AUTHOR=Yang Jing , Tian Yujuan , Liu Huayi , Kan Yeyi , Zhou Yi , Wang Ying , Luo Yunzi
TITLE=Harnessing the Endogenous 2μ Plasmid of Saccharomyces cerevisiae for Pathway Construction
JOURNAL=Frontiers in Microbiology
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.679665
DOI=10.3389/fmicb.2021.679665
ISSN=1664-302X
ABSTRACT=
pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2μ plasmid with both improved stability and increased PCN, naming it p2μM, a 2μ-modified plasmid. In the p2μM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2μM plasmid and in a pRS plasmid (pRS423). As a result, the p2μM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2μM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.