AUTHOR=Liu Qi , Zhao Xiaowen , Liu Yue , Xie Sasa , Xing Yuanjun , Dao Jicao , Wei Beilei , Peng Yunchang , Duan Weixing , Wang Ziting TITLE=Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress JOURNAL=Frontiers in Microbiology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.716196 DOI=10.3389/fmicb.2021.716196 ISSN=1664-302X ABSTRACT=

Sugarcane is an important sugar and energy crop, and its yield is greatly affected by drought. Although a large number of studies have shown that rhizosphere microorganisms can help improve the adaptability of plants to biotic or abiotic stresses, there is a lack of studies on the adaptability of sugarcane rhizosphere microbial communities to host plants. Therefore, we conducted drought stress treatment and normal irrigation treatment on three sugarcane varieties GT21, GT31, and GT42 widely cultivated in Guangxi. Using 16S rDNA sequencing technology to analyze the changes in abundance of the sugarcane rhizosphere bacterial community under different treatments, combined with the determination of soil enzyme activity, soil nutrient content, and sugarcane physiological characteristics, we explored the sugarcane rhizosphere bacterial community response to drought stress. In addition, we used the structural equation model to verify the response path of sugarcane rhizosphere bacteria. The results show that the bacterial community structure in the rhizosphere of sugarcane is stable under normal water conditions. The change in the bacterial community structure under drought stress has a 25.2% correlation with the drought adaptability of sugarcane, but the correlation with drought stress is as high as 42.17%. The changes in abundance of rhizosphere bacteria under drought stress are mainly concentrated in the phylum Rhizobiales and Streptomycetales. This change is directly related to the physiological state of the host plant under drought stress, soil available phosphorus, soil urease and soil acid protease. We investigated the response species of rhizosphere microorganisms and their response pathways under drought stress, providing a scientific basis for rhizosphere microorganisms to assist host plants to improve drought adaptability.