AUTHOR=Liu Peng , Wang Xinjie , Liang Juan , Dong Qian , Zhang Jinping , Liu Dongxin , Wang Shuai , Bi Jing , Liu Wenqi , Wang Zhaoqin , Chen Liang , Liu Lei , Huang Xingxu , Zhang Guoliang TITLE=A Recombinase Polymerase Amplification-Coupled Cas12a Mutant-Based Module for Efficient Detection of Streptomycin-Resistant Mutations in Mycobacterium tuberculosis JOURNAL=Frontiers in Microbiology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.796916 DOI=10.3389/fmicb.2021.796916 ISSN=1664-302X ABSTRACT=
Drug-resistant tuberculosis (TB) is a serious public health problem and threat to global TB prevention and control. Streptomycin (STR) is the earliest and classical anti-TB drug, and it is the earliest drug that generated resistance to anti-TB treatment, which limits its use in treating TB and impedes TB control efforts. The rapid, economical, and highly sensitive detection of STR-resistant TB may help reduce disease transmission and morbimortality. CRISPR/CRISPR-associated protein (Cas) is a new-generation pathogen detection method that can detect single-nucleotide polymorphisms with high sensitivity and good specificity. In this study, a Cas12a RR detection system that can recognize more non-traditional protospacer-adjacent motif-targeting sequences was developed based on Cas12a combined with recombinase polymerase amplification technology. This system detects 0.1% of the target substance, and the entire detection process can be completed within 60 min. Its sensitivity and specificity for detecting clinical STR-resistant