AUTHOR=Broddrick Jared T. , Szubin Richard , Norsigian Charles J. , Monk Jonathan M. , Palsson Bernhard O. , Parenteau Mary N. TITLE=High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies JOURNAL=Frontiers in Microbiology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2020.596626 DOI=10.3389/fmicb.2020.596626 ISSN=1664-302X ABSTRACT=
Advances in nanopore-based sequencing techniques have enabled rapid characterization of genomes and transcriptomes. An emerging application of this sequencing technology is point-of-care characterization of pathogenic bacteria. However, genome assessments alone are unable to provide a complete understanding of the pathogenic phenotype. Genome-scale metabolic reconstruction and analysis is a bottom-up Systems Biology technique that has elucidated the phenotypic nuances of antimicrobial resistant (AMR) bacteria and other human pathogens. Combining these genome-scale models (GEMs) with point-of-care nanopore sequencing is a promising strategy for combating the emerging health challenge of AMR pathogens. However, the sequencing errors inherent to the nanopore technique may negatively affect the quality, and therefore the utility, of GEMs reconstructed from nanopore assemblies. Here we describe and validate a workflow for rapid construction of GEMs from nanopore (MinION) derived assemblies. Benchmarking the pipeline against a high-quality reference GEM of