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Background: Many studies have linked dysbiosis of the gut microbiome to the
development of cardiovascular diseases (CVD). However, studies assessing the
association between the salivary microbiome and CVD risk on a large cohort remain
sparse. This study aims to identify whether a predictive salivary microbiome signature is
associated with a high risk of developing CVD in the Qatari population.

Methods: Saliva samples from 2,974 Qatar Genome Project (QGP) participants were
collected from Qatar Biobank (QBB). Based on the CVD score, subjects were classified
into low-risk (LR < 10) (n = 2491), moderate-risk (MR = 10–20) (n = 320) and high-risk
(HR > 30) (n = 163). To assess the salivary microbiome (SM) composition, 16S-rDNA
libraries were sequenced and analyzed using QIIME-pipeline. Machine Learning (ML)
strategies were used to identify SM-based predictors of CVD risk.

Results: Firmicutes and Bacteroidetes were the predominant phyla among all the
subjects included. Linear Discriminant Analysis Effect Size (LEfSe) analysis revealed that
Clostridiaceae and Capnocytophaga were the most significantly abundant genera in the
LR group, while Lactobacillus and Rothia were significantly abundant in the HR group.
ML based prediction models revealed that Desulfobulbus, Prevotella, and Tissierellaceae
were the common predictors of increased risk to CVD.

Conclusion: This study identified significant differences in the SM composition in HR
and LR CVD subjects. This is the first study to apply ML-based prediction modeling
using the SM to predict CVD in an Arab population. More studies are required to better
understand the mechanisms of how those microbes contribute to CVD.

Keywords: CVD, salivary microbiome, precision medicine, machine learning, QGP

INTRODUCTION

Non-communicable Diseases (NCDs) are the leading cause of death globally (Allen et al.,
2017). According to the World Health Organization [WHO] (2013) report, the global burden
of non-communicable diseases (NCDs) raised to 82% by 2020. The most common NCDs are
cardiovascular diseases (CVD), cancer, respiratory disorders, and diabetes (Balakumar et al., 2016).
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GRAPHICAL ABSTRACT | Salivary microbiome marker selection: CVD risk score using ML model in the Qatari population.

CVD comprises coronary heart disease, heart failure, stroke,
rheumatic heart disease, and cardiomyopathies among others
(Caldwell et al., 2019). CVD is the leading cause of death,
claiming about 17.9 million deaths annually and increasing
worldwide (Lear et al., 2017; Al-Shamsi et al., 2019).

In Qatar, NCDs are the leading cause of death for the past
10 years (Al-Kaabi and Atherton, 2015) with the CVD mortality
rates reaching 8.3 per 100000 MOPH (2020). In addition, the
2006-World-Health-Survey revealed that the Qatari population
suffers from various predisposing factors to CVD such as
obesity (28.8%), high cholesterol (24.7%), diabetes (16.7%), and
hypertension (14.4%) Haj Bakri and Al-Thani (2012).

In the past decade, advances in the multi-omics technologies
have enhanced our chances to discover novel biomarkers
(Olivier et al., 2019). Blood-based biomarkers are considered
invasive, there is an urgent need to use non-invasive samples
such as saliva to develop new disease biomarkers. In addition,
the advance in Next-Generation Sequencing platforms (NGS)
has enabled us to assess the human microbiome with an
unprecedented resolution and depth. Using the human
microbiome composition to identify disease biomarkers is
the next chapter of precision medicine (Morganti et al., 2019;
Zhong et al., 2021).

The human microbiome (HM) comprises trillions of bacteria,
viruses, protozoa, and fungi that reside in and on our
body surfaces (Amon and Sanderson, 2017). The HM is
complex, dynamic, ubiquitous, and shows striking variability
from one individual to another and between various body

sites (Ursell et al., 2012; Aagaard et al., 2013). The HM has a
wide array of roles ranging from digestion, protection from
pathogens, immune-regulation, and metabolites production
(Marchesi et al., 2016). The oral cavity harbors more than
700 diverse microorganisms and is considered the second most
diverse site after the gut (Deo and Deshmukh, 2019). In
healthy subjects, the core salivary microbiome (SM) includes
genera Streptococcus, Veillonella, Neisseria, and Actinomyces
(Zaura et al., 2009, 2014). In a large-scale population-based
Japanese study, the authors showed that the SM is dominated
by Streptococcus, Neisseria, Rothia, Prevotella, Actinomyces,
Granulicatella, Haemophilus, and Porphyromonas (Yamashita
and Takeshita, 2017). Our previous study aiming to characterize
the salivary microbiome composition in the Qatari population
(Murugesan et al., 2020) showed that Bacteroidetes, Firmicutes,
Actinobacteria, and Proteobacteria were the common phyla, with
Bacteroidetes being the most predominant (Murugesan et al.,
2020). Dysbiosis in the SM is associated with oral diseases
(Mashima et al., 2017; Davis et al., 2020) and systemic diseases
like obesity, diabetes, and CVD (Wade, 2013; Kholy et al., 2015;
Cortez et al., 2019).

Advances in Machine Learning (ML) technologies, an
essential branch of artificial intelligence, have enabled researchers
to build prediction biomarker models for various diseases such
as arthritis, diabetes, and inflammatory bowel disease (Jamshidi
et al., 2019; Aryal et al., 2020; Kohli et al., 2020). On the
other hand, few studies have trained ML models using the
gut microbiome profiles to identify predictors of atherosclerosis
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and CVD (Aryal et al., 2020; Liu et al., 2020) and none have
used the SM so far.

This study aims to identify whether a predictive salivary
microbiome signature is associated with a high risk of developing
CVD in the Qatari population. We integrated the phenotypic,
clinical, and microbiome data, and we identified SM-biomarkers
associated with an increased risk to CVD using ML models.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the Institutional Review Board
(IRB) of Sidra Medicine under (protocol #1510001907) and
by Qatar Biobank (QBB) (protocol #E/2018/QBB-RES-ACC-
0063/0022. All study participants signed an informed consent
before sample collection. All experiments were performed under
the approved guidelines.

Clinical Data
We collected de-identified saliva samples, phenotypic and clinical
data from a total of 2,974 participants enrolled in the Qatar
genome project (QGP). QGP included any adult who is either a
Qatari national or long-term resident (lived in Qatar for at least
15 years) and can contribute to QBB around 3 h of their time
for answering all the questionnaires, complete measurements,
imaging and fitness assessments, in addition to providing all
the samples required including saliva. In the pilot phase, the
cohort consisted of 1,432 males and 1,542 females (Table 1). Each
subject’s anthropometric and blood parameters were established
by analyzing body mass index (BMI), total protein content,
hemoglobin, albumin, ferritin, calcium, iron, vitamin-D, high or
low-density lipoprotein cholesterol (HDL, LDL), triglycerides,
and glucose levels.

Calculation of Cardiovascular Diseases
Risk Score
Cox proportional-hazards regression has been used to evaluate
the risk of developing CVD over 10-years. The CVD-risk score
for 2974 patients was estimated using sex-specific multivariable
factors consisting of age, total-Cholesterol, HDL, systolic blood
pressure (BP), hypertension treatment, smoking, and diabetes
status (HbA1C ≥ 6.5%, and participants who confirmed having
diabetes). D’Agostino et al. (2013) adapted the regression
coefficient for the functions from earlier analysis. This method
uses the following equation:

p̂ = 1− S0(t)exp(
∑p

i=1 βi xi −
∑p

i=1 βi x̄i)

Where S0(t), baseline survival at follow-up time t (here
t = 10 years); βi, estimated regression coefficient (log hazard ratio
that is measured for all risk functions and sex-specific); xi, log-
transformed value of the ith risk factor; i, corresponding mean, p,
number of risk factors.

Sample Collection
Qatar Biobank collected saliva samples according to standard
procedure. They organized to collect 5 mL of spontaneous,

whole, unstimulated saliva into a 50 mL sterile DNA-free
Falcon tube from each participant by spitting. The samples
were divided into 0.4 mL aliquots and stored at −80 C until
further analysis. The aliquots were received from QBB for total
salivary DNA extraction.

DNA Extraction and 16S rRNA Gene Sequencing
The total salivary DNA was extracted using automated
QIAsymphony protocol (Qiagen, Hilden, Germany), following
the Manufacturer’s instructions. DNA purity was evaluated by
the A260/A280 ratio using a NanoDrop 7000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States), and
the DNA integrity was checked on a 1% agarose by gel
electrophoresis.

The V1–V3 regions of the 16S rRNA gene were amplified
using Illumina NextEra XT library preparation Kit (FC-131-
1002). Step 1 PCR is performed using 10 ng of template DNA
for 50 µL PCR reaction using 2X Phusion Hot Start Ready
mix (Thermo Fisher ScientificTM). The following thermal cycling
conditions were used: 5 min of initial denaturation at 94◦C; 25
cycles of denaturation at 94 C for 30 s, annealing at 55◦C for 30 s,
extension at 72 C for 30 s; and a final extension at 72 C for 5 min.
According to the Manufacturer’s instructions, the amplified PCR
products of approximately 550 bp in size was purified using
AgenCourt AMPure XP magnetic beads (Beckman Coulter).
Purified PCR products of STEP 1 was used as template for
amplification of STEP 2 NextEra index PCR using thermocycling
conditions of 5 min of initial denaturation at 94◦C; 8 cycles
of denaturation at 94 C for 30 s, annealing at 55◦C for 30 s,
extension at 72 C for 30 s; and a final extension at 72 C for
5 min. These PCR products were purified using AgenCourt
AMPure XP magnetic beads and purified products were pooled
in equimolar concentrations. High-throughput sequencing was
performed using an Illumina MiSeq 2 × 300 platform following
the manufacturer’s instructions.

16S rRNA Sequencing Data Analysis
Demultiplexed sequence data were revised for quality control
using FastQC (Andrews, 2010). PEAR tool was used to
merge both forward and reverse sequence reads of respective
samples (Zhang et al., 2014), and sequence reads of quality
score <20 were discarded. All merged reads were trimmed
to 160 bp > Reads < 500 bp using the Trimmomatic tool
(Bolger et al., 2014). Trimmed FASTQ files were converted
into FASTA files. Demultiplexed FASTA files were analyzed
using Quantitative Insights Into Microbial Ecology (QIIME)
v1.9.0 pipeline (Caporaso et al., 2010; Murugesan et al.,
2020). Operational taxonomic units (OTUs) were generated by
aligning against the Greengenes database (Version: 13_8) with a
confidence threshold of 97% (DeSantis et al., 2006).

Statistical Taxonomic and Diversity
Analyses
Linear Discriminant Analysis Effect Size (LEfSe) (Segata et al.,
2011) was used to find differentially abundant taxa between the
studied categories. Alpha diversity measures including Chao1,
Observed, Shannon, and Simpson indices were calculated with
R-phyloseq package (McMurdie and Holmes, 2013). The alpha
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TABLE 1 | Clinical parameters of the study cohort.

LR (N = 2491) MR (N = 320) HR (N = 163) P-value

Male (N = 1432) 1184 161 87 <0.001a***

Female (N = 1542) 1307 159 76 <0.001a***

CVD score 2.78 ± 2.48 13.89 ± 2.75 31.76 ± 11.87 <0.001b***

BMI 28.37 ± 5.86 30.51 ± 4.76 31.18 ± 5.80 <0.001b***

Age 35.11 ± 10.22 50.89 ± 7.15 55.87 ± 8.14 <0.001b***

APT 33.82 ± 2.97 33.82 ± 2.97 33.13 ± 3.05 0.011b*

Albumin (gm/L) 44.30 ± 3.31 44.16 ± 3.16 43.14 ± 3.59 0.001b**

Alkaline phosphatase (U/L) 70.02 ± 20.66 75.71 ± 21.32 76.39 ± 21.70 <0.001b***

ALT (GPT) (U/L) 22.02 ± 16.54 28.67 ± 16.15 27.72 ± 15.11 <0.001b***

AST (GOT) (U/L) 19.89 ± 16.80 21.08 ± 7.83 20.39 ± 7.41 <0.001b***

Calcium (mmol/L) 2.29 ± 0.08 2.30 ± 0.095 2.32 ± 0.10 <0.001b***

Cholesterol total (mmol/L) 4.92 ± 0.93 5.37 ± 1.11 5.44 ± 1.28 <0.001b***

C-Peptide (ng/mL) 2.14 ± 1.30 2.88 ± 2.22 2.83 ± 1.38 <0.001b***

Creatinine (µmol/L) 65.24 ± 13.90 74.04 ± 13.91 77.71 ± 19.86 <0.001b***

Dihydroxy VitD Total (ng/mL) 17.65 ± 11.46 19.57 ± 11.35 19.13 ± 9.43 <0.001b***

Ferritin (mcg/L) 65.02 ± 105.93 109.76 ± 96.33 124.33 ± 101.1 <0.001b***

Fibrinogen (gm/L) 3.29 ± 0.68 3.40 ± 0.65 3.48 ± 0.67 0.001b**

Folate (nmol/L) 20.64 ± 7.51 22.42 ± 7.25 22.82 ± 7.44 <0.001b***

Free thyroxine (pmol/L) 12.96 ± 1.89 12.73 ± 1.85 12.82 ± 1.46 0.006b**

Glucose (mmol/L) 5.18 ± 1.50 6.71 ± 2.91 7.92 ± 3.79 <0.001b***

HbA1C 5.40 ± 0.83 6.28 ± 1.56 7.14 ± 1.95 <0.001b***

HDL-Cholesterol (mmol/L) 1.43 ± 0.38 1.19 ± 0.30 1.12 ± 0.29 <0.001b***

Hemoglobin (gm/dL) 13.44 ± 1.79 14.59 ± 1.44 14.45 ± 1.56 <0.001b***

Insulin (mcunit/mL) 12.31 ± 14.90 19.03 ± 27.04 16.25 ± 12.89 <0.001b***

INR 1.05 ± 0.09 1.01 ± 0.09 1.00 ± 0.10 <0.001b***

Iron (µmol/L) 14.92 ± 6.71 16.59 ± 5.75 16.18 ± 5.74 <0.001b***

LDL-Cholesterol (mmol/L) 2.96 ± 0.87 3.29 ± 1.20 3.37 ± 1.18 <0.001b***

Potassium (mmol/L) 4.36 ± 0.37 4.44 ± 0.38 4.51 ± 0.42 <0.001b***

Total protein (gm/L) 73.67 ± 3.90 73.26 ± 3.82 73.15 ± 3.81 0.083b

Triglyceride (mmol/L) 1.16 ± 0.69 1.81 ± 1.18 1.94 ± 1.15 <0.00b***

Urea (mmol/L) 4.21 ± 1.25 4.75 ± 1.21 5.07 ± 1.84 <0.001b***

APT, activated partial thromboplastin time; BMI, body mass index; INR, International Normalization Ration, PT, prothrombin time; TSH, thyroid stimulating Hormone; TIBC,
total iron binding capacity.
aChi-square test, bKruskal–Wallis test.
*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.

diversity statistical significance was calculated using Mann–
Whitney test through Minitab-17 (2010). P-values less than 0.05
were considered statistically significant. Differences in the beta
diversity were presented as principal coordinate analysis using
QIIME. Analysis of similarities (ANOSIM) was used to calculate
the distance matrix difference between the categories using Bray-
Curtis metric (Caporaso et al., 2010).

Supervised Machine Learning Modeling
We applied four statistical ML methods for regularization and
feature selection based on penalized least squares (Figure 1B).
The methods are the Least Absolute Shrinkage and Selection
Operator (Lasso), Smoothly Clipped Absolute Deviation Penalty
(Zou and Li, 2008) (SCAD), Elastic Net (Zou and Hastie,
2005) (ENet), and Minimax concave penalty (Zhang, 2010)
(MCP). The methods differ by the mathematical properties
of the corresponding penalties: Lasso and ENet use convex
penalties, while MCP and Scad use concave penalties. We applied
two transformations to the abundance-counts as in: a binary
transformation (Binary), and a variance-stability transformation

(Arcsin), while the CVD-score outcome was log-transformed
(Dong et al., 2020). Analyses were performed using the
R-packages glmnet (Hastie and Qian, 2014) and ncvreg (Breheny,
2020). The graphics were generated using the R-packages ggplot2,
RVenn, and ggpubr (Wickham, 2011; Akyol, 2019; Kassambara,
2020). We randomly split the data 50-times into a training
set (80%) on which the predictive-models were build and a
test-set (20%) on which we tested the performance of each
model. Optimal tuning parameters were chosen via 10-fold cross-
validation.

RESULTS

Demographic and Clinical Parameters of
the Study Population
The study population was composed of 2,974 Qatari participants.
The cohort was classified into three CVD groups as low-risk
(LR) (CVD score < 10), moderate-risk (MR) (CVD score:
10–20), and high-risk (HR) (>20), as described in the section
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“Materials and Methods.” As a result, 2491 participants were
LR, 320 were MR, and 163 were HR (Table 1). The average
participant’s age in the HR group (55.87 ± 8.14 years) was
significantly higher than those in the MR (50.89 ± 7.15 years)
and LR (35.11 ± 10.22 years) groups (Table 1). Moreover,
the BMI was significantly higher in the HR group than
in the MR and LR groups (Table 1). In addition, among
the blood parameters tested, Alkaline phosphatase, Calcium,
Total-Cholesterol, LDL, Creatinine, Ferritin, Fibrinogen, Folate,
Glucose, HbA1C, Urea, and Triglycerides were significantly
higher in the HR group (Table 1).

The Salivary Microbiome Composition
Reveals Signatures for Cardiovascular
Diseases
After stratifying the study cohort based on the CVD risk score,
we assessed the SM composition in all subjects. Then, we
compared the compositional changes between different study
groups. A diagram that summarizes the study design is shown
in Figures 1A,B. The microbial sequence data generated from
all the participants revealed 22 bacterial phyla, 46 classes, 87
orders, 173 families, and 390 genera. Bacteroidetes, Firmicutes,
Actinobacteria, and Proteobacteria were the most abundant
phyla observed in the saliva samples collected from the
Qatari subjects, covering approximately 90% of total microbial
abundance (Figure 2A). In addition, our data showed that
Streptococcus, Prevotella, Porphyromonas, Granulicatella, and

Veillonella represent the salivary core microbiome members at
the genus level (Figure 2B).

Differential Salivary Microbial Taxa
Between the High-Risk and
Low-Risk-Cardiovascular Diseases
Groups
After assessing the study cohort’s SM, LEfSe analysis compared
the salivary microbiome compositions in the LR, MR, and
HR (Figure 3). Our data indicated that Capnocytophaga and
Clostridiaceae were significantly abundant in the LR group
compared to the HR group (p < 0.0001). In contrast,
Lactobacillus and Rothia were significantly enriched in the
HR group (p < 0.0001) (Figure 3A) in comparison to the
LR group. Clostridiaceae and Porphyromonas were significantly
increased in the LR group than MR group. Neisseria and
Capnocytophaga were greatly enriched in the MR group than HR
group (Figures 3B,C).

Alpha and beta diversity measures were calculated to assess the
changes in diversity among groups (Supplementary Figure 1).
Alpha diversity parameters revealed no significant differences
observed between all groups (Supplementary Figure 1A). We
then performed beta diversity analysis to assess the divergence
in the community composition between the groups using the
Bray-Curtis distance metric (Supplementary Figure 1B). We
showed that the salivary microbiome in HR and MR were

FIGURE 1 | Overall study design from participant recruitment to SM-based CVD marker selection. (A) The study workflow. (B) Strategies applied in Supervised
machine learning (ML) to select pertinents.
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FIGURE 2 | The salivary microbiome composition of CVD risk groups. Y-axis shows % of relative abundance of the microbiome; X-axis indicates the microbial
abundance in LR, MR, and HR groups; (A) phylum level; (B) genus level.

not significantly dissimilar from the LR group (p = 0.085)
(Supplementary Figure 1B).

Identification of Pertinent Salivary
Microbial Markers Associated With the
Cardiovascular Diseases Score Using
Machine Learning Models
The apparent differences between the study groups using
alpha and beta diversity measures were not identified due to
the significant sample size differences and imbalance. In this
study, the participants were selected from the QGP Cohort,
who provided saliva samples exclusively. QBB collected the
biosamples from all volunteers as a sampling of Qatari population
without focusing on CVD risk-based recruitment. We decided to

use regression-based ML selection of pertinent SM biomarkers
to avoid bias based on the sample size. The data were split 50-
times randomly, using the four feature selection techniques, and
the whole dataset was used without any exclusion (Figure 1B).

To search for pertinent variables, we focused on the
abundances of SM selected at least 80% of the time among the 50-
random splits of the data and the four feature selection techniques
as described in the section “Materials and Methods.” Our results
are shown in Figure 4. Seven microbes were selected at least 80%
of the time using the binary and Arcsin transformations by all
the ML methods (Lasso, SCAD, ENet, and MCP) (Figures 4A,B).
Three microbes were presented at all the tested models and
both transformations (Figures 4C,D). In comparison, four
microbes were specific to the binary transformation and four
were particular to the Arcsin transformation (Figure 4D).
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FIGURE 3 | Graphs of linear discriminant analysis (LDA) scores for
differentially enriched bacterial genera among the groups. (A) LR (green) vs.
HR (red) groups; (B) LR (green) vs. MR (Yellow) groups; (C) HR (red) vs MR
(Yellow) groups.

The common microbes were Prevotella, Tissierellaceae, and
Desulfobulbus (Figure 4D). To better understand how these
microbes affect the CVD-score, we counted the sign of the
regression coefficients number of times, Positive, Negative,
or Zero (Figure 4E). From this analysis, the three microbes
mentioned above contribute to an increase in the CVD score
(Figure 4E). At the same time, our data showed that an
increase in Clostridiaceae level contributed to a decrease in CVD-
score (Figure 4F). Assessment using the Mean squared error
(MSE) method disclosed that binary transformation has better
prediction accuracy than Arcsin (Figure 4G).

DISCUSSION

The need for practical, non-invasive tools for predicting and
preventing CVD risk has led to concerted research efforts in
recent years to identify and characterize biomarkers associated
with the disease as a step forward toward precision medicine.
In addition, recent studies on the microbiome have enlightened
its role in human health and disease (Solbiati and Frias-
Lopez, 2018). Despite that, the diversity of the gut microbiome
is affected by several factors like gender, ethnicity, age, and
environmental factors; it was found to be associated with many
diseases, including CVD and IBD using ML-models (Gulden,
2018; Chang and Kao, 2019). However, the potential use of the
SM composition in assessing CVD is still lacking.

This study evaluated whether the SM composition can predict
a high risk for developing CVD in a diverse Qatari population.
Using a large cohort of 2,974 Qatari participants and based
on the CVD risk score, we showed for the first time that
the SM composition in LR and HR individuals is different
(LefSe analysis). A significant SM alteration was observed
between LR, MR, and HR groups (Figures 3A–C). Furthermore,
Capnocytophaga and Clostridiaceae were significantly enriched
in the LR group (Figure 3A). While no studies are addressing
the role of Capnocytophaga in health and disease, a study
among Japanese patients showed that non-ischemic heart failure
is associated with lower levels of Clostridiaceae (Katsimichas
et al., 2018). In line with our findings, a significant reduction of
Clostridiaceae was observed in the HR-CVD group in the Qatari
population (Figures 3A,4D,F).

Moreover, our data showed that Lactobacillus and Rothia were
enriched in the HR group compared to the LR group (Figure 3A).
Similarly, a study aiming to utilize the gut microbiome as a
diagnostic marker of coronary artery disease (CAD) in the
Japanese population has revealed that Lactobacilli were more
abundant in patients with CAD than their matching controls
(Emoto et al., 2017). On the other hand, Rothia, a nitrate-
reducing bacterium, was enriched in hypertensive patients
(Wang et al., 2021).

Next, we employed a novel approach of regression-based
machine learning by combining the entire dataset of 16S rDNA
sequencing data with ML models to identify the potential
predictors of HR CVD without stratifying the cohort to mask the
bias due to sample size differences among groups. We found that
three microbes (Prevotella, Tissierellaceae, and Desulfobulbus)
were represented by binary and Arcsin transformations and
different training model techniques. Those were associated with
high CVD-score (Figure 4). The Bogalusa Heart Study aimed to
associate the lifetime CVD risk among the participants using the
gut microbes revealed that the genus Prevotella was significantly
enriched in the CVD HR participants (Kelly et al., 2016). Also,
the role of gut microbiome in Chinese CVD patients with
cardiac valve calcification revealed that Prevotella is a potential
pathogen that is positively correlated with LDL (Liu et al.,
2019). Moreover, hypertensive rats had a significant increase of
Tissierellaceae in the gut microbiome (Sherman et al., 2018).
Furthermore, Tissierella soehngenia was more abundant in rats
with acute myocardial infarction than in the control groups (Wu
et al., 2017). Tissierellaceae produces trimethyl amino N-oxide
(TMAO), a known microbial metabolite associated with heart
attack, stroke, and chronic kidney disease (Al-Obaide et al., 2017).
Our study showed that Desulfobulbus – sulfidogenic bacterium
(Devkota et al., 2012) has a positive regression coefficient with
CVD scores in both trained models (Figures 4C,D). The elevated
level of Desulfobulbus is known to trigger proinflammatory
cytokines in patients with rheumatoid arthritis and periodontitis
(Eriksson et al., 2019). Moreover, its abundance is positively
correlated with age rendering it an excellent predictor to diagnose
systemic diseases like diabetes and CVD (Tomas et al., 2012).

To our knowledge, this study is the first to demonstrate the
promising potential of artificial intelligence via ML modeling
for a convenient prediction screening of CVD based on the SM
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FIGURE 4 | Machine learning models. Barplots representing the selection percentages of the microbes selected at least 80% of the time by the four methods over
the 50 random splits of the data. (A) Binary transformation. (B) Arcsin transformation. (C) Venn Diagram showing the number of microbes. (D) Heatmap [presence
(green)/absence (red)] of selected microbes using Binary and Arcsin transformations. (E) Balloon plot representing sign counts of the regression coefficients: Binary
transformation (F) Arcsin transformation. The size of circles represents the number of splits. The color represents the number of counts. (G) Box plots of the MSE for
the four-methods and the two transformations applied to the microbiome abundance data. Each point of the boxplot represents the MSE on the test-set.

composition in the Arab population. While most ML strategies
based on the health records (including age, sex, smoking habit,
systolic BP, total cholesterol, HDL, cholesterol, BP treatment, and
diabetes), fewer studies used gut microbiome profiles to predict
IBD and CVD with an AUC of ≈0.70 and 0.90, respectively
(Masetic and Subasi, 2016; Weng et al., 2017; Aryal et al.,
2020; Tsoi et al., 2020; Manandhar et al., 2021). A pilot study
of Japanese patients with atherosclerotic cardiovascular disease
(ACVD) revealed that SM could be used as an optimal marker

of ACVD with an AUC of 0.933 (Kato-Kogoe et al., 2021). It
is a promising finding to enable the discovery of non-invasive
biomarkers that can predict the risk of the disease before it occurs.
This study is novel, and the outcomes will be a step toward
developing new biomarkers for early non-invasive testing aiming
to reduce the CVD burden. The main limitation of this study is
the single time point recruitment of the participants without any
follow-up on the participants, in addition to the imbalance in the
sample size between the groups. This study mainly focuses on the
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SM shift with a change in CVD-score. In this study, we did not
consider the other confounding factors such as chronic diseases
like diabetes, arthritis, and hypertension and their treatment,
which can also influence the SM shift.

Further studies are warranted to confirm our findings
and the potential use of these microbial signatures as
diagnostic or prognostic markers. In addition, more
investigation of these biomarkers for their mechanistic and
pathophysiological evidence could be helpful in the personalized
approach to treat CVD.
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