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Gut microbiome dysbiosis has been known to be associated with all stages of non-
alcoholic fatty liver disease (NAFLD), but questions remain about microbial profiles in
progression and homogeneity across NAFLD stages. We performed a meta-analysis
of three publicly shotgun datasets and built predictive models to determine diagnostic
capacity. Here, we found consistently microbiome shifts across NAFLD stages, of
which co-occurrence patterns and core sets of new biomarkers significantly correlated
with NAFLD progression were identified. Machine learning models that are able to
distinguish patients with any NAFLD stage from healthy controls remained predictive
when applied to patients with other NAFLD stages, suggesting the homogeneity across
stages once again. Focusing on species and metabolic pathways specifically associated
with progressive stages, we found that increased toxic metabolites and decreased
protection of butyrate and choline contributed to advanced NAFLD. We further built
models discriminating one stage from the others with an average of 0.86 of area under
the curve. In conclusion, this meta-analysis firmly establishes generalizable microbiome
dysbiosis and predictive taxonomic and functional signatures as a basis for future
diagnostics across NAFLD stages.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is defined as the pathological accumulation of lipid
droplets in >5% of hepatocytes (Sberna et al., 2018), developing from simple non-alcoholic fatty
liver (NAFL), progressing toward non-alcoholic steatohepatitis (NASH), which can also present
with liver fibrosis, the main prognostic lesion for disease progression, and ultimately leading to
cirrhosis or hepatocellular carcinoma (Fingas et al., 2016). It is rapidly becoming the most prevalent
liver disease and also the most increasing cause of hepatocellular cancer and liver transplantation
in Western countries. Liver biopsy is the diagnostic gold standard to assess the disease severity, yet
it is an invasive, traumatic, inconvenient tool, making it unfeasible for disease screening, diagnosis,
or examining progression in routine care. Early identification of the presence of the advanced stage
of NAFLD using non-invasive form is a major unmet need in the field.

Evidence is accumulating that the gut microbiome is involved in the etiology of NAFLD,
while few studies have focused specifically on microbiota signatures in NAFLD at species level
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(Qin et al., 2014; Loomba et al., 2017; Hoyles et al., 2018) and
even fewer have examined microbial composition as a function
of NAFLD progression (Caussy et al., 2019). Qin et al. (2014)
characterized the gut microbiome in liver cirrhosis, but this
study involved diverse etiologies of cirrhosis (such as alcoholic
liver disease, hepatitis B, and hepatitis C) and did not provide
gut microbiome signatures that are specific to NAFLD-related
cirrhosis. There are also studies comparing different stages of
liver steatosis (Hoyles et al., 2018) or fibrosis severity (Boursier
et al., 2016; Loomba et al., 2017; Shen et al., 2017), yet these
stages are not exactly the same as the stage of disease progression.
Caussy et al. (2019) explored patients with non-NAFLD, NAFLD
without advanced fibrosis, or NAFLD cirrhosis, while most of the
identified promising diagnostic signatures were unknown genera.
Importantly, researches have mainly compared the differences
between NAFLD patients and healthy controls or between
mild stage and advanced stage of fibrosis, the generalizable
microbiome dysbiosis across stages has been ignored. Thus, the
alteration of the gut microbiome in NAFLD progression and the
generality of microbiome dysbiosis across stages urgently need to
be demonstrated.

Here, we collected currently available NAFLD shotgun
metagenomic datasets (Boursier et al., 2016; Loomba et al.,
2017; Shen et al., 2017), re-classified 107 patients with NAFL,
NASH, fibrosis, or cirrhosis and 120 healthy controls according
to clinical diagnosis, performed an integrated analysis combining
all datasets, and assessed prediction accuracies of the gut
microbiome for the detection of the different stages in NAFLD
progression. Our study aims to find a panel of gut microbiome-
derived biomarkers generally associated with NAFLD across
stages or linking NAFLD progression, which help to develop a
non-invasive diagnosis of NAFLD.

RESULTS

Gut Microbiome Changes in
Non-alcoholic Fatty Liver Disease
Progression
After filtering samples with incomplete diagnostic information,
we considered 39 patients with NAFL, 39 patients with NASH,
15 patients with fibrosis, 14 patients with cirrhosis, and 120
healthy controls (Supplementary Table 1). In total, assembled
sequences for 493 species (Supplementary Table 2), 1,718,123
gene families (Supplementary Table 3), and 432 metabolic
pathways (Supplementary Table 4) were identified in the 227
samples. The combined metagenomic data showed substantial
batch effects (Figure 1A), so we converted discrete taxonomical
counts into log-counts per million (log-cpm) per sample, and
performed supervised normalization (SNM) (Qin et al., 2012)
to reduced batch effects (Figure 1B). We then contrasted
the effect of disease-associated heterogeneity on microbiome
composition with potential confounders [patient age, body mass
index (BMI), and sex], and this analysis revealed BMI to have
an impact on species composition as predominant as disease
(Supplementary Figure 1A), since patients with NAFLD often

present with obesity. To address this issue, for the present
study, a methodology was chosen that explicitly models BMI
as a confounder in all applicable tests (Hothorn et al., 2006).
Consistent with prior studies (Caussy et al., 2019; Ponziani et al.,
2019), samples from individuals with more serious NAFLD stage
had significantly lower Simpson alpha diversity (Figure 1C).
The stage of health or disease contributed to the first axis of
species-based principal coordinates (Figure 1D), and the most
variation is driven by a trade-off between phylum Bacteroidetes
and Firmicutes (Figures 1E,F and Supplementary Figure 1B).

Univariate Analysis of Species
Associated With Non-alcoholic Fatty
Liver Disease
At a meta-analysis FDR of 0.05, we identified 99 species,
out of 261 species consistently detected across studies, to
be associated with general NAFLD microbiome dysbiosis, of
which 47 microbial species were identified to be significantly
enriched in patients and 52 microbial species were identified
to be significantly depleted (Figure 2A). The gut microbial
community had consistent alteration patterns across different
disease stages (Figure 2B and Supplementary Figure 2), and
the majority of significant species were compatible identified as
significant in individual disease stages (Figure 2B). Our results
are easily reconciled with a model in which increased pathogenic
microbes and a lack of protective microbes contribute to NAFLD
development (Figure 2C). These species showed relatively low
accuracy for cirrhosis, and this may be partially due to the
low sample size.

We then focused on a core set of the 38 most significant
markers (FDR < 1 × 10−3) for further analysis (Figure 2A).
Among these, Enterococcus faecalis was previously identified
enriched in liver fibrosis patients (Aron-Wisnewsky et al., 2020),
and the rest were new microbial biomarkers. Strains enriched
in NAFLD such as Megasphaera unclassified, Streptococcus sp.
I G2, Clostridium spiroforme, Coriobacteriaceae bacterium phI,
Turicibacter sp. HGF1, Veillonella sp. 3 1 44, Streptococcus
sanguinis, and Streptococcus anginosus negatively correlated with
species enriched in healthy controls, including Weissella cibaria,
Saccharomyces unclassified, Lactobacillus vaginalis, Streptococcus
sp. GMD4S, Lactobacillus crispatus, Coprobacillus sp. 8 2
54BFAA, Coprococcus sp. HPP0048, and Klebsiella unclassified
(Figure 3A). All of the classified NAFLD-enriched species are
well-known pathogenic bacterium; for example, C. spiroforme
toxin shows cytotoxicity and causes enteric diseases in human
(Uzal et al., 2018), S. sanguinis is notorious for a cause of
infective endocarditis (Zhu et al., 2018), and S. anginosus plays
a pathogenic role in cystic fibrosis (Asam and Spellerberg,
2014). The majority of the control-enriched species are beneficial
bacterium, for example, W. cibaria, as a kimchi lactic acid
bacteria, has the ability to prevent cancer (Kwak et al.,
2014) and L. crispatus is known as a biomarker of the
healthy vaginal tract (Lepargneur, 2016; Veščičík et al., 2020).
Another cluster of strains enriched in NAFLD including
Rothia dentocariosa, Bifidobacterium dentium, Actinomyces sp.
ICM47, E. faecalis, Streptococcus sp. 2 1 36FAA, Klebsiella
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FIGURE 1 | Normalization and overview of the NAFLD microbiome taxonomic profiles at species level. (A) Principal components analysis (PCA) of log-cpm
normalized data, with NAFLD microbiome samples colored by studies. (B) PCA of log-cpm-SNM data. (C) Alpha diversity for each disease stage. The differences
were calculated by two-sided Wilcoxon test. *p < 0.05; **p < 0.01. (D) Principal coordinates analysis (PCoA) based on species-level Bray–Curtis dissimilarity colored
by disease stage. (E) PCoA colored by the normalized abundance of phylum Bacteroidetes. (F) PCoA colored by the normalized abundance of phylum Firmicutes.
HC, healthy controls; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

oxytoca, and Streptococcus intermedius negatively correlated with
species enriched in healthy controls, including Alistipes sp.
JC136, Parabacteroides sp. ASF519, Streptococcus infantarius,
and Dialister succinatiphilus (Figure 3A). Most of the NAFLD-
enriched species are pathogenic; for example, R. dentocariosa is
a well-known causative agent of dental plaques and periodontal

disease (Yang et al., 2007); B. dentium is the only single
species of Bifidobacterium recognized as pathogenic (Meile
et al., 2008); and K. oxytoca and S. intermedius were reported
to be enriched in patients with angiocardiopathy (Jie et al.,
2017). To determine whether specific microorganisms were
correlated with NAFLD progression, we assessed the abundance
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FIGURE 2 | Meta-analysis identifies a core set of gut microbes strongly associated with NAFLD. (A) Meta-analysis significance of gut microbial species derived from
blocked Wilcoxon tests is given by the bar height (FDR = 0.05). Bars of a core of highly significant species (meta-analysis FDR = 1 × 10-3) were colored as dark gray.
(B) Species-level significance, as calculated with a blocked two-sided Wilcoxon test (FDR P value), and the generalized fold change within individual stages are
displayed as heatmaps in gray and in color, respectively. Species are ordered by meta-analysis significance and direction of change. NAFL, non-alcoholic fatty liver;
NASH, non-alcoholic steatohepatitis. (C) Association strength is quantified by the AUROC across individual stages (color-coded diamonds), and the 95% confidence
intervals are indicated by the gray lines. Order-level taxonomic information is color-coded above the species names.

of prokaryotes across the four stages of NAFLD by partial
Spearman’s rank-based correlation (pSRC). At the species level,
C. spiroforme, Turicibacter sp., E. dolichum, L. salivarius,
M. funiformis, S. anginosus, S. sanguinis, Streptococcus sp.,
V. dispar, and Veillonella sp. were significantly correlated with
NAFLD progression (pSRC, FDR < 0.05, Figure 3B), whereas
A. senegalensis, Coprobacillus sp., Coprococcus sp., L. crispatus,
L. vaginalis, and W. cibaria were significantly anti-correlated with
NAFLD progression (pSRC, FDR < 0.05, Figure 3C).

In addition to the species associated to general microbiome
dysbiosis for NAFLD, we also look for species associated
with progressive subtype (NASH, fibrosis, and cirrhosis) that
can lead to serious consequences, such as hepatocellular

carcinoma and liver-related death. Ten species were enriched
in patients with progressive NAFLD, including Clostridium
perfringens, Bacteroides coprophilus, Flavonifractor unclassified,
Turicibacter sanguinis, Actinomyces graevenitzii, Anaerostipes
unclassified, Coprobacillus sp. 3 3 56FAA, Parabacteroides sp. D25,
Eubacterium cylindroides, and Paraprevotella xylaniphila, while
five species were deleted, namely, Streptococcus tigurinus, Slackia
piriformis, Granulicatella adiacens, Roseburia unclassified, and
Anaerostipes hadrus (Figure 3D). C. perfringens, a well-known
pathogen with the ability to secrete an arsenal of more than
20 virulent toxins (Kiu and Hall, 2018), is increased in several
food poisoning and non-foodborne diseases. In our study, it is
significantly and most increased in patients with fibrosis and
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FIGURE 3 | A co-occurrence network and the correlation between gut microbes and NAFLD. (A) A co-occurrence network for the core set of highly significant
species. The size of the nodes indicates normalized abundance. The color of the nodes indicates their taxonomic assignment. Connecting lines represent Spearman
correlation coefficient values above 0.8 (red) or below −0.8 (blue). (B) Boxplots showing that species was significantly correlated with NAFLD stages using partial
Spearman’s rank-based correlation (pSRC), adjusted for BMI (two-sided, FDR < 0.05). (C) Boxplots showing that species was significantly anti-correlated with
NAFLD stages (pSRC, two-sided, FDR < 0.05). (D) Heatmap showing the species that significantly and consistently changed in the last three stages (blocked
two-sided Wilcoxon tests, + indicates statistical significance FDR < 0.05). Generalized fold change is colored by direction of the effect, where red indicates higher
abundance in patients and blue indicates depletion. HC, healthy controls; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.
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cirrhosis, implying that the increase in the level of toxins can
enter systemic circulation to affect various organs, such as liver.
The higher level of G. adiacens has been reported to be associated
with lung cancer (Shirazi et al., 2019) and pancreatic cancer
(Memba et al., 2017), but in our study, it is decreased in patients
with advanced NAFLD. Other strains have been little studied so
far, so the role of microbe community in the development or
prevention of disease is still an ongoing area of research.

We also did univariate analysis of genus associated with
NAFLD. The raw counts were log-cpm-SNM transformed
to reduce batch effect as mentioned above (Supplementary
Figures 1A,B). At a meta-analysis FDR of 0.05, we identified 6
microbial species to be differentially enriched and 11 microbial
species to be differentially depleted in the NAFLD patients out of
81 species consistently detected across studies (Supplementary
Figure 3C). The gut microbial community also had consistent
alteration patterns across different disease stages. Megasphaera
has been reported to be enriched in patients with liver fibrosis
(Chen et al., 2011), and we also got the same results in our
study. Porphyromonas (Zhu et al., 2013) and Peptoniphilus
(Del Chierico et al., 2017) were reported to be increased in
patients with NASH, which was not repeated in our study,
mainly owing to the sequence method and the sample from
children. Phascolarctobacterium (Aron-Wisnewsky et al., 2020)
were reported to be deceased in patients with obesity, a common
complication of NAFLD, and we also got the same results in
the present study. At the genus level, Coriobacteriaceae noname,
Fusobacterium, Megasphaera, and Sutterellaceae unclassified
were significantly correlated with NAFLD progression
(Supplementary Figure 3D), and Leuconostoc, Saccharomyces,
and Weissella were significantly anti-correlated with NAFLD
progression (Supplementary Figure 3E).

Functional Metagenomic Signatures for
Non-alcoholic Fatty Liver Disease
Functional potential of the microbiome was also significantly
associated with NAFLD samples when compared to healthy
controls. We found 11,941 of the 17,426 single gene families
(FDR < 0.05) detected at least once to be enriched in
NAFLD patients and 12,969 to be enriched in controls at
meta-analysis FDR < 0.05. We further observed 179 out
of 189 metagenomically reconstructed microbial functional
pathways (FDR < 0.05) to be at least once control-enriched,
and only 10 to be enriched in NAFLD patients at all stages
of NAFLD. The disordered metabolic pathways showed an
abnormal glycolipid metabolism, such as glycolysis, glyoxylate
bypass, tricarboxylic acid (TCA) cycle, as well as fatty acid
elongation, oxidation, and degradation, and these have been
reported in several intestinal and metabolic disorders of multiple
etiologies, such as colorectal cancer (Wirbel et al., 2019),
obesity (Hoyles et al., 2018), as well as cardiovascular disease
(Zhernakova et al., 2018). The NAFLD-enriched pathway is
mainly associated with the production of harmful products,
such as L-glutamate degradation VIII (to propanoate) and
teichoic acid (poly-glycerol) biosynthesis (Figure 4). Propanoate
generated from L-glutamate degradation is of hypotoxicity

and inhibition of fatty acid synthesis (Hoke et al., 2016).
The teichoic acid is a special component of the cell wall of
gram-positive (G+) bacterium, helping bacteria stick to the
surface of human cells, avoiding phagocytosis by leukocytes and
resisting complement, which may be related to pathogenicity
(Engholm et al., 2017). Most of the enriched species in
patients gut microbiome are gram positive, such as Streptococcus,
Lactobacillus, Clostridium, Bifidobacterium, and Actinomyces,
which reinforce our finding. The significant alteration pathways
also showed an association with NADH/NAD+ balance via
glycolysis, TCA, and glyoxylate bypass, which have previously
been associated with alcoholic hepatitis (Seronello et al., 2010)
and metabolic dysfunction (Alves-Paiva et al., 2018; Figure 4).
Butyrate is well known not only to be the preferred fuel
for the colonic epithelial cells and the major regulator of
cell proliferation and differentiation (Guilloteau et al., 2010),
but also shown to exert important actions related to cellular
homeostasis such as anti-inflammatory, antioxidant, and anti-
carcinogenic functions (Hamer et al., 2009). Among pathways
involved in butyrate production, the acetyl-CoA biosynthesis,
L-glutamate biosynthesis, L-lysine biosynthesis, and L-histidine
biosynthesis pathways were decreased in NAFLD patients
(Figure 4), indicating the reduced protection effects of butyrate.
The production of phosphatidylcholine, the main phospholipid
in cellular membranes, from lysophosphatidylcholine acylation is
a key component of the acyl-editing process, involving recycling
of the fatty acids (Agarwal and Garg, 2010). Phosphatidylcholine
provides the majority of the exogenous choline, the lack of
which is linked to the accumulation of hepatic lipid and induced
models of NAFLD in animals (Sherriff et al., 2016). The decreased
phosphatidylcholine acyl editing pathway in progressive stages
of NAFLD patients implied that the lack of protective effect of
phosphatidylcholine and deficiency of choline might contribute
to the liver injury (Figure 4). In addition, the pathway for
synthesizing nutrients, such as menaquinol, flavin, ubiquinol,
and phylloquinol, was observed to be reduced in patients
(Figure 4). In addition, some species that were deleted in
patients might affect Type II immune response. For example,
D. succinatiphilus, known as succinate-utilizing bacteria, might
regulate the phenotype and function of immune cells.

Validation of Non-alcoholic Fatty Liver
Disease Microbiome Signature
To evaluate the utility of the metagenomic gut microbiome
signature for the detection of NAFLD, we tested its diagnostic
accuracy between patients and healthy controls and cross
four stages of NAFLD by training stochastic gradient-boosting
machine (GBM) learning models. In patients–controls validation
using species-level taxonomic normalized abundances, we
observed performances ranging in area under the receiver
operating characteristic curve (AUROC) score from 0.9861 to
1.0000 and in area under the precision-recall curve (AUPR)
score from 0.8723 to 1.0000 (Figure 5A and Supplementary
Figures 4A–D), and the performances were generally maintained
in stage-to-stage transfer (AUROC ranged between 0.8125 and
0.9974) (Figure 5A). These results show that within-stage
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FIGURE 4 | Microbial metabolic pathways altered in NAFLD. The significance
of gut microbial species derived from blocked two-sided Wilcoxon tests (+
indicates statistical significance FDR < 0.05). In the generalized fold-change
color scale, yellow represents microbial pathways that were increased in the
NAFLD group compared with the healthy control group, while purple
represents pathways that were decreased in the NAFLD group compared with
the healthy control group. NAFL, non-alcoholic fatty liver; NASH,
non-alcoholic steatohepatitis.

validation AUROCs and AUPR can be high for prediction of
a certain stage of NAFLD with healthy controls, but they can
also distinguish other stages from healthy controls, highlighting
the homogeneous microbiome dysbiosis across stages. Given the
clinical importance of our study, we further assessed whether it
could discriminate one stage from the others. Encouragingly, we
observed performances ranging in AUROC score from 0.7000
to 0.9352 and in AUPR score from 0.5462 to 0.8332 (Figure 5B
and Supplementary Figures 4E–H), which performed well for
discriminating between one stage and the others. Random forest

model for verification was also used, and the classification
performance was similar to GBM (Supplementary Figure 5).
To evaluate the generalizability of our approach across datasets,
we randomly sorted raw microbial counts into two batches,
repeated all procedures on each independently, tested each
independently trained model on the other half of the data, and
found highly similar performance (Supplementary Figure 5).
The slight reduction in sensitivities and specificities for split data
may be partially due to small data sizes.

Among the features used in the model validating patients
and controls, Alistipes sp. JC136 was the species with the highest
average rank for the importance. As expected, other generally
NAFLD-associated species including Holdemania unclassified,
Bifidobacterium sp. 12 1 47BFAA, Coriobacteriaceae bacterium
phI, A. odontolyticus, Eubacterium siraeum, Actinomyces
sp. ICM47, Bacteroides thetaiotaomicron, R. mucilaginosa,
and S. vestibularis were also crucial to prediction accuracy
(Figures 2, 6A). A. graevenitzii and P. xylaniphila were identified
as species associated with advanced stages of NAFLD and also
had good performance for validating patients and controls
(Figures 3D, 6A). Among the features used in the model
validating four stages of NAFLD, E. cylindroides, Clostridium
hathewayi, Dorea formicigenerans, and Clostridium sp. HGF2 had
the highest rank for the importance, respectively (Figure 6B).
Our previous study has shown that C. hathewayi was enriched
in ankylosing spondylitis (AS) patients (Xu and Yin, 2019;
Yin et al., 2020), but in this current study, we found that its
abundance was significantly decreased in NASH patients with
good discriminating performance.

DISCUSSION

Our study was performed across multiple datasets and
populations, through a combined analysis of fecal NAFLD
metagenomes from three publicly available datasets. Divergence
of metagenomic approaches and study design, such as differences
in sample collection and preservation, DNA extraction
methodology and sequencing platform, all affect the composition
of downstream sequence data. The effect of study-associated
heterogeneity on microbiome composition was first quantified.
The sequencing platform was the same in all three studies
(Illumina HiSeq), while DNA extraction methods were different.
Although all three studies stated that the sampling method was
rapid freezing to −80◦C, there were still technical differences due
to human factors. So, the technical variation, such as sampling
and DNA extraction for each of the downloaded dataset, was
integrally considered as batch effects, which be dealt with at
the beginning. Although these effects cannot be completely
eliminated, they were greatly reduced (Figure 1B).

Researchers are often more likely to focus on the difference
between disease and healthy controls, while the commonality
between related diseases is often neglected. Here, we identified a
core gut microbiome signature for general NAFLD microbiome
dysbiosis instead of disease-stage-specific links (Figure 2).
Although most of the classified NAFLD-enriched species have
been shown to be pathogenic bacterium for human or animal
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FIGURE 5 | Taxonomic classification models generalize across stages by GBM. (A) Classification accuracy resulting from validation within each stage (along the
diagonal) and stage-to-stage model transfer (external validations off-diagonal) as measured by AUROC. (B) Classification accuracy resulting from the models
designed to distinguish patients with one stage of NAFLD from other stages. AUROC, area under the receiver operating characteristic curve; AUPR, area under the
precision–recall curve; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

models (Yang et al., 2007; Meile et al., 2008; Asam and
Spellerberg, 2014; Uzal et al., 2018; Zhu et al., 2018), they
were first to be shown as species associated with NAFLD.
Among these, we demonstrate an interaction pattern of the
most significant set of species (Figure 3A), and most of them
were significantly correlated or anti-correlated with disease
progression (Figures 3B,C). Boursier et al. (2016) had reported
that Ruminococcus was significantly enriched in patients with
both NASH or fibrosis, and in this current study, we also found
a consistent result. Two Ruminococcus species (Ruminococcus
gnavus and Ruminococcus sp. JC304) were identified as
biomarkers for general NAFLD microbiome dysbiosis, and both
were enriched in patients whatever stage (Figure 2). Coprococcus
were reported to be decreased in NASH patients in three studies
(Zhu et al., 2013; Wang et al., 2016; Hoyles et al., 2018).
In our present study, three Coprococcus species (Coprococcus
catus, Coprococcus sp. ART55 1, and Coprococcus sp. HPP0048)
were found to be associated with general NAFLD microbiome
dysbiosis, and all of them were commonly decreased in all stages
of NAFLD patients (Figure 2). Furthermore, we described the
species and metabolic pathways that specifically associated with
progressive stages of NAFLD, implying that the increased toxic
metabolites and decreased protection of butyrate and choline
(Figures 3D, 4) together with diseased α-diversity (Figure 1C)
contribute to NAFLD progression.

Broadly applicable, non-invasive methods for diagnosing the
stage of NAFLD are currently not available. The identification
of microbial biomarkers for NAFLD may enable the design of
non-invasive diagnostic tools. We developed machine learning
models able to distinguish patients with any stage of NAFLD

from healthy controls with an average performance of 0.99
AUROC when validated on datasets excluded from the training
of the model (Figure 5A). The models designed to distinguish
patients with one stage of NAFLD from other stages also had
an excellent performance with an average AUROC of 0.8585
(Figure 5B). The slight reduction of AUROC for the later
model compared to the former indicate more homogeneity in
microbiome across four stages of NAFLD than with healthy
control, which was also verified by principal coordinate analysis
(Figure 1D) and the consistent alteration across NAFLD stages
(Figure 2). Therefore, microbiome-based NAFLD prediction
models enable a very high diagnostic potential. The integrated
data are slightly unbalanced between case and control, so we
choose GBM, a decision tree-based integrated learning. Decision
trees tend to do well with category disequilibrium data. It
uses categorization rules based on class variables to create a
classification tree so that samples of different categories can
be forcibly separated. The training set of category unbalanced
data has little influence on the training results of decision
tree algorithms. Furthermore, if these diagnostic features can
distinguish non-alcoholic fatty liver and alcoholic fatty liver or
other similar diseases such as liver cirrhosis caused by other
causes, it will be more significant. However, shotgun sequencing
is expensive, and related researches are also very few. Therefore,
it is hard to obtain related available data. As the price of
sequencing falls and more data become available, this may
become possible.

Although this study included the relatively small sizes of the
experimental cohorts, analysis of patients with different stage
of NAFLD presents a distinct opportunity for studying the
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FIGURE 6 | Ranking relevance of each species in the predictive models for each stage. (A) The importance of each species for the prediction performance in each
dataset estimated using stochastic gradient-boosting machine (GBM) learning models. (B) The importance of each species for the prediction performance of the
models designed to distinguish one stage of NAFLD from other stages. Only species appearing in the 20 top-ranking features in at least one dataset are reported.
HC, healthy controls; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

general NAFLD-associated and stage-specific microbiome. By
combining multiple cohorts of potentially low generalizability,
it is possible to obtain better representation of the spectrum
of NAFLD cases and controls. At present, researches about gut
microbes are still very limited, and we still know little about
the role of different strains in different situations. Even some
known probiotics can be opportunistic pathogens. Therefore,
this study combines data from three studies to identify potential
candidate bacteria that contribute to disease development. These
bacteria have been poorly studied and functional studies are
needed to explore their role in disease. With appropriate

methodology, artifactual findings due to batch effects present
in any individual dataset can be avoided. In addition, the
identification of pathogenic and beneficial microbial species
might lead to novel therapies for severe forms of NAFLD. Taking
account of limited accuracy of serum markers, the expense
of MRE technologies and the invasiveness of liver biopsy, gut
microbiome test is more convenient and feasible for disease
screening. Our discovery of a gut microbiome-derived signature
that accurately identifies the stage of NAFLD lays the foundations
and points to the potential for non-invasive microbial diagnostic
tests to supplement existing screening.
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MATERIALS AND METHODS

Study Inclusion and Data Acquisition
We used PubMed to search for studies that published fecal
shotgun metagenomic data of human NAFLD patients and
healthy CTRLs. Raw FASTQ files were downloaded for the three
included studies from the European Nucleotide Archive (ENA)
using the following ENA identifiers: ERP015847 for Hoyles et al.
(2018), PRJNA373901 for Loomba et al. (2017), and ERP005860
for Qin et al. (2014).

Sample Processing and Filtration
The stage of NAFLD was diagnosed according to liver biopsy.
Biopsies were assessed for the following three parameters:
Steatosis was graded 0–3, lobular inflammation was graded 0–
3, and ballooning was graded 0–2. Fibrosis stage was classified
into five stages from 0 to 4. NAFL patients have fat accumulation
in the liver (steatosis) involving at least 5% of hepatocytes on
routine stains without lobular inflammation, ballooning, and
fibrosis. Presence of NASH was defined as a pattern that was
consistent with steatohepatitis including presence of at least 5%
steatosis, lobular inflammation, and ballooning with or without
peri-sinusoidal fibrosis (fibrosis stage 1). Fibrosis stage consists of
periportal fibrosis (fibrosis stage 2) and bridging fibrosis (fibrosis
stage 3). Cirrhosis was defined as stage 4 fibrosis.

Participants were included in the study if they met the
following criteria: (1) 18 years or older, (2) fat accumulation in
the liver (steatosis) involving at least 5% of hepatocytes on routine
stains, (3) no evidence of other acute or chronic liver disease,
and (4) absence of regular or excessive use of alcohol. Patients
were excluded from the study if they met any of the following
criteria: (1) clinical or histological evidence of alcoholic liver
disease; and (2) clinical or biochemical evidence of liver diseases
other than NAFLD, including hepatitis B, hepatitis C, alpha-
1 antitrypsin deficiency, hemochromatosis, Wilson’s disease,
autoimmune hepatitis, polycystic liver diseases, cholestatic liver
diseases, and vascular liver diseases. Patients in the three studies
who met the above conditions and had a clear liver biopsy
diagnosis were included in this study.

The liver imaging and liver biochemistry results of all healthy
controls were in the normal range. Physical examination; routine
examination of blood, urine, and stools; preoperative serological
tests; liver function; renal function; electrolyte; liver ultrasound;
electrocardiogram; and chest X-ray results were checked in the
healthy controls to exclude any abnormal samples, such as
clinical or biochemical evidence of liver diseases, chronic illnesses
associated with hepatic steatosis, use of drugs known to cause
hepatic steatosis, and presence of systemic infectious illnesses.

Sequence Preprocessing and Taxonomic
and Functional Profiling
Fecal metagenomic shotgun sequences were quality filtered using
Trimmomatic (Bolger et al., 2014). Filtered reads were then
aligned to the human genome and the PhiX genome for human
and contaminant DNA removal using bowtie2 (Langmead and
Salzberg, 2012). We used MetaPhlAn2 for quantitative profiling

of the taxonomic composition of the microbial communities of
all metagenomic samples, and HUMANn2 was chosen to profile
pathway abundances using a ChocoPhlAn database and gene-
family abundances using a UniRef90 database. Microbial profiles
were first converted to count per million (cpm) to account for
library size. Then, profiles were filtered to focus on a set of
species that were detectable in all studies. Specifically, microbial
species that did not exceed a cpm of 1 in at least three samples
were excluded from further analysis. Functional profiles, such
as gene family or metabolic pathway abundance profiles, were
preprocessed as the species profiles.

Normalization and Confounder Analysis
Cognizant of how technical variation and heterogeneous
ethnicity between studies could confound our results, we made
data normalization to remove batch effects before further
analysis. In brief, we transformed our discrete taxonomical
count data to approximately normally distributed, log-count per
million (log-cpm) data, which models and removes the data’s
heteroskedasticity; and then performed supervised normalization
(SNM) on the data to remove significant batch effects while
preserving biological effects (Mecham et al., 2010). Confounder
analysis was performed by ANOVA to quantify the effect of
confounders relative to that of disease state on single microbial
species. Variance calculations were performed on ranks of
microbiome abundance in non-Gaussian distribution.

Statistical Analyses
Since microbiome data are characterized by non-Gaussian
distributions with excessive dispersion, the non-parametric
significance testing using blocked Wilcoxon rank-sum testing
was implemented in the R “coin” package (Hothorn et al.,
2006). Informed by the results of the preceding confounder
analysis, BMI was blocked in meta-analysis. The mean difference
in a set of predefined quantiles of the logarithmic case and
distributions was calculated as a generalized fold change as
this has been shown to achieve better resolution for sparse
microbiome profiles than other methods (Feng et al., 2012). We
used quantiles ranging from 0.1 to 0.9 in increments of 0.1. The
non-parametric effect size was measured by Area Under Curve
(AUC) obtained from the “pROC” package (Robin et al., 2011)
in R. The co-occurrence of significantly different genera was
analyzed using Spearman correlation. Partial Spearman’s rank-
based correlation (pSRC) in the R “coin” package (Hothorn
et al., 2006) was used to assess the associations between microbial
profile and NAFLD stages with BMI as confounder. To adjust
for multiple hypothesis testing, p-values were adjusted using the
false discovery rate (FDR) method (Benjamini and Hochberg,
1995). Principal coordinate analyses based on species-level Bray–
Curtis dissimilarity, together with α-diversity, were calculated
using “vegan” in R (Dixon, 2003).

Machine Learning Model
Stochastic GBM learning models were trained, automatically
tuned, and tested using the GBM package (Friedman and
Analysis, 2002) and Caret package (Kuhn, 2008) in R. Training
and testing occurred on separate, randomly selected, stratified
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sampling splits of 70 and 30% of the data, respectively, and a fixed
random number seed was used to ensure reproducibility of the
model results and comparability among models. During model
training, the data were first centered and scaled for each sample
to have mean zero and unit standard deviation; fourfold cross-
validation was used to create multiple subsets of the training
data and to perform a basic grid search optimization of GBM
parameters, including interaction depth (1, 2, or 3) and number
of trees (50, 100, or 150), while maximizing AUROC of the final,
fully trained model. Learning rate (shrinkage) was held constant
at 0.1 and the number of minimum observations per node was
fixed at 5. Final model performances, including ROC curves and
PR curves, were generated by applying the final model to the
unseen 30% holdout test set. ROC and PR curves as well as
AUROC and AUPR values were calculated using the PRROC
package (Grau et al., 2015). Variable importance scores of the
resultant, non-zero model features were estimated using the GBM
and Caret packages (Friedman and Analysis, 2002; Kuhn, 2008).
Performance of classifiers within each stage was analyzed by
fourfold cross-validation. Performance of classifiers across stages
was analyzed by stage-to-stage transfer validation, that is, each
stage was taken as training set, and the others were taken as
testing sets. All species detected were included as features, and
the importance of each feature was analyzed.
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