play their biological
roles. Due to the simple structure of the system, T1SSs have been
widely applied in biomedical engineering applications (Schwarz
et al., 2012; Ryu et al., 2015; Park et al., 2020).

The T1SS substrates, also called type 1 secreted effectors
(T1SEs), have various biological functions, such as host
invasion (virulence factors, e.g., HlyA) (Felmlee et al., 1985),
enzymolysis (digestion enzymes, e.g., TliA and PrtA) (Son et al.,
2012), nutrient acquisition (iron-scavenger proteins, e.g., HasA)
(Kanonenberg et al., 2013), and biofilm formation (adhesins,
e.g., LapA) (Guo et al., 2019). Since the first T1SS substrate,
hemolysin A (HlyA), was discovered in 1979 and its nucleotide
sequence was determined in 1985 (Noegel et al., 1979; Felmlee
et al., 1985), the structural characteristics and function of T1SEs
have been studied extensively. Typical T1SEs can be classified
into three classes simply according to their T1SS ABC transporter
types: C39-containing ABC transporters with hydrolase activity,
C39-like domain (CLD)–containing ABC transporters without
hydrolase activity, and a third type of ABC transporters without
any additional N-terminal domain (Hui et al., 2021). Class
1 T1SEs, known as the smallest T1SS substrates, normally
contain N-terminal leader peptides. The C termini of the leader
peptides contain a canonical double glycine (“GG”) motif,
which can be recognized and cleaved by the C39 domains of
corresponding ABC transporters before the mature proteins are
secreted through T1SSs (Kanonenberg et al., 2013). Class 2 T1SEs
have remarkable repeats-in-toxin (RTX) domains and are also
known as RTX proteins. The glycine-rich nanopeptide repeats
in RTX domains show a “GGxGxDxUx” consensus sequence
motif where “x” is any amino acid and “U” represents a large or
hydrophobic amino acid. Class 3 T1SEs may also contain RTX
repeat sequences but not necessarily. The last two categories do
not contain N-terminal leader peptides, but instead potentially
have secretion signal sequences in the C termini. However, the
C-terminal signal patterns and function mechanisms remain to
be clarified (Kanonenberg et al., 2013). Recently, a group of
non-classical T1SEs named RTX adhesins (class 4) have been
reported, which are closely related to biofilm formation (Smith
et al., 2018b). Different from class 1–3 T1SEs, the RTX adhesins
are transported from cytoplasm to extracellular environment
by a two-step secretion mechanism, which involves periplasmic
intermediates. This subgroup of T1SS machinery is linked with
a bacterial transglutaminase-like cysteine proteinase (BTLCP)
(Smith et al., 2018b). The RTX adhesion proteins have dialanine
BTLCP cleavage sites in the N-terminal retention module that
can be recognized and cleaved by the machinery-coupled BTLCP
in periplasm before the cross-outer-membrane transport (Boyd
et al., 2014; Smith et al., 2018b). The currently known RTX
adhesins also have RTX repeats and signal sequences in the C
termini (Boyd et al., 2014; Smith et al., 2018b).

Both the function and sequences of T1SEs show large diversity,
and until now only ∼100 T1SEs have been validated, which are
homology-not-filtered, i.e., being redundant with high sequence
homology, and therefore could represent fewer independent

validated effectors1. Bioinformatic strategies have also been tried
to predict novel T1SEs, but mainly focused on the RTX proteins
with the consensus RTX motifs (Linhartova et al., 2010; Luo et al.,
2015). For instance, Linhartova et al. (2010) combined pattern
searching, Hidden Markov Model profiles, and the RPS-BLAST
tool finding conversed domains to predict 1,024 candidate
RTX proteins from 840 bacterial genomes, as comprised the
most comprehensive list of RTX T1SE candidates. Luo et al.
(2015) made the first attempt to develop a machine-learning
model to predict RTX proteins. The random forest–based model
learned amino acid sequence–derived features extracted from
the full-length and C-terminal sequences of T1SE candidates
predicted by Luo et al. (2015). Regretfully, neither a software
tool nor a web server was provided for users to implement
the method. Besides, both the homology-based and machine-
learning methods completely focused on the RTX proteins and
the conserved RTX motif was placed with a large weight. The
methods are hardly generalized to find more novel T1SEs without
RTX motif features.

By careful sequence pattern analysis, previously, we identified
the position-specific amino acid composition (Aac), secondary
structure element (Sse), and solvent accessibility (Acc) features
of type 3 secreted effectors within their N termini and the various
Aac, Sse, and Acc profiles of type 4 secreted effectors within their
C termini (Wang et al., 2011, 2014). Given the evidence about
the potential C-terminal secretion signals of T1SEs (Koronakis
et al., 1989; Masure et al., 1990; Zhang et al., 1995; Delepelaire,
2004; Holland et al., 2005; Thomas et al., 2014), in this research,
we comprehensively observed the amino acid sequence patterns,
especially non-RTX-motif features within the C termini of RTX
proteins, and also the Sse and Acc property. Furthermore, we
developed machine-learning models to learn the newly observed
sequence-derived features and predicted T1SEs with or without
typical RTX motifs. Deep learning models and ensemblers
have recently been widely used to predict bacterial secretion
signals and achieved good performance (Wang et al., 2018,
2019; Almagro Armenteros et al., 2019; Xue et al., 2019; Hui
et al., 2020). We also tested Deep Neural Network models and
integrated them and others within a stacked model to improve
the prediction performance.

MATERIALS AND METHODS

Datasets
Bacterial RTX proteins were collected from Linhartova et al.
(2010). In total, there were 1,024 RTX proteins predicted from
840 bacterial genomes (Linhartova et al., 2010). CD-HIT was used
to detect homology among the RTX proteins, while 30% was
considered as the similarity cutoff and only one representative
was retained if there were multiple proteins showing sequence
similarity above the cutoff (Li and Godzik, 2006). Proteins were
also sampled randomly from the whole proteomes derived from
various bacterial genome sequences. The known T1SEs, RTX
proteins, and their homologs with >30% blastp similarity were

1http://61.160.194.165/TxSEdb
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removed, and a homology filtering strategy similar to that applied
for RTX proteins were used to identify the non-redundant non-
RTX proteins. In total, 512 non-redundant RTX proteins were
retained, which were considered as the positive dataset (p).
A total of 2,000 proteins were also randomly selected from the
processed non-RTX proteins, and three groups, each with 512
proteins, were further picked out to match the number and
general length distribution of the RTX proteins, forming the
negative datasets (n1 ∼ n3). The p and n1 were used as the
main observation datasets. A fivefold cross-validation strategy
was used for training the machine-learning prediction models,
for which both the positive and negative datasets were split
into five subsets of equal size of protein sequences, with four of
them being served as training datasets and the remaining one as
testing datasets in each round of model analysis. Experimentally
validated T1SEs were also annotated manually from literature.
These proteins could be RTX or other type of proteins with
experimental evidence to be transported through T1SSs. All the
datasets were publically available together with the standalone
T1SEstacker package (see Section “Software Availability”; see
Text Footnote 1).

Once the datasets were collected and annotated, the sequence-
based features were analyzed with in-house scripts. The
secondary structure and solvent accessibility were predicted with
SSpro/ACCpro5, with three elements encoded for secondary
structure (“H” for helix, “E” for strand, and “C” for coil) and two
elements for accessibility (“B” for buried and “E” for exposed)
(Magnan and Baldi, 2014).

Sequential and Position-Specific Amino
Acid Composition Feature–Based
Non-deep-Learning Models
The number and position distribution of RTX motifs featured
as “GGxGxD” was observed within the RTX and non-RTX
proteins. Sequential Aac, continuous and 1 or 2 amino acid
interrupted bi-residue amino acid composition (bAac) features
were extracted from the C-terminal 20- or 60-residue fragments
of both the positive and negative datasets, respectively, observed,
and compared. The features were used for training Random
Forest (RF), Support Vector Machine (SVM), and Naive Bayesian
(NB) models, with R packages of “randomForest,” “e1071,” and
the “e1071” method “naiveBayes,” respectively2. The neighbor-
position Aac conditional constraint features in the C termini were
learned in Markov models (Wang et al., 2013). Bi-profile Bayesian
position-specific Aac features were extracted and trained with
SVM models (Wang et al., 2011). For the SVM models, four
kernels (“linear,” “polynomial,” “sigmoid,” and “radial”) were
tested and the corresponding parameters, e.g., gamma and/or
cost, were optimized using a 10-fold cross-validation grid search
strategy within each training dataset. For the other models, the
features were also extracted based on each training dataset. The
details about the models and the optimized parameters refer to
the website of T1SEstacker (see Section “Software Availability”).

2https://www.r-project.org/

Deep Learning Models
Deep learning models were trained with the Aac features of
RTX proteins within the C-terminal 20 (C20) and 60 amino
acid positions (C60). Each position was represented by a 20-
element feature vector describing the composition of amino
acids. An m × 20 L matrix was built to represent the original
Aac features of training datasets, where m is the number of
training proteins and L is 20 or 60 for C20 or C60 models,
respectively. Fully connected Deep Neural Network (DNN), Self
Attention (SelfAttention), and models with Long-Short Term
Memory (LSTM) cells (RNN) were trained and tested with a
fivefold cross-validation strategy. The details about the models
and the optimized parameters refer to the website of T1SEstacker
(see Section “Software Availability”).

A Stacked Model Featured by the
Prediction Results of Individual Models
To achieve better prediction performance, we proposed a new
stacking scheme to integrate prediction results of individual
models (Figure 1). A primary stacked model was built for
each original fivefold training dataset and its based individual
models. For each original fivefold testing dataset, an embedded
fivefold cross-validation was adopted to evaluate the performance
of stacked models. The prediction result of each-fold best-
trained model of individual algorithms on each protein of the
corresponding testing dataset was based, and encoded as 1 (RTX)
or 0 (non-RTX) according to the model-specific optimized cutoff
score. Each protein within an embedded fivefold training dataset
was represented as a feature vector of “0” and “1,” and an m′ × n
matrix was generated for the whole training dataset, where m′ is
the protein number of the embedded training dataset and n is
the number of individual machine-learning models. SVM models
with “linear” kernels were trained and the parameters (costs) were
optimized with a 10-fold cross-validation grid-searching strategy.

A voting strategy was used to integrate the five primary stacked
models, with the same weight assigned for each model.

Performance Evaluation of the Individual
and Stacked Models
Sensitivity (Sn), specificity (Sp), accuracy (ACC), the area under
the curve of receiver operating characteristic (rocAUC), and
Matthews correlation coefficient (MCC) were defined and used as
measures to assess the performance of models based on a fivefold
cross-validation strategy.

Sn = TP/(TP+ FN)
Sp = TN/(TN+ FP)
ACC = (TP+ TN)/(TP+ FN+ TN+ FP)
MCC = [(TP × TN) − (FN × FP)]/sqrt[(TP + FN) ×

(TN+ FP)× (TP+ FP)× (FN+ FN)].
TP, TN, FP, and FN denote the number of true positives, true

negatives, false positives, and false negatives, respectively.

Statistics
Individual amino acids were counted within C-terminal 20, 60, or
110-aa fragments, and Mann–Whitney tests were performed to
compare their distribution between RTX and non-RTX proteins,
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FIGURE 1 | Research design and scheme of the tri-layer staking model T1SEstacker. (A) Research design. Pos, positive; Neg, negative; NR, non-redundant.
(B) Tri-layer stacking model. The original positive and negative datasets were fivefold divided and four of them were used as training datasets for training different
machine-learning models, e.g., MM, NB, etc. The remaining sub-divided dataset was used as the corresponding testing dataset. For each round of cross-validation,
the prediction results of the individual models for the testing dataset were used for training and testing the primary stacker models using SVM with an embedded
fivefold cross-validation strategy. Prediction results of the primary stackers were further stacked in T1SEstacker with a voting strategy.

followed by Bonferroni corrections. For two continuous or
non-continuous amino acids (bi-AAs), the composition was
also compared between the C termini of RTX and non-RTX
proteins using the same statistical methods. Another balanced
rate comparison method, EBT, was also adopted to compare
the C-terminal occurrence of bi-AAs between the two classes
of proteins (Hui et al., 2017). The alpha levels for all tests
were preset as 0.05.

Software Availability
T1SEstackers and its modules were developed with Python,
Perl, and R. The packages and user manual can be downloaded
freely via the link, http://www.szu-bioinf.org/tools/T1SEstacker.
A web server was also initiated to make internet-based prediction
service: http://www.szu-bioinf.org/T1SEstacker.

Salmonella Genomes
In total, 26 representative strains were included, which
covered the known Salmonella phylogenetic groups. N268_08,
NCTC12419, and RKS3044 belong to Salmonella bongori;
RKS2983 and RSK2980 belong to Salmonella enterica subsp.
arizonae; ATCC_BAA_1581 and RKS3027 belong to Salmonella
enterica subsp. houtenae; 2439-64 and RKS3013 belong to
Salmonella enterica subsp. vii; 11_01853, 11_01854, 11_01855,

and RKS2978 belong to S. enterica subsp. diarizonae; RKS2986
and ST114 belong to Salmonella enterica subsp. salamae; 1121
and RKS3057 belong to Salmonella enterica subsp. indica; while
P12519, 287/91, ATCC9150, SPB7, RKS4594, ATCC9120, CT18,
14028S, and LT2 represent various serovars of Salmonella enterica
subsp. enterica. The genome and genome-encoding proteome
were downloaded from NCBI genome database3. T1SEstacker
was applied to predict the T1SE candidates with default settings.

RESULTS

Research Design
The major obstacles for training machine-learning models in
prediction of bacterial T1SEs include (1) the limited number
of experimentally validated positive proteins and (2) the large
sequence diversity of T1SE groups. Comprehensive literature
searching and manual annotation only curated 99 validated
T1SEs, and only 49 were retained after a strict homology-filtering
process, which were distributed in all the four major T1SE groups
(see Text Footnote 1). To better analyze the likely novel sequential
features that could facilitate understanding the mechanisms of

3https://www.ncbi.nlm.nih.gov/genome
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type 1 secretion and prediction of new T1SEs, and as performed
by others previously (Luo et al., 2015), we took the larger-scale
RTX T1SE candidates identified by Linhartova et al. (2010) as
training data for analysis of features other than RTX motifs and
building models to predict novel T1SEs.

After removing the homologs, the remaining non-redundant
T1SEs and paired non-T1SEs were compared for their sequential
and position-specific Aac, Sse, and Acc features, especially non-
RTX motif features (Figure 1A). With the sequence-based
features, a stacking model was developed to predict T1SEs
(Figure 1B). Representative strains of Salmonella phylogenetic
branches were predicted with the newly developed model, and
the possible number and distribution of candidate T1SEs were
evaluated (Figure 1A).

Distance Distribution of
Repeats-in-Toxin Motifs to the C Termini
in Repeats-in-Toxin Proteins
The 512 non-redundant RTX proteins show a length distribution
from 70 to 36,805 amino acids, with a median of 1,112 residues
and 7 super-long proteins with larger than 10,000 amino acids
(Figure 2A). In addition, 494 from the 512 positive proteins
could be found with at least one RTX motif within each protein
sequence (Figure 2B). As a control, only 13 from the total 2,341
non-redundant negative proteins contained RTX motifs, which
were filtered for further comparative or model-training analysis.
The most C-terminal residue of each most C-terminal RTX motif
shows a distance of 1–21,948 amino acids to the C terminus
of the corresponding full-length protein, with a median of 110
amino acids (Figure 2C). Fewer than 9% of the C-terminal RTX
motifs have a distance of smaller than 60 amino acids from the
protein C termini, and only ∼5% are shorter than 20 amino
acids (Figure 2D).

Sequential Amino Acid Composition
Features Buried in the C Termini of
Repeats-in-Toxin Proteins
We compared the composition of individual amino acids (Aac)
and two continuous or non-continuous amino acids (bAac)
among the C termini of RTX proteins since there were possibly
atypical secretion signals (Boyd et al., 2014; Smith et al.,
2018a). To avoid the possible misinterpretation caused by RTX
motifs, we mainly observed the Aac and bAac profiles within
the C-terminal 20 (C20) and C-terminal 60 (C60) residues
(Supplementary Dataset 1). Within C20, most individual amino
acids show different compositions between the positive and
negative proteins, with aspartic acid (D), leucine (L), threonine
(T), valine (V), isoleucine (I), and phenylalanine (F) being most
typically enriched and arginine (R), lysine (K), glutamic acid (E),
and proline (P) being most strikingly depleted in RTX proteins
(Figure 3A; Mann–Whitney U-tests with Bonferroni correction,
p < 0.001). Glycine (G) was not different between the two types of
proteins (Figure 3A; p = 1). When the observed length increases
to C-terminal 60-aa, most of the featured residues identified
from shorter fragments remain different between groups for the
composition, whereas some others start to show difference or no

difference, e.g., “G” being enriched in RTX proteins and “L,” “V,”
and “I” becoming no difference (Figure 3A). The enrichment of
“G” in RTX C60 fragments is not likely due to the increasing
occurrence of RTX motifs, which is enriched with “G,” since the
RTX motifs are lowly represented and the RTX motif featured
“GG” is either not strikingly higher in the C60 fragments of RTX
proteins (Figures 2D, 3B). For the C-terminal 110-aa fragments,
the amino acid species with significantly different composition
and the amplitude of difference further increase (Figure 3A). It
cannot be excluded that the increased number of RTX motifs
leads to the most striking composition amplitude change of “D”
and “G,” especially in C110, for which half of the sequences
contained the RTX motifs. However, the “L” composition change
is interesting, which shows higher composition in C20, no
difference in C60, and lower composition in C110 of RTX
proteins (Figure 3A).

The continuous and interrupted bAac profile also shows
difference in C termini between RTX and non-RTX proteins.
For example, “D[FL],” “TL/LT,” “AxD,” “Tx[LT],” “TxxD,” and
“Dxx[FI]” most frequently occur, whereas “R[RK],” “K[KA],”
“AxR,” “Rx[RL],” “AxxR,” “Kxx[KE],” and “Rxx[QR]” are most
strikingly depleted in the C-terminal 20-aa fragments of RTX
proteins in contrast to non-RTX proteins (Figures 3B–D;
Mann–Whitney U-tests with Bonferroni correction, p < 0.001;
EBT_p < 0.001). As the observed C-terminal length increases
(to 60 aa), the general bAac profile difference between RTX
and non-RTX proteins remains or becomes more typical, with
only a few changes. The main changes involve the reduced “L”
and increased “G” combinations in the RTX C60 enriched list
(Figures 3B–D). It is noted that either “GG” or “GxG,” which
is supposed to be highly represented by RTX motifs, does not
show the most significant different composition or occurrence
in C60 between RTX and non-RTX proteins, suggesting that the
observed different “G”-combination compositions are not due to
the increased percent of RTX motifs in C60 of RTX proteins.
In C110, however, the composition shows striking difference
for both “GG” and “GxG” between RTX and non-RTX proteins
(Supplementary Dataset 1).

Other independent non-RTX proteins datasets are also paired
and the profile difference for Aac and bAac in C termini between
RTX and non-RTX proteins shows large consistence.

Position-Specific Amino Acid
Composition Features Buried in the C
Termini of Repeats-in-Toxin Proteins
The C-terminal position-specific amino acid composition
(psAac) profiles were also compared between RTX and non-
RTX proteins. Generally, RTX proteins show much larger amino
acid composition preference (Figure 4A). C20 and C21-60 in
RTX proteins also show different preference profiles. C20 shows
apparent preference for non-polar “L” and “A” while C21-60 more
prefers polar “G” (Figure 4A). “D,” “S,” and “T” are preferred in
both C20 and C21-60 of RTX proteins. The results are consistent
with and explain the observations on sequential Aac and bAac
in C termini of RTX and non-RTX proteins. Remarkably, the
C-terminal endmost two positions in RTX proteins show the
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FIGURE 2 | Distribution of RTX motifs in RTX proteins. (A) Length distribution of the RTX proteins. (B) Count distribution of RTX motifs in the RTX proteins. (C,D)
Distance distribution of RTX motifs to the C-terminal ends of the RTX proteins. The accumulated probabilities of the proteins with the RTX motif distance of
≤10 ∼ 60-aa and 100-aa from the C termini are shown in (D).

most typical psAac bias, with a pattern of non-polar hydrophobic
“[FLI][VAI]” motif (Figure 4A).

The psAac profile of C termini of RTX proteins and
the difference between them and non-RTX proteins were
confirmed with other, paired, independent negative datasets
(Supplementary Figure 1). We also compared the psAac
profile of N termini of RTX and non-RTX proteins
(Supplementary Figure 2). There was a difference, but not
as typical as that observed within the C termini. Moreover,
until now there is no evidence suggesting the existence of type
1 secretion signals within N termini of the substrate proteins.
Therefore, the N termini were not further studied in this study.

Enrichment of β-Strands and Depletion
of α-Helices Within the C Termini of
Repeats-in-Toxin Proteins
An apparent difference between the C termini of RTX T1SEs
and non-T1SEs was the depletion of α-helices or enrichment of
β-strands and coiled coils, no matter in C20 or C60 (Figure 4B).

The solvent accessibility was not different between the RTX and
non-RTX proteins within the C termini (data not shown). The
different forms of secondary structure are likely related with
the composition preference of residues. For instance, both polar
“G” and non-polar “A” are enriched in β-strands, while “F” and
“I” are not for beneficial for maintenance of the stability of
α-helices (Figure 4A). It remains to be clarified whether the
residue composition and structure features are associated with
specific recognition of the proteins for specific type 1 secretion.

C-Terminal Non-repeats-in-Toxin Motif
Features Accurately Classify
Repeats-in-Toxin From
Non-repeats-in-Toxin Proteins
A list of machine-learning models were trained to learn the
sequence-based non-RTX motif features buried within the C
termini of RTX proteins, including NB, RF, and SVM models
learning sequential Aac and bAac features, MM models using
adjacent amino acid dependent Aac features, and SVM models

Frontiers in Microbiology | www.frontiersin.org 6 February 2022 | Volume 12 | Article 813094

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-813094 February 4, 2022 Time: 12:22 # 7

Chen et al. Type 1 Secreted Protein Prediction

FIGURE 3 | The composition profile difference between the C termini of RTX and non-RTX proteins for single AAs, continuous and interrupted bi-AAs. (A) Single
AAs. Bonferroni-corrected Mann–Whitney tests were performed. (B) Continuous bi-AAs. (C) One amino acid interrupted bi-AAs. (D) Two amino acids interrupted
bi-AAs. EBT tests were performed for the bi-AAs. Most significantly enriched or depleted single AAs or bi-AAs in RTX C termini are shown in red and blue,
respectively. The single AAs with biased composition changing among the C termini of different lengths are shown with red background. **p < 0.0001, *p < 0.05.

analyzing position-specific Aac features (Table 1). Moreover, five
types of DL models were trained, with three among them of best
performance retained (DNN, Attention, and RNN), which also
learned the C-terminal Aac features of RTX proteins (Table 1).
Secondary structure features were not learned in the models since
they are not stable, which were predicted with varied accuracy
using different software tools.

All the models showed certain ability to classify RTX proteins
from the non-RTX ones correctly only based on the Aac features
within C-terminal 20-aa peptide fragments of known RTX
proteins (Table 2 and Figure 5A). RNN, MM, RF, and seqSVM
showed best prediction performance with the same average
rocAUC of 0.88, while BPBAac and DNN appeared poorest
with a rocAUC of 0.85 (Table 2 and Figure 4A). C60 models
outperformed C20 ones obviously, and MM, RF, and seqSVM
remained the best-performed models, reaching a rocAUC of 0.94
(Table 2 and Figure 5B).

Taken together, the results demonstrate that the C termini
of RTX proteins contain non-RTX Aac signals, which can be
used to recognize RTX proteins accurately. The signals are likely
distributed along the C-terminal 60-aa positions.

A Stacked Model Shows Striking
Performance Improvement in Prediction
of Repeats-in-Toxin Types of Type 1
Secreted Effectors
To achieve better performance, we designed a tri-layer stacking
model, which integrates the prediction results of individual
models learning sequence-based features, to classify RTX and
non-RTX proteins (Figure 1). The primary SVM-based stacked
models (pT1SEstacker) trained with the prediction results of
original fivefold cross-validated testing datasets showed better
performance than individual models for both C20 and especially
C60, with average rocAUC of 0.85 and 0.95, respectively (Table 2
and Figure 5C). The prediction results of the primary stacked
models based on cross-validated testing datasets were assembled
in the final model (T1SEstacker) with a voting strategy. It is noted
that, with an independent dataset, which will be explained in
the next section, the voting-based tri-layer stacker T1SEstacker
generally balanced the effect of individual pT1SEstacker models
and always achieved slightly better performance when voting
cutoff was set as 0.6 (Figure 6A and Supplementary Figure 3).
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FIGURE 4 | Position-specific Aac and Sse profile difference between the C termini of RTX and non-RTX proteins. (A) Position-specific Aac profile of RTX and
non-RTX proteins at C-terminal 60 positions. The strikingly specific bias Aac preference profile of RTX proteins with C termini and the C-terminal 20 positions of both
RTX and non-RTX proteins are shown with pink background. The endmost C-terminal two positions with most typical sequence patterns are shown in red.
(B) Position-specific Sse profile of RTX and non-RTX proteins at C-terminal 60 positions.

T1SEstacker Can Recognize the
Common Secretion Signals Among
Different Types of Type 1 Secreted
Effectors
We curated experimentally validated T1SEs and applied the RTX
protein prediction models to identify them. It should be noted
that none of the C60 or C20 of the verified T1SEs contained any
RTX motif. Both T1SEstacker_C20 and T1SEstacker_C60 could
well predict the T1SEs (Figure 6A and Supplementary Figure 3).
The recalling rate of T1SEstacker_C20 and T1SEstacker_C60
reached 77 and 81%, respectively (Figure 6B). As a control,
we used an independent negative dataset, and the specificity

of T1SEstacker_C20 and T1SEstacker_C60 was 89 and 96%,
respectively (Figure 6B).

Among the validated T1SEs, 25% (25/99) do not contain
any putative RTX motif along the full-length protein sequences
(Figure 6C and Supplementary Dataset 2). Interestingly,
T1SEstacker_C60 correctly recalled 52% (13/25) of the non-RTX-
motif T1SEs (Figure 6C). Another non-RTX-motif T1SE was
predicted to be non-effector by the final T1SEstacker_C60 model,
yet it was correctly recalled by two primary models. The recalling
rates of non-RTX-motif T1SEs are much higher than the false-
positive rates of the negative dataset for both C60 and C20
models (Figures 6B,C). Therefore, the results further suggested
that C termini of T1SEs, with-RTX-motif or non-RTX-motif
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TABLE 1 | Models and the optimized parameters.

Model Algorithm| Features

MM Markov model| Aac conditional on that of the preceding position.

RF Random forest| AAs, continuous and interrupted bi-AAs with
striking sequential composition difference between positive and
negative sequences.

NB Naïve Bayes| same with RF.

seqSVM Support vector machine| same with RF.

BPBAac Support vector machine| bi-profile position-specific Aac profiles.

DNN Simple full-connected deep neural network| Aac profiles.

SelfAttention Softmax deep neural network| Aac profiles.

RNN Deep neural network with LSTM cells| Aac profiles.

type, potentially contained common signals, which can guide the
accurate prediction of these proteins.

Most of the validated T1SEs were not well classified into one of
the four T1SE classes, except for seven being clear class 4 effectors,
including enterotoxigenic Escherichia coli CexE (accession:
ABM92275.1), Gallibacterium anatis GtxA (OBW99045.1),
Pseudomonas fluorescens LapA (ABA71877.1), Legionella
pneumophila RtxA (CAH11847.1), Bordetella bronchiseptica
BrtA (CAE31684.1), Shewanella oneidensis BpfA (Q8EIX3.1),
and Vibrio cholera FrhA (AWB74152.1). Five could be predicted
by T1SEstacker_C60 correctly and only two (BpfA and CexE)
were not recalled (Supplementary Dataset 2). The well-known
class 2 effector, E. coli HlyA (P08715.1), other two class 2 effectors,
Aggregatibacter actinomycetemcomitans LtxA (WP_148335754.1)
and Neisseria meningitides FrpC (AAA99902.1), and one typical
class 3 effector, Serratia marcescens LipA (Q59933), were all
correctly predicted (Supplementary Dataset 2). Because the
other effectors were not well classified, we did not further

compare the prediction performance of T1SEstacker on
different T1SE classes. Interestingly, five validated T1SEs
were annotated to be bacteriocins, including Rhizobium
leguminosarum RzcA (AAF36415.1), Bradyrhizobium elkanii
BAB55900.1, Xylella fastidiosa XF2407 (AAF85206.1) and
XF2759 (AAF85544.1), Xanthomonas oryzae AAW74644.1,
and Agrobacterium tumefaciens RzcA (AAK89027.2). Four
of the bacteriocins were correctly predicted, except for RzcA
(Supplementary Dataset 2).

Large Variation of Type 1 Secreted
Effectors Composition in Salmonella
Strains
The chromosomes of 26 representative strains from all
Salmonella major phylogenetic branches were scanned with
T1SEstacker C60 model (Supplementary Dataset 3). In each
strain, 269 ± 22 T1SE candidates were predicted (Figure 7A).
With the recalling rate of 0.81 and false-positive rate of 0.04
evaluated previously on the validated T1SE dataset, the real
number of T1SEs was estimated to reach 88 to 154, with an
average of 123, in Salmonella strains (Figure 7A). The precision
of predicted T1SE candidates was only ∼0.37 (123 × 0.81/269).
However, it is difficult to improve the precision by shifting the
decision cutoff values or to distinguish the true positives from
the false ones. Moreover, most of the real T1SEs were included
in the predictions. Therefore, we used the original T1SEstacker
predictions to analyze the distribution of T1SE candidates among
the Salmonella strains.

Despite a relatively stable number of T1SE candidates in
different strains, the protein composition varied a lot. The
candidates were clustered into 1,004 orthologous families, among
which 240 (24%) were strain-specific proteins, 670 (67%) were

TABLE 2 | Performance of models.

Model SN SP ACC rocAUC MCC

MM_C20 0.81 ± 0.06 0.81 ± 0.05 0.81 ± 0.02 0.88 ± 0.02 0.62 ± 0.04

RF_C20 0.79 ± 0.06 0.82 ± 0.09 0.80 ± 0.06 0.88 ± 0.04 0.61 ± 0.12

NB_C20 0.89 ± 0.05 0.69 ± 0.06 0.79 ± 0.04 0.87 ± 0.03 0.59 ± 0.09

seqSVM_C20 0.79 ± 0.05 0.82 ± 0.06 0.81 ± 0.04 0.88 ± 0.04 0.61 ± 0.09

BPBAac_C20 0.72 ± 0.06 0.82 ± 0.02 0.77 ± 0.03 0.85 ± 0.03 0.55 ± 0.06

DNN_C20 0.77 ± 0.05 0.75 ± 0.05 0.76 ± 0.04 0.85 ± 0.03 0.53 ± 0.07

SelfAttention_C20 0.80 ± 0.03 0.80 ± 0.05 0.80 ± 0.04 0.87 ± 0.02 0.60 ± 0.07

RNN_C20 0.82 ± 0.05 0.80 ± 0.05 0.81 ± 0.04 0.88 ± 0.04 0.63 ± 0.07

pT1SEstacker_C20 0.83 ± 0.06 0.85 ± 0.04 0.84 ± 0.04 0.88 ± 0.06 0.69 ± 0.09

MM_C60 0.86 ± 0.06 0.93 ± 0.04 0.89 ± 0.02 0.94 ± 0.02 0.79 ± 0.02

RF_C60 0.85 ± 0.06 0.90 ± 0.02 0.88 ± 0.03 0.94 ± 0.03 0.76 ± 0.05

NB_C60 0.86 ± 0.03 0.83 ± 0.05 0.84 ± 0.04 0.92 ± 0.02 0.69 ± 0.07

seqSVM_C60 0.84 ± 0.08 0.92 ± 0.02 0.88 ± 0.04 0.94 ± 0.02 0.77 ± 0.07

BPBAac_C60 0.84 ± 0.04 0.89 ± 0.02 0.87 ± 0.02 0.93 ± 0.01 0.73 ± 0.03

DNN_C60 0.87 ± 0.06 0.85 ± 0.04 0.86 ± 0.02 0.92 ± 0.02 0.72 ± 0.04

SelfAttention_C60 0.89 ± 0.02 0.89 ± 0.03 0.89 ± 0.02 0.93 ± 0.01 0.78 ± 0.03

RNN_C60 0.85 ± 0.07 0.90 ± 0.07 0.87 ± 0.03 0.93 ± 0.03 0.75 ± 0.06

pT1SEstacker_C60 0.89 ± 0.04 0.94 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.83 ± 0.03

Sn, Sensitivity; Sp, specificity; ACC, accuracy; rocAUC, the area under the curve of receiver operating characteristic; MCC, Matthews correlation coefficient.
The best performance was highlighted in bold font.
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FIGURE 5 | Performance of individual and stacking models on prediction of RTX proteins. (A) Fivefold cross-validation ROC curves of individual machine-learning
models predicting RTX and non-RTX proteins based on the C-terminal 20-aa features. (B) Fivefold cross-validation ROC curves of individual machine-learning
models predicting RTX and non-RTX proteins based on the C-terminal 60-aa features. (C) Performance comparison of the primary stacking models
(pT1SEstacker_C20 and pT1SEstacker_C60) and the representative individual machine-learning models (MM_C20 and MM_C60), based on the average fivefold
cross-validation results.

FIGURE 6 | Prediction performance of T1SEstacker on experimentally verified T1SEs and the paired non-T1SEs. (A) ROC curves of the final T1SEstacker_C60 and
the primary pT1SEstacker_C60 models on prediction of experimentally verified T1SEs and the paired non-T1SEs. The number for both T1SEs and non-T1SEs was
99. The best-optimized cutoff for the decision of T1SEstacker is indicated with a red arrow. (B) The recalling T1SEs and false-positive T1SE predictions of
T1SEstacker_C60 and T1SEstacker_C20. (C) The T1SE proteins without putative RTX motifs (non-RTX T1SEs) and the correctly predicted percent of T1SEstacker
on them.

present in fewer than half of the strains, and only 179 (18%)
were distributed in the core genome of the Salmonella strains
(Figure 7B and Supplementary Dataset 3). For the core-genome
hits, only 49% (88/179) were recognized as T1SEs in all the
strains, and 31% (55/179) of the families were predicted as
T1SEs only in fewer than half of the strains (Figure 7C and
Supplementary Dataset 3). The results suggested that there is a
large variety for the composition of T1SEs in different bacterial
strains, and that a T1SE homolog does not necessarily remain a
T1SE since mutations in the C terminus could frequently avoid
the recognition of T1SS.

DISCUSSION

Like other secreted proteins, bacterial type 1 secreted proteins
(T1SEs) also play important roles in various infection diseases.
Some T1SEs, e.g., bacteriocins, show non-self bacteria-killing

activities and therefore have been used for anti-bacteria drug
or probiotic development. How many T1SEs are there in each
bacterial strain? How diverse is their function? The questions
remain unanswered since we are still at the very beginning on
understanding the mechanisms of type 1 secretion. Only around
100 T1SEs have been verified by experiments, and many of them
contain RTX motifs nearby the C termini of protein sequences.
However, not all T1SEs contain RTX motifs, while the proteins
with RTX motifs, although more likely to be, are not necessarily
T1SEs. Therefore, T1SEs could have other common targeted
signals that mediate their specific type 1 secretion. More novel
T1SEs could be identified based on these common signals.

Previous studies suggested possible signals within C termini
of RTX and non-RTX T1SEs (Delepelaire, 2004; Huang et al.,
2010; Wakeel et al., 2011). In this research, we focused on
RTX T1SEs, observed the Aac features within their C termini
comprehensively, and compared them with the C termini of
non-RTX proteins or N termini of the RTX and non-RTX

Frontiers in Microbiology | www.frontiersin.org 10 February 2022 | Volume 12 | Article 813094

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-813094 February 4, 2022 Time: 12:22 # 11

Chen et al. Type 1 Secreted Protein Prediction

FIGURE 7 | Distribution of T1SE candidates predicted from Salmonella strains with T1SEstacker. (A) Number of predicted T1SEs, estimated real T1SEs, and
correctly predicted T1SEs in Salmonella strains. (B) The orthologous family distribution of T1SEs in Salmonella strains. (C) Distribution of core-genome T1SE hits in
Salmonella strains. CG, core genome.

proteins. It was interesting to identify specific Aac preference in
C termini of RTX proteins (Figure 4A). As control, no apparent
difference was found between the N termini of RTX and non-
RTX proteins (Supplementary Figures 1, 2). The Aac preference
profile was not biased by possibly included RTX motifs. On one
hand, very few RTX motifs were retained in the observed length
of C-terminal sequences (both C20 and C60) (Figures 2C,D).
On the other hand, the motif-enriched bi-AAs were not as
strikingly different as other bi-AAs (Figure 2B). Moreover, the
real occurrence of some individual AAs or bi-AAs within C
termini of RTX proteins, especially C60, e.g., “G” and “D,” was
much higher than the percentage of proteins with putative RTX
motifs within the region. Therefore, such Aac preference could
be independent of RTX motif. Alternatively, RTX motifs could
also represent the preference, but a more specific and conserved
pattern. Besides the enriched Aac, significantly depleted Aac
should also be noted, e.g., “E,” “K,” “R,” and “P.” In the research,
by observing the position-specific Aac profiles, we also identified
a typical amino acid composition pattern at the C termini of RTX
proteins, with a motif feature of “[FLI][VAI].” Previous studies on
known T1SEs found the enrichment of “[LDAVTSIF]” residues
in C-terminal signal regions (Delepelaire, 2004; Huang et al.,
2010; Wakeel et al., 2011). The features were also evident in our
C-terminal sequence–based or position-specific Aac analysis on
the T1SEs. HlyA and its homologs in E. coli, Proteus vulgaris,
and Morganella morganii were all shown with a preference of
“[LS][AV]” at the C termini (Koronakis et al., 1989), consistent
with our position-specific Aac observation. We also found that
the C termini of RTX proteins preferred β-strands rather than
α-helices as in non-RTX proteins (Figure 4B). It is intriguing to

further investigate whether the unique amino acid composition
and secondary structure contribute to the specificity of signal
recognition of type 1 secretion.

Machine-learning models based on the C-terminal non-RTX-
motif Aac features well predicted RTX proteins from non-
RTX proteins (Figure 5 and Table 2). The features within C20
showed certain power, while those buried in C60 showed better
distinguishing capability (Figure 5 and Table 2). The C60 models
could also accurately recall verified T1SEs at high prediction
specificity (larger than 95%) (Figure 6B). It should be pointed out
again that none of the verified T1SEs contained any RTX motif
within C20 or C60 regions. More interestingly, 25 of the verified
T1SEs do not contain RTX motif throughout their full-length
sequences, and yet 12 and 13 were still predicted by C20 and
C60 models, respectively, as positive results (Figure 6C). Among
the correctly predicted T1SEs, some are bacteriocins and others
are not putative RTX proteins. Therefore, the features identified
in this study can be used for development of general T1SE
prediction models. In future studies and as more non-RTX T1SEs
have been identified, the common features can be reanalyzed,
with a more balanced training dataset of different types of T1SEs.

We developed a tri-layer stacking model, T1SEstacker, and
showed that the stackers generally outperformed the individual
machine-learning models (Table 2 and Figure 5C). However,
some individual models also showed good performance, e.g.,
MM, RNN, SelfAttention, and RF, but generally not as
good or stable as the stackers, pT1SEstacker (Table 2 and
Figure 5C). We made a second round of stacking for the
pT1SEstackers trained with sub-divided cross-validated datasets
because for pT1SEstackers, we adopted a SVM model to
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integrate the prediction results of individual machine-learning
models (Figure 1). Similar with T1SEstacker that integrates
pT1SEstacker results, other ensemblers often use voting strategy
(Wang et al., 2019) or linearly weight each individual model
(Hui et al., 2020). The parameters, i.e., linear weights for
individual models and decision cutoffs for those models, were
generally stable and not very sensitive to the sub-divided or
full training datasets. However, for pT1SEstacker models, we
trained the prediction results of individual models using SVM,
and the parameters were pretty sensitive to the training datasets.
Therefore, the five pT1SEstackers were each with different
optimized parameters. To integrate their respective prediction
results, another round of stacking had to be performed. The
final model T1SEstacker appeared not apparently better than
the pT1SEstacker models. However, once the optimized voting
cutoff was selected (≥0.6, 3/5, consensus prediction), the
prediction of T1SEstacker always showed best performance, with
a compromise of sensitivity and specificity (Figure 6A and
Supplementary Figure 3).

The false-positive rate (FPR) of T1SEstacker_C60 was low and
close to 0.04. It is important since many tools predicting bacterial
secreted proteins showed a high FPR and the experimental
research seldom benefited from the tool (Hui et al., 2020).
As an example, we showed the influence of FPR on the final
prediction performance, by prediction and estimation of T1SE
candidates in Salmonella with T1SEstacker (Figure 7A). Despite
the high specificity (0.96), among the predicted T1SE candidates,
majority were false positives, and the precision was only ∼0.37
(Figure 7A). It is largely because for each genome, most genes
are non-T1SEs, and even 1% FPR could generate 50–100 false-
positive predictions, for which the number is close to that of
true T1SEs. Therefore, it appears essential and urgent to further
reduce FPR in predictor development, not merely for T1SE, but
also for all types of secreted proteins.

Currently, there is still a lack of computational methods
predicting T1SEs (Hui et al., 2021). Although Luo et al. (2015)
developed a random forest predictor, the tool or codes were not
publically available and therefore a direct comparison could not
be performed. An important factor that impedes development
of prediction tools for T1SEs is the very limited number of
experimentally validated T1SE proteins. Linhartova et al. (2010)
and Luo et al. (2015) we in this research used Linhartova’s
RTX proteins as the positive dataset. In fact, we also used the
validated T1SEs to build a similar model, and the performance
was only slightly inferior to T1SEstacker but the variance was
much larger among the cross-validated replicates. Moreover,
the T1SEstacker could accurately predict the novel ones in the
validated effector dataset at a high specificity. Therefore, we
presented the T1SEstacker based on Linhartova’s RTX proteins
finally. With T1SEstacker and Salmonella strains, we also made
estimation on the distribution of T1SEs. Roughly, there could
be ∼100 T1SEs in each bacterial strain. Therefore, the current
T1SEs and function of T1SSs could be largely underestimated
and underinvestigated. We also found that the T1SE composition
varied a lot among different bacterial strains, suggesting they
could exert specific function for better fitting and bacterial
survival. Therefore, it is of great significance to identify and

investigate the function of T1SEs for both microbiologists and
computational biologists.

Very few T1SEs have been validated from Salmonella spp., and
SiiE represents the most well-known one, a large non-fimbrial
adhesin of 600 kDa consisting of 53 repeats of Ig domains, which
is encoded in an T1SS operon within Salmonella Pathogenicity
Island 4 (SPI-4) of S. enterica strains (Gerlach et al., 2007;
Barlag and Hensel, 2015; Klingl et al., 2020). We found that it
was conserved in 19 out of the total 26 Salmonella strains (ID:
19CG0093; Supplementary Dataset 3). Interestingly, the gene
was also detected from S. bongori besides all the seven subspecies
of S. enterica. However, for S. bongori, S. enterica subsp.
diarizonae, indica, and enterica, there were always representative
strains missing the gene (Supplementary Dataset 3). More
efforts should be placed to check whether there is the gene
but mis-annotated or the gene has been actually lost. If the
gene is lost, it is also interesting to know how its function is
complemented in the corresponding strains. In this research,
we also provided a list of possible T1SE candidates and their
distribution among Salmonella spp., which comprise a valuable
resource for the research community to further investigate
Salmonella T1SEs and their function in bacterial pathogenicity.

T1SEstacker is one of the earliest machine-learning models
predicting T1SEs. The performance requires further assessment
and improvement. In this study, only sequence-derived features
of T1SEs were analyzed and learned. Integration of other features
such as the genomic context, i.e., proximity of the candidate
genes to those encoding secretion components (Glaser et al.,
1988; Welch and Pellett, 1988; Welch, 1991), common motifs
located in promoters for transcription co-regulation (Mukherjee
et al., 2015), physiochemical properties of proteins (Welch et al.,
1983), and so on, may be helpful in improving the prediction
performance. In addition, T1SS type-specific or species-specific
substrate feature analysis and model development could further
improve the precision of prediction. Despite the functional
relevance, what we have known on T1SSs and T1SEs remains
much fewer than unknowns (Alav et al., 2021). It remains a big
challenge for computational biologists to make thorough and
systematic analysis of T1SE features and develop more effective
prediction models.
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models on the verified T1SEs and non-T1SEs. (A) Performance of
T1SEstacker_C60 and pT1SEstacker_C60 on 99 verified T1SEs and 512
non-T1SEs. (B) Performance of T1SEstacker_C20 and pT1SEstacker_C20 on 99
verified T1SEs and paired 99 non-T1SEs. (C) Performance of T1SEstacker_C20
and pT1SEstacker_C20 on 99 verified T1SEs and 512 non-T1SEs. The
best-optimized cutoff for the decision of T1SEstacker models are indicated
with red arrows.

Supplementary Dataset 1 | Sequential Aac comparison between the C termini
of repeats-in-toxin (RTX) and non-RTX proteins.

Supplementary Dataset 2 | Repeats-in-toxin motif distribution within the
experimentally verified T1SEs and the prediction results of T1SEstacker_C60 and
T1SEstacker_C20.

Supplementary Dataset 3 | Salmonella T1SEs predicted with T1SEstacker.
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