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In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food
microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of
a single phage, are commonly used as antibacterial agents since the hosts are unlikely to
become resistant to several phages simultaneously. While the spectrum of activity might
increase with cocktail complexity, excessive phages could produce side effects, such as
the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high
manufacturing costs. Therefore, cocktail formulation represents a compromise between
achieving substantial reduction in the bacterial loads and restricting its complexity.
Despite the abovementioned points, the observed bacterial load reduction does not
increase significantly with the size of phage cocktails, indicating the requirement for
a systematic approach to their design. In this work, the information provided by host
range matrices was analyzed after building phage-bacteria infection networks (PBINs).
To this end, we conducted a meta-analysis of 35 host range matrices, including recently
published studies and new datasets comprising Escherichia coli strains isolated during
ripening of artisanal raw milk cheese and virulent coliphages from ewes’ feces. The
nestedness temperature, which reflects the host range hierarchy of the phages, was
determined from bipartite host range matrices using heuristic (Nestedness Temperature
Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing,
leading to lower temperatures, i.e., it simplifies the identification of the phages with
the broadest host range. The structure of infection networks suggests that generalist
phages (and not specialist phages) tend to succeed in infecting less susceptible
bacteria. A new metric (8), which considers some properties of the host range matrices
(fill, temperature, and number of bacteria), is proposed as an estimator of phage
cocktail size. To identify the best candidates, agglomerative hierarchical clustering using
Ward’s method was implemented. Finally, a cocktail was formulated for the biocontrol
of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.

Keywords: Escherichia coli, cheese, dairy industry, phage-host coevolution, phage-bacteria infection networks,
phage cocktails, phage therapy

Frontiers in Microbiology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 564532

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.564532
http://creativecommons.org/licenses/by/4.0/
mailto:fmolina@unex.es
https://doi.org/10.3389/fmicb.2021.564532
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.564532&domain=pdf&date_stamp=2021-02-16
https://www.frontiersin.org/articles/10.3389/fmicb.2021.564532/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-564532 February 10, 2021 Time: 18:46 # 2

Molina et al. Designing Phage Cocktails

INTRODUCTION

Soon after their discovery more than a century ago, viruses of
bacteria, known as bacteriophages or phages, were appreciated
as potential antibacterial agents. Later, the advent of antibiotics
eclipsed further development of “phage therapy” in Western
countries (Sulakvelidze et al., 2001). However, the spread of
multidrug-resistant bacteria has become a daunting challenge for
public health in the twenty-first century. Additionally, the so-
called healthy microbiota found in fermented foods pose a limit
to the use of antibiotics in food microbiology. To tackle these
issues, strictly lytic (virulent) phages can be used as antibacterial
agents in clinical and veterinary contexts or for reducing bacterial
loads in foods and crops (Gutiérrez et al., 2016; Abedon
et al., 2017). Virulent bacteriophages are natural predators of
bacteria and may yield the complete destruction of bacterial
lineages, releasing offspring into the surrounding environment
and producing rapid exponential proliferation. Moreover, the
selective toxicity of phages avoids harming the useful microbiota
in vertebrates and foods (Rea et al., 2011; De Paepe et al., 2014;
Lugli et al., 2016). In the dairy industry, E. coli, usually originating
from animal feces, can form biofilms on food processing surfaces
(Fernández et al., 2017) and ruin cheese-making, causing early
blowing and rendering a final product unsuitable for human
consumption. Raw milk cheeses, particularly soft and semihard
varieties, have been associated with pathogenic E. coli outbreaks
(Altekruse et al., 1998), but dairy products cannot be treated with
antibiotics since they inhibit the growth of lactic acid bacteria
(Marcó et al., 2014). In contrast, bacteriophages are more specific
and do not affect the organoleptic properties of cheese.

Phage therapy can be implemented using either a single
phage strain or a “cocktail” composed of a variable number
of phages (Figure 1A). The use of a single lineage requires
the identification of the phage with the broadest host range.
However, while most plant and animal viruses present broad
host ranges, phages face tradeoffs between their host range
extension and their fitness (virulence and structural stability) in a
particular niche (Duffy et al., 2006; Koskella and Meaden, 2013).
In addition, bacteria can resist phage attack by mechanisms
such as restriction-modification systems, adaptive immunity and
spontaneous mutations (Labrie et al., 2010). Consequently, the
host range of phages (spectrum of activity) tends to be narrow,
often affecting subsets of strains within a single bacterial species
(Hyman and Abedon, 2010). This narrow range can hinder the
ability of single phage strains to impact bacterial proliferation
(Malik et al., 2017). On the other hand, for some phages, the host
range might be quite broad, spanning multiple bacterial genera
(Balogh et al., 2010). Phage cocktails can be tailored by combining
multiple isolates to broaden the spectrum of lysis, and later, they
can be reformulated if resistance develops (Chan et al., 2013).
The use of complex cocktails (more than 10 phages) is expected
to increase the spectrum of activity as well as the production
costs, the impact on the microbiota (dysbiosis) and the risk of
horizontal transfer of toxins, antibiotic resistance or virulence
genes (Penadés et al., 2015; Haaber et al., 2016; Colavecchio et al.,
2017). Generally, a cocktail composed of between 2 and 10 phages
represents the optimum between the two extremes (Figure 1A).

Although guidelines to compose phage cocktails have been
proposed to comply with quality and safety requirements
(Merabishvili et al., 2017), several pieces of evidence strongly

FIGURE 1 | The spectrum of activity of phage cocktails relies on phage-host coevolution. (A) Summary of the spectra of activities, benefits and tradeoffs of
phage-based formulations vs. typical commercial antibiotics (modified from Chan et al., 2013). (B) Observed bacterial load reduction vs. phage cocktail size (data
extracted from Chan et al., 2013). The crosshair symbol (+) represents the center of the data. N = number of studies (Spearman r = 0.17, p = 0.387). (C) Responses
to the question “how many strains do you actually use in testing host range?”; when the number is variable, only the maximum is considered. N = 40. Modified from
Hyman (2019). The median and quartiles are represented by dashed and dotted lines, respectively. The data were collected using a survey at the 2017 Evergreen
International Phage Meeting and from several people who work in phage-related companies. (D) Two modes of phage-host coevolution: gene-for-gene and
matching allele correspond to generalist and specialist phage populations, respectively. Mutations are indicated by arrows and cross infection by colored lines.
Ancestral (blue), intermediate (red) and newly evolved (yellow) bacterial lineages are represented.
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indicate the convenience of developing a pipeline to design
them. For instance, a comparison of 31 studies (this work,
data extracted from Chan et al., 2013) reveals that the
observed bacterial load reduction does not increase significantly
with the size of the phage cocktail (Figure 1B). The high
rate of spontaneous mutation produces rapid phage-bacterial
coevolution that makes it difficult to predict the success of phage
cocktails (Torres-Barceló, 2018). Although the structure of host
range matrices (Cairns et al., 2009) relies on the coevolutionary
dynamics of phages and hosts (Koskella and Brockhurst, 2014)
and may help to reveal the minimum effective cocktail size, in a
recent survey (Hyman, 2019), very little agreement was found for
the number of bacteria needed (most answers fluctuated between
20 and 100) for host range determination (Figure 1C).

In this work, we attempt to answer two questions that arise
when formulating a phage cocktail: how many and which isolates
should constitute the cocktail? To this end, we propose that the
phage-bacteria infection network (PBIN) properties should be
considered for the formulation of phage cocktails. Specifically,
we look at the fill (fraction of successful infections), nestedness
temperature, size (measured as the number of phages multiplied
by the number of bacteria) and symmetry (number of phages
vs. number of bacteria). Remarkably, PBINs are built from host
range matrices, and their structure depends on the phage-host
coevolution pattern (Weitz et al., 2013). Two main alternative
mutation and selection models explain phage-host coevolution
(Figure 1D). According to the gene-for-gene model, some phage
mutations increase infectivity, favoring host range expansion,
whereas in matching allele dynamics, mutations usually lead to
specialization and the loss of infectivity against ancestral host

strains. Conversely, bacterial mutations modifying the structure
of surface phage receptors and conferring resistance to recently
evolved phages might compromise resistance to ancestral phages
(matching allele) or not (gene-for-gene) (Agrawal and Lively,
2003). Here, two algorithms that build PBINs from host range
matrices, one genetic (Rodríguez-Gironés and Santamaría, 2006)
and one heuristic (Atmar and Patterson, 1993), were compared.
Subsequently, a meta-analysis, including 32 recently published
assays and 3 host range matrices composed of E. coli strains from
artisanal raw milk cheese and coliphages isolated from sheep
feces, was performed to evaluate experimental and theoretical
PBINs. Subsequently, 8, a new estimator of phage cocktail size,
is presented, and agglomerative hierarchical clustering was used
to identify the best candidates for biocontrol of cheese-isolated
E. coli. The resulting cocktail reduced bacterial counts by five
orders of magnitude.

RESULTS

An Overview of the Pipeline: Building
Phage-Bacteria Infection Networks From
Host Range Matrices to Design Phage
Cocktails
The order of rows and columns in binary host range matrices
can be permuted, revealing host-phage coevolution, without
changing the underlying network structure (Figure 2A).
The gene-for-gene model renders nested PBINs, whereas
the matching allele model produces modular patterns

FIGURE 2 | Phage-host coevolution determines phage-bacteria infection networks (PBINs). (A) Gene-for-gene coevolution entails nested PBINs, whereas matching
allele coevolution favors modularity. Extreme modularity leads to non-inclusive sets of phage-bacteria interactions, i.e., one-to-one patterns (dark blue line in the
modular panel). As the infectivity of the phages increases, so does the matrix fill (the dark magenta line in the nested panel represents a 10% fill fully nested matrix,
whereas the light area corresponds to a 50% fill fully nested matrix). (B) Host range matrices may be sorted into different types of PBINs by using different reshuffling
algorithms. A quantitative unsorted host range matrix comprising 44 artisanal cheese-isolated E. coli strains, 22 reference (r) E. coli strains and 26 coliphages
isolated from sheep feces is shown. The cheese-isolated E. coli strains were grouped (black lines) by their whole-cell protein profiles (data not shown). Three different
methods to build a network from the host range matrix are shown. Information about the virulence of the phages is lost when a quantitative matrix is transformed into
a bipartite (presence/absence) form. Modularity was assessed by the LP-BRIM algorithm. Nestedness algorithms reorder host range data and estimate the deviation
from a perfectly nested matrix (temperature) by computing the unexpected presence/absence values and measuring the relative distances (d/D) to the isocline of
perfect order (blue line). The temperature of the matrix is the normalized sum of distances. Agglomerative hierarchical clustering by Ward’s method separated groups
of phages with similar host range profiles.
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(Weitz et al., 2013). Nestedness correlates with host range
hierarchy, and therefore, high nestedness simplifies the
identification of candidate phages for therapy. In a perfectly
nested PBIN, only one phage is required to eradicate all bacteria.
Conversely, modular PBINs might require high numbers of
phage isolates to control the bacterial communities since a
phage isolate from each module should be incorporated into the
cocktail. Additionally, the size of the cocktail should inversely
correlate with the fill of a matrix, which in turn reflects the
infectivity of phage populations.

To design a phage cocktail, we will use a previously obtained
quantitative host range matrix (Molina et al., 2020) comprising
reference E. coli strains (Table 1) and isolates from goat and
ewe raw milk cheeses and coliphages isolated from sheep feces
(Figure 2B). To evaluate both modularity and nestedness, the
heatmap was transformed into bipartite values (lysis/no lysis).
As expected (see Discussion), low modularity was obtained
(Barber’s Q = 0.197). To measure the nestedness, we compared
two algorithms (see below) that reorder host range matrices
and computed the deviation (temperature) from similarly filled
matrices that are perfectly nested (Figure 2B). The nestedness

TABLE 1 | Bacterial strains used as references in this study.

Organism Source and reference

Citrobacter freundii CECT 7464

Citrobacter youngae CECT 5335

Enterobacter aerogenes CECT 648

Escherichia coli

K-12 (MG1655) This laboratory (Molina et al., 1998),
ATCC 700926

MG1655 λ+ This laboratory

B (Luria) CECT 4201

B/r CECT 105

Bi CECT 4537

BW6164 CGSC 6759

C (Sinsheimer) ATCC 13706

W1 (Waskman) CECT 99

W2 (Stoke) CECT 727

C600 Gift from Dr. Rouviere-Yaniv, ATCC 23724

GY752 This laboratory (Sommer et al., 1998)

VIP45 λ+ Gift from Dr. Miguel Vicente

Hafnia alvei CECT 158

Klebsiella pneumoniae CECT 143

Lactobacillus acidophilus CECT 903

Lactobacillus casei CECT 475

Lactococcus lactis ssp. Lactis CECT 185

Salmonella typhimurium CECT 722

Serratia marcescens CECT 846

Shigella boydii CECT 583

Shigella flexneri 2a CECT 585

Shigella flexneri 2b CECT 4804

Shigella sonnei CECT 4887

Yersinia enterocolitica CECT 4315

ATCC, American Type Culture Collection (United States); CECT, Colección
Española de Cultivos Tipo (Spain); CGSC, Coli Genetic Stock Center
(United States).

temperature is normalized in such a way that it will always be
a positive number smaller than or equal to 100. The size of
phage cocktails was determined after considering the structure
of the nested PBINs, and the phage isolates were selected
after hierarchical clustering of the original quantitative matrix
(Figure 2B).

A Genetic Algorithm Optimizing the
Nestedness of Host Range Matrices
To calculate the nestedness temperature of host range matrices,
heuristic algorithms, such as the NTC, are frequently employed
(Poullain et al., 2008; Flores et al., 2011; Weitz et al., 2013).
However, to the best of our knowledge, there is no previous
work using genetic algorithms, such as BMN, to study PBINs.
Since BMN was developed to optimize the packing of matrices
(Rodríguez-Gironés and Santamaría, 2006), we decided to
compare both metrics to reorder rows and columns of host range
matrices and estimate the nestedness temperatures (Figure 3).

To assess whether there are tradeoffs in which locally
adapted phages suffer fitness costs in infecting other hosts,
the original bipartite input matrix (Figure 2B) and the matrix
without reference E. coli strains were compared (Figure 3A vs.
Figure 3B). Both algorithms produced highly nested PBINs, but
BMN rendered lower temperatures, i.e., increased nestedness.
Interestingly, only one cheese-isolated E. coli strain was resistant
to all the phages (Figures 3A,B bottom line), but there was not
a single phage isolate able to infect the remaining 43 E. coli
strains. The inclusion of reference bacterial lineages increased
both the fill and the nestedness temperature of the matrix but
did not change its structure significantly. Accordingly, three
reference E. coli strains were lysed by all the phages (Figure 3A,
three topmost rows), whereas none of the cheese isolates were
infected by all the phages. These results suggest that local
adaptation of phages does not compromise infection of other
bacterial lineages, i.e., evolution favors generalist phages (see
section “Discussion”). As expected, when a more heterogeneous
although smaller matrix is packed (Figure 3C), the fill decreases
but the nestedness temperature increases. Coliphages depicted
a broader host range than Citrobacter phages isolated from
sewage when different enterobacteria species were used as hosts.
Notably, all the phages infected different species, ranging between
3 and 9 different species, although none predated either all
the strains of the preferential host species or the control lactic
acid bacteria (Figure 3D). Overall, these results demonstrate the
superior packing of BMN, yielding consistently lower nestedness
temperatures than the NTC.

To further validate these results, we conducted a meta-analysis
(Table 2) assembling data from 32 studies of host-phage infection
assays representing the cumulative study of 1,210 bacterial
isolates, 703 phage isolates, and 33,428 separate attempts to
infect a bacterial host with a phage strain. This analysis includes
samples from different sources, such as plants, livestock, the
dairy industry, sewage, seafood, clinical isolates and laboratory
collection strains. Although most (65.7%) host range matrices
were significantly nested by both algorithms (Figure 4), BMN
consistently produced lower nestedness temperatures than the
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FIGURE 3 | Nestedness analysis of E. coli isolates and coliphages. Data sorting and temperature calculation were carried out using the NTC (red) and BMN (blue)
algorithms, and cells occupied by both methods are indicated by orange shading. The isoclines of perfect order, i.e., the curves separating filled and empty table
cells in a perfectly nested matrix of the same size and fill, are overlaid. Matrices’ fills after packing and temperatures are indicated. Empty and multiple fully filled rows
(dashed lines) were not considered to avoid redundancy for temperature estimation. (A) Lysis profiles of 26 coliphages isolated from sheep feces on 44 E. coli isolates
from artisanal cheese and 12 reference E. coli strains (Table 1). (B) Reference E. coli strains were removed from the dataset. (C) A host range matrix comprising
coliphages, Citrobacter phages and diverse bacterial strains was sorted. 1: coliphages; 2: Citrobacter phages; C: Citrobacter; E: E. coli. H: Hafnia; K: Klebsiella; L:
Lactobacillus and Lactococcus; Sa: Salmonella; En: Enterobacter; Se: Serratia; S: Shigella; Y: Yersinia (Table 2) (D) Distribution of the number of species infected by
the phages shown in (C). Coliphages (purple) and Citrobacter phages (blue) are distinguished. The median and quartiles are represented by dashed lines.

NTC, i.e., enhanced the packing of the matrices. Additionally, as
the nestedness decreased, the difference between the temperature
calculated by both algorithms increased. Only 3 (8.6%) PBINs
were not statistically nested by the BMN algorithm (Table 2).

Determining the Number of Phage
Isolates Required for Biocontrol of
Bacterial Populations
To study the relationship between a matrix structure (specifically,
its size and fill) and its temperature, experimental (Table 2) and
different kinds of theoretical matrices were incorporated into

the analysis (Figure 5A). Whereas the temperature of perfectly
nested matrices (0 degrees) is not affected by its size or fill,
in random matrices, there is a positive correlation between
temperature and size. Additionally, in random or modular
matrices, the temperature depends on fill, peaking at intermediate
fill values and declining at low or high fill values. Thus, the
maximum temperature host range matrices can reach (gray
dots, Figure 5A) follows a symmetric fourth degree polynomial
function (not shown). It follows from the above that a direct
comparison of the temperatures of two phage-host communities
is meaningless unless the matrices representing them have the
same size and fill. Remarkably, the distribution of temperatures
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TABLE 2 | Meta-analysis of experimental phage-bacteria infection networks and estimation of phage cocktail size.

References Bacteria Phages Fill Temp.a Nestedb 8c

Hong et al. (2013) Laboratory 7 Sewage 3 71.4 0 + 1

Shende et al. (2017) Sewage water 8 Manure 5 55 1.1 + 1

Liao et al. (2019) Laboratory 17 Non-fecal compost 4 42.6 21.5 + 3

Krasowska et al. (2015) Laboratory, soil 19 Soil 4 68.4 6.2 + 1

Hwang et al. (2009) Poultry, laboratory 16 Poultry, sewage, soil 6 31.3 11.4 + 2

Kwiatek et al. (2015) Clinical 20 Sewage 5 52 27.8 + 3

Hammerl et al. (2016) Laboratory 36 Prophage induction 3 64.8 47.1 − 4

Xie et al. (2016) Laboratory 12 Manure, cattle feed, water, soil 10 51.7 17.7 + 2

Magare et al. (2017) Air 5 Air 25 15.2 31 − 3

Álvarez et al. (2019) Potato, laboratory 42 River water 3 90.4 0 + 1

Pereira et al. (2016) Food, water, laboratory 42 Sewage 3 62.7 0 + 1

Yu et al. (2016) Kiwifruit 31 Soil 5 25.7 18.3 + 4

Dias et al. (2013) Livestock 20 Sewage 10 92 10.3 − 2

Alič et al. (2017) Orchid, wastewater 55 Orchid, wastewater 4 25 7.5 + 4

This work (Figure 3C) Dairy, laboratory 26 Manure, sewage, laboratory 10 33.4 21.8 + 4

Salifu et al. (2013) Equine 27 Soil 10 57.4 15.7 + 3

Arachchi et al. (2013) Seafood 50 Laboratory 6 84.7 1 + 1

Oh et al. (2017) Laboratory 27 Fermented food, soil 12 44.4 22.3 + 3

Wandro et al. (2019) Human feces 15 Sewage 22 72.4 5.8 + 1

Gunathilaka et al. (2017) Laboratory 12 Sewage 29 49.4 10.2 + 2

Jurczak-Kurek et al. (2016) Clinical 60 Sewage 6 32.8 6 + 3

Litt and Jaroni (2017) Clinical, cattle feces 54 Cattle 7 89.7 0 + 1

Romero-Suarez et al. (2012) Walnut 16 Walnut 26 71.6 12.6 + 2

Wang et al. (2015) Cattle, human 41 Cattle feces 11 20.2 23.8 + 5

Murphy et al. (2013) Dairy 20 Dairy 24 31.5 37.3 + 4

Sajben-Nagy et al. (2012) Laboratory, mushroom 34 Mushroom 16 39.3 12.8 + 3

This work (Figure 3B) Dairy 44 Livestock feces 26 30.2 15.2 + 4

Vu et al. (2019) Vegetable, seafood, livestock 31 Prophage 39 21.6 11.6 + 4

This work (Figure 3A) Dairy, laboratory 56 Fecal 26 45.6 17.4 + 4

Petsong et al. (2019) Livestock 47 Livestock 36 14.3 10.2 + 5

Jäckel et al. (2017) Laboratory 113 Prophage 19 6.2 11.6 + 7

Brady et al. (2017) Beehive 40 Beehive 57 40.7 7.7 + 3

Gencay et al. (2019) Pork meat 72 Prophage 41 22.1 13.7 + 5

Korf et al. (2019) Clinical, poultry 64 Poultry, sewage 50 18.7 18.2 + 6

Mathieu et al. (2020) Feces 75 Feces 166 6.1 2.8 + 5

aTemperature measured by BMN.
bNested (+) implies p < 0.05.
cPhage cocktail size estimated by 82 (Figure 5B).

showed that middle filled large matrices depicted values below
50, with a maximum value of 47.1, suggesting predominant
gene-for-gene coevolution between phages and hosts.

Comparison of the experimental matrices (Table 2) by PCA
showed (Figure 5B) that the first principal component (PC1),
accounting for 45.1% of the variation, was similarly constituted
by fill (35.6%), phages (34%), and bacteria (30.4%), and
separating the largest matrix from the rest. The second principal
component (PC2), accounting for 30.4% of the variation, was
constituted mainly by temperature (74.7%), followed by fill
(15%), separating the three matrices with higher temperature and
a cluster of four perfectly nested matrices of similar size.

To develop an estimator of the phage cocktail size (8), it was
taken into consideration that in PBINs, (1) the fill (f) directly
indicates the host range of the phage population, (2) as the

temperature (T) increases, phages tend to be less generalist,
and (3) the number of bacteria (b) determines the target for
biocontrol. Thus, we compared several metrics that increase
with b and T and decrease with f in non-linear relationships
(Figure 5C). From the alternatives, we choose a metric (82 in
Figure 5C) that generates cocktails between 1 and 10 for host
range matrices comprising up to 200 bacteria:

8 =

[
log2

(
b · T

f
+ 2

)]
When considering the experimental PBINs in the meta-

analysis (Table 2), this metric yielded phage cocktail sizes varying
from 1 to 7 (Figure 5D). The experimental PBINs specifically
built for this study (Figure 3), despite their size difference
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FIGURE 4 | Comparison of the BinMatNest (BMN) and Nestedness
Temperature Calculator (NTC) algorithms. The temperatures of the
experimental host range matrices (Table 2) after sorting by each algorithm are
indicated. The bisecting (cyan) and regression (orange) lines are indicated. The
color coding indicates whether the matrix nesting is statistically significant
(p < 0.05) by both algorithms (orange), BMN (blue) or none (purple) of the
algorithms. The horizontal bar represents the relative abundance of each type
of matrix.

(matrix A comprises 27% more bacterial strains than matrix
B and 69% more than matrix C), generated phage cocktails of
the same size due to the inverse correlation of the size with
the nestedness temperature. Remarkably, the experimental PBIN
with the highest temperature (last row in Table 2) would require
a cocktail larger than the number of phages tested, suggesting
that to perform effective biocontrol of the bacterial population,
additional phage strains should be isolated. Considering that this
PBIN is not significantly nested and the diversity of the bacterial
hosts (36 strains of 11 different Brucella spp.) in the matrix
(Hammerl et al., 2016), this result is not unexpected.

Hierarchical Clustering vs. Estimation of
the Phage Cocktail Size
Hierarchical clustering allows discrimination of phages with
similar host ranges even if there is noise between the groups
(Strauss and von Maltitz, 2017). Therefore, Ward’s algorithm
poses an alternative to the analysis of Qb (Beckett and Williams,
2013) to study the structure of PBINs. Hierarchical clustering of
the host range matrices (Table 2) gave rise to a distribution of
clusters per matrix ranging from 1 to 13 (Figure 6). Comparison
of the number of clusters and the estimation of cocktail size
(8) showed a positive correlation between them (r = 0.512,
p = 0.0017). Approximately half (49%) of the PBINs yielded
higher 8 values than the number of clusters, 34% produced more
clusters than the estimated cocktail size, and for the remaining
17%, the values were the same. Whereas 8 correlated significantly
with all the components (temperature, fill, number of phages and
number of bacteria) of the PBINs (Figure 6, inset), the number
of clusters generated by Ward’s algorithm correlated significantly
with only the number of phages and fill. Moreover, the strongest
and most significant correlations corresponded to fill for 8 and
to the number of phages for Ward’s clustering, respectively. These
results indicate that the nestedness of the host range matrices
cannot be detected by using this hierarchical clustering approach.

Formulation and Evaluation of a Cocktail
for Biocontrol of E. coli
In contrast to the algorithms that determine modularity and
nestedness (Figure 2B), hierarchical clustering does not require
bipartite matrices and allows us to consider virulence apart from
the host range of the phages. To formulate a phage cocktail,
we used a quantitative host range matrix comprising E. coli
from different sources (Table 2) and coliphages isolated from
sheep feces (Molina et al., 2020) that includes the same bacteria
and phages depicted in Figure 3A. The hierarchical clustering
of the coliphages by Ward’s method generated seven clusters
(Figure 7A), each exhibiting a different host range (R) and
virulence (V). Interestingly, there was a weak negative correlation
between phage virulence and host range (r = −0.25). Noticeably,
most reference E. coli strains exhibited higher susceptibility (S)
than cheese isolates to the phages, but only one of the latter was
resistant to all the phages tested.

Following the calculated 8 (Table 2), we designed a cocktail
made of four phages. To this end, the clusters with the narrowest
host range (<30%) were discarded, and the remaining clusters
were sorted by decreasing range (not shown). Starting with the
cluster with the broadest host range, combinations of four phages
comprising only one phage per cluster were compared until the
broadest range and highest virulence were reached (bottom line
on Figure 7A). The phage cocktail was tested by inoculation
of the selected phages into a combination of seven E. coli
isolates. Host strains were selected according to their distinct
proteomic profiles, which show a moderate positive correlation
with their sensitivity to the phages (Molina et al., 2020). The
assays were performed on reconstituted milk (Figure 7B) and
LB medium (not shown), producing similar results. Whereas the
proliferation of cheese-isolated E. coli strains was not inhibited
by the control cocktail of phages (λ, T4, T6, and P1), the
cocktail designed using ewe feces-isolated coliphages (Figure 7A)
reduced E. coli counts by five logarithms after 3 h of incubation
(Figure 7B). This decrease was equivalent to that observed when
MG155 was inoculated with the control phage cocktail. Despite
being temperate, λ phage was included in the control cocktail
because it represents a paradigm amongst phages (Chatterjee and
Rothenberg, 2012) and its adsorption to cheese-isolated E. coli
strains has been previously investigated (Molina et al., 2020).

DISCUSSION

The use of phages to treat bacterial infections (phage therapy)
or contaminations (biocontrol), notwithstanding its increasing
popularity, may have some unintended side effects. Phages,
despite their lethality for individual host cells, can confer an
evolutionary benefit to bacterial populations (Williams, 2012).
On long timescales, virulent phages may actually increase the
bacterial growth rate by aiding the selection of faster-growing
strains. Moreover, phages could conceivably transfer genes that
augment the fitness of host strains, such as antibiotic resistance
genes (Haaber et al., 2016; Gunathilaka et al., 2017). On the
other hand, phage therapy entails advantages, such as low toxicity
for animals and plants, high host specificity, and exponential
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FIGURE 5 | Nestedness of experimental PBINs and determination of phage cocktail sizes (8). (A) Temperature vs. fill of host range matrices nested using BMN.
Experimental and theoretical datasets were compared. Each point represents one matrix, and its area reflects the matrix size. Significantly (p < 0.05) nested (orange)
and non-significantly nested (purple) experimental matrices are distinguished. Three sizes of theoretical square matrices were considered: 400, 1,600, and 6,400
cells. The small gray dots represent theoretical square matrices obtained from Rodríguez-Gironés and Santamaría (2006). (B) Comparison of experimental PBINs by
principal component analysis (PCA). Significantly (orange) and non-significantly (purple) nested matrices are shown. The loading score vectors are represented by red
arrows (PC1 p = 0.0009; PC2 p = 0.0287). (C) Maximum values of 8 (phages per cocktail estimator). The maximum theoretical temperature (calculated by BMN) for
each fill value (gray dots on A) was considered to estimate 8 for different size matrices. The number of bacteria was set to range between 5 and 200. Three
alternative 8 were compared: 81 (Eq. 1, n = 4); 82: (Eq. 2, n = 2), and 83 (Eq. 1, n = 2) (see section “Materials and Methods”). (D) Dependence of 8 on
nestedness, fill and matrix symmetry. The experimental datasets and 82 estimator were considered. The size of each point reflects the temperature of each matrix.
The size of the phage cocktails is indicated by the color code.

growth of phages, which amplifies the treatment (Curtright and
Abedon, 2011). To successfully control bacterial proliferation,
phage cocktails are applied unless a single phage isolate infects
every bacterial lineage, which is rarely the case. Therefore, the
formulation of a phage cocktail constitutes a tradeoff between
achieving a high reduction in the bacterial load and minimizing
the side effects associated with increased complexity.

Presence-absence binary matrices are extensively used to
evaluate habitat fragmentation in ecological networks, and
consequently, several matrix-sorting algorithms have been
developed (Almeida-Neto et al., 2008). Additionally, the
coevolution of phages and bacteria has been studied by
comparing the modularity and nestedness of PBINs (Beckett
and Williams, 2013; Weitz et al., 2013). However, to the best of
our knowledge, host range matrices have not been previously

transformed into PBINs to design phage cocktails. In the meta-
analysis presented here, apart from the diversity of sources, we
have incorporated data including bacteria from diverse families
and genera, such as Bacillus, Brucella, Campylobacter, coliforms,
Dickeya, Lactococcus, Listeria, Ochrobactrum, Paenibacillus,
Pseudomonas, Rhodococcus, Salmonella, Staphylococcus, and
Xanthomonas.

The algorithm used for ordering hosts and phages in a matrix
format might hinder or reveal meaningful biological information,
and the nestedness could be overlooked if no packing algorithm
is applied. The nestedness temperature of bipartite PBINs has
been previously calculated with heuristic algorithms, such as the
NTC (Poullain et al., 2008; Flores et al., 2011; Weitz et al., 2013).
However, in the NTC algorithm, (1) the line of perfect order
(isocline) is not uniquely defined, (2) row and column sorting
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FIGURE 6 | Comparison of hierarchical clustering of matrices and estimated
phage cocktail size. The host range matrices (Table 2) were sorted from left to
right primarily by their calculated cocktail size (8) and then by the number of
clusters generated after applying the Ward algorithm. The inset shows the
correlation of cocktail size (cyan) and the number of clusters (purple) with the
temperature (T), fill (F), number of phages (P) and number of bacteria (B). The
red asterisks indicate statistical significance: *p < 0.01, **p = 0.001, and
***p< 0.001.

does not generate a packed matrix with the lowest temperature,
and (3) the null model used to determine the probabilities of
finding random matrices with the same or lower temperature is
not adequate for most applications (Atmar and Paterson, 1995).
Our work is based on BMN (Rodríguez-Gironés and Santamaría,
2006), which implements a line of perfect order that is uniquely
defined and uses genetic algorithms to determine the reordering
of rows and columns that minimizes the nestedness temperature.

Our findings support that most PBINs possess a nested
structure (Flores et al., 2011), indicating that difficult-to-infect
hosts are infected by generalist phages (and not specialist phages).
In ecology, modularity is regarded as an important feature for
the maintenance of biodiversity. Likewise, nestedness is predicted
to affect important properties of communities, such as stability
and extinction potential. Interestingly, local adaptation may form
nested patterns within overall modular networks where genetic
differences between populations may limit the exchange of
viruses between groups (Beckett and Williams, 2013). However,
the comparison of coliphages with hosts from different sources
(Figure 3A vs. Figure 3C) evinces that phage cocktails can
be designed against multiple bacterial genera and suggests that
nestedness prevails over modularity, indicating gene-for-gene
coevolution even for relatively distant lineages. The remarkable
diversity within E. coli correlates with a broad set of functions for
adapting to many different environments (Hendrickson, 2009;
Lukjancenko et al., 2010). Furthermore, the overlap in gene
content with related species suggests a continuum rather than
sharp species borders between Shigella spp. and E. coli. The
niche expansion of E. coli might imply diversifying selection for
coliphages and contribute to explaining the diversity of species in
which they can propagate.

The estimator of phage cocktail size, 8, does not intend
to achieve the minimum possible cocktail size but to consider

ecological and evolutionary information provided by the
structure of PBINs that might contribute to determining the
effectiveness of the cocktails. For instance, for biocontrol of the
E. coli strains studied here, a cocktail of three phages could
be designed (data not shown) that would expectedly result
in the same host range but lower virulence than those of
the 4-phage cocktail assayed. Similarly, to design the smallest
possible phage cocktails, host range matrices could be resized
by deleting “duplicated” rows and columns, i.e., phages or
bacteria with the same infection pattern, but this purge would
entail losing relevant information regarding the fill, nestedness
temperature and modularity. Since, the cocktail formulated
here was intended for the biocontrol of cheese-isolated E. coli,
we are currently developing a challenge test in pilot plants
to further test its applicability under cheese manufacturing
conditions. Although the complex microbiota of cheese and the
acidification might modify the effectiveness of the cocktail, our
preliminary results (data not shown) indicate a reduction in
E. coli counts during fermentation preventing cheese spoilage
by early blowing. Nevertheless, industrial scale treatments could
require the reformulation of phage cocktails to maintain efficacy.

The frequent use of binary host range matrices inevitably loses
information and introduces bias that accentuates some features
and masks others (Beckett and Williams, 2013). Conversely,
the analysis of weighted phage-bacteria networks rather than
just bipartite PBINs allows us to distinguish host range from
virulence. Moreover, their negative correlation, which in turn
might indicate that phages face life history tradeoffs (De Paepe
and Taddei, 2006; Keen, 2014) such as maximizing virulence and
preserving host populations for long-term exploitation, could not
have been detected (Molina et al., 2020).

A long-term coevolution study in a natural community
(Laanto et al., 2017) showed that phages acquired a broader host
range over time and bacteria were relatively more resistant to
phages from previous time points but relatively less resistant
to phages from future time points. Hence, phage cocktails
might require different formulations when long-term biocontrol
is needed. Additionally, highly dynamic environments, such
as virome-microbiome interactions in the gut (Sutton and
Hill, 2019), could necessitate time-structured treatments or
cycling of cocktails. The current work aimed to elucidate the
relevant properties of PBINs for designing phage cocktails.
A remaining challenge is to develop tools for analyzing their
long-term effectiveness and smoothly integrating empirical and
theoretical information.

MATERIALS AND METHODS

Bacterial Strains and Bacteriophages
Reference bacterial strains are listed in Table 1. Most coliform
strains were analyzed as described elsewhere (Molina et al., 2015).
The E. coli K-12 strains belong to our laboratory collection
(Molina et al., 1998). A total of 44 E. coli strains corresponding
to 13 different sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) protein profiles were isolated from
three cheese varieties (semihard goat, soft ewe, and semihard
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FIGURE 7 | Design and evaluation of a phage cocktail for biocontrol of E. coli isolated from small ruminant raw milk cheeses. (A) Hierarchical clustering of an E. coli
and coliphage matrix (Figure 2B) by Ward’s method. Each phage-host interaction was analyzed several times (6 > N > 2), and the average virulence (growth
inhibition) is represented by the clearing intensity (0 = no lysis, 3 = complete lysis) of cross-streaks (Molina et al., 2020). The host range (R) and the average virulence
(V) for each phage and the average susceptibility of each host strain to phages are shown (S). The clusters of phages are indicated by branch coloring in the
dendrogram. The average virulence (V) and host range (R) values are shown for each cluster. The phages selected for the cocktail are schematically depicted. The
expected virulence of the cocktail for each bacterial strain is shown at the bottom. Reference E. coli and the strains selected to test the phage cocktail are
represented as indicated in the legend. (B) Evaluation of growth inhibition by the phage cocktails. The reference E. coli strain MG1655 and seven cheese-isolated
E. coli strains with different proteomic (Molina et al., 2020) and phage sensitivity profiles (A) were used as controls. Two cocktails of phages are compared: the
control (λ, T4, T6, and P1) and that designed from ewe feces isolates (A).

ewe) at different ripening stages (Molina et al., 2020). All
bacterial strains were grown at 37◦C in lysogeny broth medium.
A total of 88 coliphages and 14 Citrobacter phages were isolated
from ewe feces and sewage, respectively. Turbid plaque phage
isolates were discarded, and the remaining 26 coliphages and 5
Citrobacter phages were used to perform the infection analysis.
Four reference coliphages (λ, T4, T6, and P1) were used
from our laboratory collection to constitute the control phage
cocktail (Figure 7B).

Cheese Sampling and Isolation,
Identification, and Characterization of
E. coli
Two batches of soft ewe cheese (Torta del Casar PDO), semihard
goat cheese (Ibores Cheese PDO) and semihard ewe cheese were
manufactured by different local producers following traditional
methods as described elsewhere (Molina et al., 2020). From
each of the batches, samples of milk, curd, and 1-, 2-, 4-, and
8-week-old cheese were taken. E. coli was isolated by plating
on chromogenic medium (Pronadisa, Spain). Identification

was performed with the aid of the EnteroPluri-Test System
(Liofilchem R©, Italy) and the Biolog Microbial ID System (Biolog,
United States). Strain characterization was performed by one-
dimensional SDS-PAGE of whole-cell proteins. Protein samples
were prepared according to Jackman (1988) and analyzed by 10%
SDS-PAGE by the method of (Laemmli, 1970).

Isolation of Bacteriophages
Coliphages were purified from sheep feces collected from local
farms and treated following an enriching method (Jones and
Johns, 2009) consisting of mixing 25 g of sample in 100 mL of
phage suspension buffer [1% 1 M MgSO4 and 0.5 M CaCl2 (v/v)].
After 2 h of incubation (8 strokes/s) at room temperature in a
stomacher VWR LB 400 (Pensilvania, United States), samples
were filtered and centrifuged at 8,000× g for 10 min. A few drops
of trichloromethane were added, and the samples were shaken for
15 min at 37◦C and centrifuged again at 8,000 × g for 10 min.
The supernatant was filtered through a 0.22 µm pore diameter
filter (MF; Millipore). Citrobacter spp. phages were isolated from
200 mL sewage water samples collected from the wastewater
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treatment plant Rincón de Caya (Badajoz, Spain). Each sample
was homogenized by agitation with a Nahita blue (Beriaáin,
Spain) magnetic stirrer (100 rpm, 15 min at 37◦C), divided into
10 mL aliquots, centrifuged and filtered as described above. All
the samples were stored at 4◦C with trichloromethane to kill the
remaining bacteria. Samples were screened for phages through
spot assay as described elsewhere (Mirzaei and Nilsson, 2015).
To detect the presence of bacteriophages in the supernatants, the
bacterial hosts were sown using the double layer method. Plates
were divided into 16 sectors, and aliquots of 20 µL of phage
supernatant were dropped in each sector. Once dried, plates were
incubated at 37◦C for 18 h to let lytic zones appear. Phage strains
were later purified by puncturing previously obtained lytic areas
with an inoculum loop and washing it in phage suspension buffer.
These suspensions were used to lyse cultures of the bacterium
used in the drop test. Lysates were serially diluted and sown with
the double layer method along with the corresponding bacterium.
This process was repeated successively until all plaques obtained
were homogeneous for at least three consecutive times.

Host Range Determination of Coliphages
and Citrobacter Phages
To identify the most effective and virulent phages, the plaque size
and morphology were analyzed using indicator strains of E. coli
(ATCC 700926) and Citrobacter youngae (CECT 5335). The
phages producing turbid plaques, which might evince temperate
phages, were discarded. To evaluate bacterial growth inhibition,
cross-streak tests were carried out as detailed elsewhere (Miller,
1998). Briefly, the virulent phages were plated in nutrient agar
following parallel streaks across the plate. Once dry, bacteria
were plated perpendicular to phage streaks. After overnight
incubation at 37◦C, a picture of each plate was digitalized using
a colony counter (Scan 500, Interscience). Zones of bacterial
lysis were assessed with a scaling system, where 0 indicated no
infection and 3 indicated a fully or nearly fully degraded bacterial
lawn. Each infection assay was performed at least three times
(6 > N > 2), and the average values were converted into an
unsorted host range matrix (Molina et al., 2020) represented as
a heat map (Figure 2B).

Modularity and Hierarchical Clustering of
Host Range Matrices
To estimate the modularity of the coliphages and cheese-isolated
E. coli strains, the quantitative host range matrix (Figure 2B)
was transformed into a binary form. Later, the package BiWeb
(see http://github.com/tpoisot/BiWeb.), which uses the LP-BRIM
sorting algorithm to find the partition that best maximizes
Barber’s modularity (Qb) (Barber, 2007), was used to find
groupings of highly interconnected phages and bacteria.

To determine clusters of phages sharing similar host
ranges, agglomerative hierarchical clustering was performed
using Ward’s method, which minimizes the total within-cluster
variation. The number of clusters was established following the
elbow method using R1.

1https://uc-r.github.io/hc_clustering

Nestedness of Host Range Matrices and
Estimation of Cocktail Sizes
Both our data and previously published results (Table 2) were
processed in the form of binary matrices, reducing the lytic
spectrum to either lytic or non-lytic interactions. To quantify
the nestedness and estimate the matrix temperature, five steps
were carried out: (1) computing the isocline of perfect order,
(2) reorganization of the matrix to maximize its nestedness
by permuting rows and columns, (3) removal of multiple
empty and all-presence rows and columns, (4) calculation
of the matrix fill, and (5) computation of temperature by
scoring distances to isocline (with each absence above the
isocline and with each presence below it, there is a distance
score). The temperature of the matrix is the normalized
sum of distances that ranges between 0 for a perfectly
nested matrix and 100.

The software used to build the nested networks was
obtained from the original sources. The Nestedness Temperature
Calculator (NTC) arranges the matrix by columns and then
by rows, and the process is iterated eight times (Atmar and
Paterson, 1995). Additionally, it provides a random null model
to calculate the statistical significance of the matrix temperature.
BinMatNest (BMN) (Rodríguez-Gironés and Santamaría, 2006)
orders columns and rows in descending order according to
their number of presence-denoting cells. Then, to pack the
matrix, a genetic algorithm produces an initial set of possible
solutions that are improved by the production of new variants
(1,000 null matrices) with selection of the best-performing ones.
This process is iterated for 2,000 generations, and the best-
performing solution is used to calculate the temperature of
the input matrix.

To determine the best estimator of phage cocktail size (8), it
was considered that (1) the maximum nestedness temperature
and the fill of host range matrices are strongly (R2 = 0.9995)
correlated by a symmetric quartic polynomial, (2) the fill
(f) indicates the host range of the phage population, (3)
the temperature (T) correlates inversely with the degree of
nestedness, (4) the number of bacteria (b) determines the target
for biocontrol, and (5) complex cocktails (>10) increase the risk
of side effects. Several functions that increase with b and T and
decrease with f in non-linear relationships were evaluated (data
not shown), and two were found to produce the best results:

8 =

[
n

√(
b · T

f
+ n

)]
(1)

and

8 =

[
logn

(
b · T

f
+ n

)]
(2)

where n is any positive integer.

Statistical Analysis
Principal component analysis (PCA) was carried out by
estimating the principal components using the restricted
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maximum likelihood (REML) method. The Bartlett test was
used to determine the variance in eigenvalues by calculating the
Chi-square (ChiSq), degrees of freedom (DF), and the p-value
(prob > ChiSq).

Two-tailed (95% confidence interval) non-parametric
Spearman correlation analysis was used to evaluate the
relationships between different pairs of variables throughout
the text: bacterial load reduction and phage cocktail
size; clusters, 8 and PBIN properties (temperature, fill,
phages and bacteria); and virulence and host range of the
coliphages.

Phage Cocktail Evaluation
Phage cocktails were generated by mixing 100 µL of the selected
phages after dilution of each to a final titer of 107 plaque-
forming units (pfu/mL) measured on the control strain E. coli
MG1655. Bacterial cocktails were generated by mixing 1 mL of
exponentially growing (optical density (O.D.) at 600 nm = 0.12)
cultures grown in LB medium. Three hundred microliters of
the bacterial cocktails were inoculated with phage cocktails
(estimated multiplicity of infection (M.O.I.) of 10) and, after
5 min of preadsorption, were transferred to a flask with 10 mL
of sterilized, reconstituted dried milk (10% w/v); the mixtures
were incubated in a water bath at 37◦C. Samples (50 µL) were
collected at 30 min intervals for 3 h after infection, plated in
nutrient agar and incubated at 37◦C overnight. Colony-forming
units (CFU) were counted the next day. The same experiment was
carried out using LB instead of reconstituted milk, and the O.D.
(600 nm) was measured every 30 min after infection for a total of
3 h (data not shown).
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