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The human microbiome has been proposed as a tool to investigate different forensic 
questions, including for the identification of multiple personal information. However, the 
fragmented state of the publicly available data has retarded the development of analysis 
techniques and, therefore, the implementation of microbiomes as a forensic tool. To address 
this, we introduce the forensic microbiome database (FMD), which is a collection of 16S 
rRNA data and associated metadata generated from publicly available data. The raw data 
was further normalized and processed using a pipeline to create a standardized data set 
for downstream analysis. We present a website allowing for the exploration of geolocation 
signals in the FMD. The website allows users to investigate the taxonomic differences 
between microbiomes harvested from different locations and to predict the geolocation 
of their data based on the FMD sequences. All the results are presented in dynamic graphics 
to allow for a rapid and intuitive investigation of the taxonomic distributions underpinning 
the geolocation signals and prediction between locations. Apart from the forensic aspect, 
the database also allows exploration and comparison of microbiome samples from different 
geolocation and between different body sites. The goal of the FMD is to provide the scientific 
and non-scientific communities with data and tools to explore the possibilities of microbiomes 
to answer forensic questions and serve as a model for any future such databases.1
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INTRODUCTION

Advances in the depth of DNA sequencing over the last couple of decades, labeled as next 
generation sequencing (NGS), has greatly expanded the knowledge of the diversity of bacteria 
living on or within humans (microbiomes). Examinations of human microbiomes via multiple 
methods, including directed sequencing of 16S ribosomes (rDNA genes), allow for an estimation 
of the taxonomic diversity and the distribution of the contributory bacterial species. Experiments 
have demonstrated that human microbiomes are constantly interfacing with external microbiomes, 

1 Database URL: http://fmd.jcvi.org
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both from other people, animals (Song et  al., 2013; Misic 
et al., 2015), and from environments (Flores et al., 2011; Hewitt 
et al., 2012; Luongo et al., 2017). Studies have also demonstrated 
that the species makeup of human microbiomes is partially 
shaped by personal factors, including age (Odamaki et  al., 
2016), diet (De Filippo et  al., 2010; Yatsunenko et  al., 2012; 
David et  al., 2014), habits (Moon et  al., 2015; Wu et  al., 2016), 
disease state (Peters et  al., 2016), and geolocation (Yatsunenko, 
et  al., 2012; Zhang et  al., 2015; Lund et  al., 2017; Brinkac 
et  al., 2018), with the location on the body the strongest 
determinant (Human Microbiome Project, 2012). As such, this 
ability to capture and leverage these differences in the human 
microbiome presents exciting new possibilities for forensic 
science (Clarke et  al., 2017; Hampton-Marcell et  al., 2017), 
including the possibility of linking specific human subjects to 
objects and locations in the crime scene (Lax et  al., 2015) 
and determining the country of origin for different samples.

Personal identification using microbial biosignatures is still 
an emerging field, and additional work is necessary for it to 
become highly effective in forensic science as would be required 
to be  judicially acceptable as evidence. Single sample studies, 
while sufficient to identify differences between individuals along 
with a forensic question, are often too restricted in size and 
scope, such as only addressing one location or one metadata 
variable. Likewise, though the number of available microbiome 
samples are rapidly increasing, the diversity of sampling 
techniques and a lack of uniformity in reporting the metadata 
associated with the data retards the attempts to use this data 
in a meta-analysis.

We have addressed these limitations through the creation 
of a new database with an associated website that collects and 
collates publicly available microbiome datasets. The database 
is populated with ~20,000 human 16S rRNA NGS samples 
from multiple body sites from various public repositories, which 
have been subsequently processed using a single pipeline. Apart 
from sequences, we  also capture the metadata associated with 
the samples including geolocation, healthy or non-healthy status, 
and other variables. The associated website allows users to 
compare microbiomes from different geographic locations and 
body sites, as well as to upload data that can be  compared 
to microbiomes in the database and for which the geolocation 
of the sample can be  predicted (Figure  1). The results from 
these analyses are provided in dynamic visualizations, which 
show the taxonomic distribution underpinning the analyses 
and how the individual samples compare to each other.

DATABASE CONSTRUCTION

Data Collection
We surveyed the literature and public repositories for microbiome 
studies based on 16S rRNA sequencing. Only projects with 16S 
rRNA sequences sampled from humans with the sampled body 
site, geographic location, and publishing work all documented 
were included. Samples of raw sequencing data for each project 
were downloaded along with available metadata from publicly 
available databases, including NCBI SRA, EBI, and MG-RAST. 

The databases include buccal mucosa and stool samples recently 
collected as part of the forensic microbiome database (FMD) 
project (PRJNA545251) from adult females (18–26), born and 
currently living in Barbados (n = 32), Santiago (n = 32), Pretoria 
(n  =  37), and Bangkok (n  =  60), and described more fully in 
Clarke et  al., submitted. Additional metadata values, including 
age, gender, and healthy/non-healthy status, were used when 
available either in the public database or in the citing manuscript. 
The data was processed with the JCVI pipeline based on UPARSE 
and SILVA database. Diseases such as IBS and Crohn’s disease 
can have a significant effect on the microbiome (Carroll et  al., 
2012; Morgan et  al., 2012; Zhou et  al., 2018). Since disease 
states can markedly change the microbiome comparison, only 
samples not explicitly labeled with a disease state are included.

The 16S rRNA Pipeline
Each project was processed separately, and operational taxonomic 
units (OTUs) were generated de novo from raw 454 or Illumina 

FIGURE 1 | Forensic microbiome database (FMD) and Website Flowchart. 
Publicly available 16S rRNA sequences were collected from multiple sites, 
processed, and deposited in the FMD database (detailed in Figure 2). This 
data can be explored through the FMD website, where it is used to predict 
the geolocation of user-provided samples (see also Figure 4) and for 
comparisons of the microbial taxonomic distribution in different geographic 
and body sites (see also Figure 3).
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sequence reads using the UPARSE pipeline (Edgar, 2013). 
Paired-end reads were trimmed from the adapter sequences, 
barcodes, and primers prior to assembly. Sequences of low 
quality and singletons were discarded. Sequences were further 
subjected to de-replication and chimera filtering during clustering. 
Mothur (Schloss et al., 2009) was used to report full taxonomies 
with 100 iterations for the wang classifier (iters  =  100) wand, 
only including sequences where 80 or more of the 100 iterations 
are reporting similar assignment (cutoff = 80). The RDP classifier 
in mothur and version 123 of the SILVA 16S ribosomal RNA 
database (Quast et  al., 2013) were used for the taxonomy 
assignment of OTUs. Rare OTUs or taxa are strongly affected 
by sequencing errors, and statistical conclusions relying on them 
are typically unstable (He et  al., 2015). The OTUs with less 
than 10 total reads in each project dataset were considered rare 
OTUs using the phyloseq (McMurdie and Holmes, 2013) package 
in R and were removed along with OTUs that were either 
unknown or unclassed at the genera level. Quality control was 
also performed on all samples, and the OTUs with samples 
containing more than 20% of their reads in unknown or 
unclassified genera or less than 2,000 reads were removed (Amir 
et  al., 2017; Singh et  al., 2017). We  removed these samples 
because OTUs with no genera classification will introduce biases 
in the composition plots, average calculation and impact the 
prediction module. The trimmed samples were then normalized 
to their proportion of reads in each OTU and combined into 
a master OTU table using the phyloseq merge function. All of 
the microbiome data present in the FMD database are at the 
genus level. The phyloseq tax_glom function to merge the same 
genera into one single genera in each separate project was used.

Database Architecture
Forensic microbiome database is built on Apache HTTP server 
2.2 with MySQL server 5.1.47 as the back end and PHP  5.2.9, 
HTML, and JavaScript as the front end.

Database Summary
The current version of FMD has 20,820 samples from 95 
projects with 79 PubMed references. These 96 projects contain 
16S rRNA data obtained from 54 different body sites of 
individuals from 35 different countries, 91 states, provinces or 
equivalent, and 138 cities. The samples in the database are 
highly concentrated in developed countries, with the 
United  States (9,492 samples) the most significant contributor 
in the FMD, followed by Japan (4,054 samples) and the 
United  Kingdom (2,722 samples; Figure  2A). The majority of 
16S rRNA data (~50%) was obtained from stool samples, 
followed by saliva and other oral locations (Figure 2B). Detailed 
descriptions of the included data are available at http://fmd.
jcvi.org/stat.php.

Web Interface
The FMD website contains two separates but connected modules. 
The first allows the user to explore the loaded 16S rRNA data 
and compare various geolocation and body sites using the 
processed and loaded data described above. To explore the 
FMD data, a user can compare the taxonomic abundance 
profile of individuals’ microbiomes from multiple geolocations 
and body sites. The first option is a bar plot of the top twenty 
abundant genera (ranked based on the first selected geolocation 
in the query) of the selected geolocations (Figure  3A). The 
second option is the Krona charts of all the selected geolocations 
(Ondov et  al., 2011), with individual Krona charts available 
for full-screen visualization (Figure  3B). The final option is 
a heatmap showing the relative abundances of the top ten 
most abundant genera, ranked similarly to the bar plots, of 
all the selected geolocations.

In the second module, users can upload their processed 
microbiome data to predict the potential geolocation of the 
user-provided data and compare it with any existing geolocation 
data in FMD. To geolocate the user sample, it is compared 

A B

FIGURE 2 | Data Availability in the FMD. The number of samples in the FMD from different countries (A) and body sites (B). Only samples from healthy individuals 
are shown.
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against all the samples present in the FMD using the Bray-
Curtis distance matrix score, and the results are ranked. The 
results are visually explorable by both locations and by sample. 
First, the page displays a world map showing the location and 
counts of the high-ranked matches, which the site with the 
top match in a different color (Figure 4A). The distance between 
the user sample and the high matching samples in the site 

can be displayed by mousing over the respective site. A second 
tab contains a sample-level visualization of the Bray-Curtis 
distances between the user and the FMD samples with distances 
less than the cutoff points on a polar graph (Figure  4B). The 
cutoff distance for displayed values can be  altered to examine 
as many sites as desired. The FMD-sample points are colored 
by metadata values, beginning with geolocation but changeable 

A

B C

FIGURE 3 | Examples of comparative taxa abundance module in the FMD. The FMD allows for a visual comparison of the taxa abundance of different body sites in 
different geolocations, which is shown via bar charts (A), Krona plots (B), and heatmaps (C). Stool samples from the United States, Japan, and the United Kingdom, 
as well as saliva samples from the United States, are shown.
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A

B

FIGURE 4 | Examples of user data geo-location prediction in the FMD. Geolocation of user-uploaded data is predicted by finding the taxonomically closest FMD 
samples, which are shown both on a world map, with the number of hits per city shown, (A) and as individual samples on a polar graph with their similarity to the 
sample indicated by the distance to the center (B). 16S rRNA microbiomes obtained from stool samples of an individual residing in St. Louis (Sample ID: 
SRS015854) is shown here.
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to age, gender, and body site. The percentage of samples with 
distances above the cutoff with different values for each metadata 
variable is also shown. The taxonomic distribution user-submitted 
samples can also be  visualized similarly to the FMD database 
samples, either with Krona charts or compared with any 
geographic site data present in the FMD, represented as the 
average of all the samples of that particular site, as a bar 
chart and heatmap. A detailed description of the website’s usage 
can be obtained using the user manual available on the website.2

To better understand the similarity-based approach’s prediction 
capability, we  performed the leave-one-out cross-validation to 
estimate the prediction module’s performance. Body sites with 
more than 150 samples in the database were considered, which 
constitute 96% of the data. As observed in Figure 5, the overall 
accuracy is 80.5% for cities, 81.5% for state/region, and 92.1% 
for countries. The accuracy ranges from 61% for retroauricular 
crease to 93% for saliva samples (Figure  5). We  were able to 
achieve 78% prediction accuracy for stool samples, which 
constitute half of the samples collected from all around the 
world. Further, we  explored the impact of similar body sites 
on the prediction module performance in Supplementary 
Figure S1. We  observed that similar body sites are cross-
predicted, i.e., the supragingival samples can be  predicted as 
Subgingival plaque samples and vice versa. There is negligible 
cross prediction between the oral cavity, skin, vagina, and stool 

2 http://fmd.jcvi.org/help.php

samples which validates the unique microbiome composition 
of different body sites. Next, we analyzed the remaining incorrect 
20.5% samples to understand the impact of distance on incorrect 
predictions. In the case of incorrectly predicted vagina samples 
which constitute 13% of all vagina samples, the average distance 
is ~7,000 km. On average, the incorrect prediction has ~1,000 km 
distance (Supplementary Figure S2). We examine the incorrect 
vagina samples that were predicted as stool samples are dominated 
by the same genus, which suggests either cross-contamination 
or biological/technical contamination, which explains the 
considerable variation in incorrect samples’ distance. When 
we  remove the samples where a single genus is more than 
60% of microbiome composition, only eight vagina samples 
were predicted as a stool instead of 35 wrong predictions 
(Supplementary Figure S3).

SUMMARY

Numerous studies have identified microbiomes’ potential to 
be  a valuable forensic investigatory tool, but the translation 
of these findings into legally actionable information remains 
incomplete. The development of these tools is hindered by 
multiple limitations of analyzing the data, such as the diversity 
of formats in which the information is available, the absence 
of sufficient metadata, and the large amount of data required 
to generate any tools. The database introduced here begins to 

FIGURE 5 | Similarity-based prediction performance of different body sites. A leave-one-out cross-validation of the data was performed using a similarity-based 
prediction approach. The results for body sites with more than 150 samples are shown. The bar graph shows the total number of samples for a body site and the 
number of samples with correct geolocation prediction.
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address these limitations and can form the backbone for future 
explorations and generation of a novel technique to tease apart 
the signals within microbiomes to detect forensic information. 
The database and the website will facilitate exploration of the 
taxonomic underpinnings of geolocation signals, both through 
dynamic explorations of the taxonomic distributions of 
microbiomes from different geographic locations through 
comparisons of the data samples in combination with user-
supplied metadata. The key limitation of the database is the 
unavailability of data from many African and Middle east 
countries apart from few countries from each continent. Since 
we  considered only good quality microbiome data that was 
not explicitly labeled with a disease state; we  were limited to 
data availability. We  hope that in the future, additional data 
from these regions will be  available from the public database 
and will be  added to the FMD database.

The FMD is designed for rapid and intuitable exploration 
of geolocation signals in the microbiomes using well-documented 
and computationally inexpensive algorithms. Currently, the 
database only uses 16S rRNA sequences for the geolocation 
analysis, and while metagenomic whole genomic sequencing 
of microbiomes are a rapidly expanding field (Schmedes et  al., 
2017; Almeida et  al., 2019), the analytical tools available to 
distinguish the geo-position of metagenomes are not as developed. 
Likewise, machine learning and other reduced taxonomic 
comparisons are emerging tools for dissecting taxonomic 
distributions and looking at forensic questions (Johnson et  al., 
2016; Sarkar et  al., 2017), but these have yet to be  adapted 
for a global analysis.

As the state of forensic analysis of microbiomes continues 
to develop, the FMD is well adapted to address some of the 
remaining outstanding issues. As previously documented, the 
body site sampled remains the primary determinant of the 
taxonomic distribution differences of microbiomes, and multiple 
body sites have been shown to have a geographic-specific signal 
(Zhang et  al., 2015; Sarkar et  al., 2017; Brinkac et  al., 2018). 
By collecting samples from multiple body sites, the FMD 
currently allows for comparison of the geolocation signals. 
While current analysis suggests that this signal is not additive 
across body sites, future analytical techniques might have an 
amplification effect across body sites that the FMD would 
capture. Additionally, both the raw information and subsequent 
analyses can be  highly complex and not readily digestible by 
non-specialists. As the analysis tools increase in complexity, 

we  believe that the summary dynamics figures used by the 
FMD provide a useful example of how to engage a non-specialist 
in an analytical examination of the results.
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