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Unveiling the relationship between taxonomy and function of the microbiome is crucial
to determine its contribution to ecosystem functioning. However, while there is a
considerable amount of information on microbial taxonomic diversity, our understanding
of its relationship to functional diversity is still scarce. Here, we used a meta-analysis
of completely annotated extant genomes of 377 taxonomically distinct fungal species
to predict the total fungal microbiome functionality on Earth with accumulation curves
(ACs) of all known functions from the level 3 of KEGG Orthology using both parametric
and non-parametric estimates in an explorative data-mining approach. The unsaturated
model extrapolating functional diversity as a function of species richness described
the ACs significantly better than the saturated model that assumed a limited total
number of functions, which suggested the presence of widespread and rare functions.
Based on previous estimates of 3.8 million fungal species on Earth, we propagated
the unsaturated model to predict a total of 42.4 ± 0.5 million KEGG level 3 functions
of which only 0.06% are known today. Our approach not only highlights the presence
of widespread and rare functions but points toward the necessity of novel and more
sophisticated methods to unveil the entirety of functions to fully understand the
involvement of the fungal microbiome in ecosystem functioning.

Keywords: functional diversity, fungi, microbiome, accumulation curves, modeling

INTRODUCTION

Ecosystem functioning is mediated by biochemical transformations performed by a community of
microbes from every domain of life (Woese et al., 1990). Among them, fungi are globally abundant
as microbial saprotrophs, pathogens and mutualists (Peay et al., 2016) and provide a wide range of
ecosystem processes such as decomposition of organic carbon (Chapin et al., 2012), deposition of
recalcitrant carbon (Six et al., 2006; Schmidt et al., 2011; Clemmensen et al., 2013; Kögel-Knabner,
2017) and transformations of nitrogen and phosphorus (Sinsabaugh et al., 1993; Sinsabaugh, 1994).
Thus, their activities may have large-scale consequences for global biogeochemical cycles (Treseder
and Lennon, 2015). In every community, multiple organisms from different taxonomic groups can
play similar if not identical roles in ecosystem functionality, the so-called functional redundancy
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(Hubbell, 2005). In fact, functional redundancy of certain
functions was shown to be very high with several hundreds
to thousands of different taxa expressing the same function
within one habitat (Žifčáková et al., 2017). These functions can
be statistically inferred based upon homology to experimentally
characterized genes and proteins in specific organisms to find
orthologs in other organisms present in a given microbiome. This
so-called ortholog annotation is performed in KEGG Orthology
(Kanehisa et al., 2016a,b) that covers a wide range of functional
classes (level 1 of KEGG) comprising cellular processes,
environmental information processing, genetic information
processing, human diseases, metabolism, organismal system,
brite hierarchies and functions not included in the annotation
of the two databases pathway or brite (more information about
the databases can be obtained under1). However, the bottleneck
of describing microbiome functions is the low number of
fully sequenced and annotated genomes as they are mostly
limited to those that have undergone isolation and extensive
characterization. Problematically, the vast majority of organisms
were not yet studied (Pham and Kim, 2012; Martiny, 2019)
and the annotation is based on the similarity to the genomes
of the very few studied model organisms. As a consequence,
fungal microbiome functionality can be inferred based on the
composition of the fungal microbiome and its relation to
functional parameters (Starke et al., 2018) as indicated by the
frequent use of nuclear ribosomal 18S and ITS2 metabarcoding
(5,990 publications with the keyword “18S sequencing” and 2,466
with “ITS2 sequencing” in PubMed as of October 3rd 2019).
Although the description of fungal communities is important to
assess the drivers of the occurrence and distribution of individual
fungal taxa and the composition of their communities, the mere
fungal community composition in itself does not provide detailed
answers, i.e., about its functionality diversity (Větrovský et al.,
2019). Recently, shotgun sequencing of metagenomes (8,857
publications) and metatranscriptomes (514 publications), and
mass spectrometric analysis of metaproteomes (426 publications)
have gained in popularity as a direct link between taxonomy and
function in microbial communities from different environments.
Still, our understanding of both functional redundancy and
functional diversity and their relationship to taxonomic diversity
in these communities is scarce. Here, we use both parametric
and non-parametric estimators of functional richness to unveil
the relationship between taxonomy and function in fungi with
the aim to predict the total fungal microbiome functionality on
Earth. For this, we extracted all completely annotated genomes
of taxonomically distinct fungal species (n = 377) from the
Integrated Microbial Genomes and microbiomes (IMG) of
the Joint Genome Institute (JGI)2 on August 7th 2019 with
taxonomic annotation on species level and functional annotation
on level 3 of KEGG. Admittedly, the 377 fungal genomes cover
only five of 22 fungal phyla (Tedersoo et al., 2018) and 28
of 167 fungal orders (Silar, 2016), indicating the limitation
of the small dataset that is heavily biased by taxonomy and
geography as not the full fungal tree of life was examined.

1https://www.genome.jp/kegg/kegg3.html
2https://img.jgi.doe.gov/

We analyzed the relationship of gene counts and number of
KEGG functions within the fungal kingdom and calculated
the parametric estimation comprised of an accumulation curve
(AC) (Gotelli and Colwell, 2001) characterized by increasing
number of KEGG level 3 functions with increasing species using
1,000 random permutations and its subsequent fit to both a
saturated and an unsaturated model. Chao-1 for every 10% of
species richness of all 377 fungal species in the database each
with 20 replicates represented the non-parametric estimator. We
hypothesized limited functionality with a plateau at high species
richness and thus a better fit of the saturated model as parametric
approach and a stagnating Chao-1 estimator with increasing
species richness.

MATERIALS AND METHODS

Metadata Collection of the Total Known
Fungal Microbiome Functions
To explore the relationship between diversity and function
and to compare genomes across fungal phyla and nutritional
guilds, available genomes from fungi (as taxonomic unit)
were downloaded from the IMG of the JGI on August 7th
2019. One genome was randomly selected if a species had
multiple sequenced genomes to yield taxonomically distinct
fungal species. For each genome, the gene counts for each
function on the level 3 of KEGG Orthology (Kanehisa et al.,
2016a,b) (as functional unit) were retrieved. In total, the database
comprised 377 completely annotated fungal genomes with 7,926
KEGG functions (Supplementary Table S1). The sequencing
status was denoted as “Draft” for 6, “Permanent Draft” for 339
and “Finished” for 32 fungal genomes. Interspecies redundancy
was calculated as the number of KEGG functions covered by
one randomly chosen species compared to the total number
of functions in all species. Intraspecies redundancy or gene
redundancy (Pérez-Pérez et al., 2009) was estimated as average
of genes per individual KEGG function in any one species. The
nutritional guilds of fungi were annotated on species level or,
if not available, at genus level with at least probable confidence
ranking using FUNGuild (Nguyen et al., 2016). Of all genomes,
330 fungi were assigned to at least one guild. When more
than one guild was probable, the annotation was treated as
ambiguous and not used for further analysis resulting in the
identification of 251 genomes from 17 guilds. If less than three
genomes were present in any one guild or any one phylum, the
data was removed from the analysis, which was true for the
phylum Blastocladiomycota (n = 2) and the guilds arbuscular
mycorrhizal (n = 1), epiphyte (n = 1), ericoid mycorrhizal (n = 1),
lichen parasite (n = 1), lichenized (n = 2), litter saprotroph
(n = 1), orchid mycorrhizal (n = 1), and soil saprotrophs
(n = 2). The gene counts and KEGG functions per fungal phylum
and guild were retrieved as average with standard deviation
from the database. To estimate guild and phylum specific
differences, both inter- and intraspecies functional redundancy
were calculated for every guild and phylum as described for the
total database above.
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Accumulation Curves (AC)
Fungal species were randomly added in intervals of one up
to the maximum species richness of 377 with 1,000 random
permutations per step using the function specaccum from the R
package vegan (Oksanen et al., 2018). The AC of the database
permutation was then fitted to a saturated (Equation 1) and an
unsaturated model (Equation 2) with the critical point estimated
by the term 3Af as previously described (Čapek et al., 2016).
The fit of the models was compared by analysis of variance
(ANOVA) and Akaike Information Criterion (AIC) (Bertrand
et al., 2006) with a penalty per parameter set to k equals
two. The total number of KEGG functions in fungi on Earth
was predicted using the global species richness estimate of 3.8
million fungi to estimate the potential maximum of KEGG
functions even though the estimate is 2.2–3.8 million extant
species (Hawksworth and Lücking, 2017) and the Monte Carlo
simulation of the function predictNLS in the R package propagate
(Spiess, 2018). To validate the parametric approach, random
subsets of the 377 fungal species with different sizes were used
to predict the total microbiome functions as described before. In
addition, the non-parametric estimation of the lower bound of
functional richness was calculated by Chao-1 again using random
subsets of the 377 fungal species with different sizes and 20
replicates each (Equation 3).

Functional richness =
fmax ∗ [Species richness]
Af + [Species richness]

(1)

Function richness =
fmax ∗ [Species richness]
Af + [Species richness]

+ k ∗ [Species richness] (2)

Chao1 = Functional richness ∗
a2

1
2a2

(3)

Here, fmax is the maximum functional richness, Af the
accretion rate of functions with an increasing number of species
and k the constant of the additive term. Functions found only
once or twice are indicated by a1 as singletons and a2 as
doubletons, respectively.

RESULTS

Genome Quality and Coverage
The assembled scaffold count was on average 671.1 ± 3,270.9
for 373 genomes as Meliniomyces bicolor E, Podospora anserina
S mat+, Thielavia appendiculata CBS 731.68 and Thielavia
arenaria CBS 508.74 were not found in the database in time of
the revision (January 6th 2020). The average scaffold of the fungal
genomes indicates high quality of the database but also showed
the presence of low quality genomes of Clarireedia homoeocarpa
with 4,211 scaffolds, of Neocallimastix with 13,107 scaffolds, of
Pecoramyces ruminatium with 16,297 scaffolds, of Rhizophagus
irregularis with 20,288 scaffolds, of Moniliophthora perniciosa
with 25,056 scaffolds and of Tricholoma vaccinum with 50,239
scaffolds. On average, 24.7 ± 10.2% of the genes in a fungal
genome were affiliated a KEGG function.

Gene Counts and Number of Functions
Across Fungal Guilds and Phyla
The gene count per genome in fungal phyla was significantly
(P-value < 0.05) higher in Basidiomycota as compared to
Ascomycota and Zoopagomycota but Ascomycota (n = 226) and
Basidiomycota (n = 122) made up 92.3% of the 377 fungal
genomes (Figure 1A). On the level of functional ecologies
determined by FUNGuild (Nguyen et al., 2016), genomes of
ectomycorrhizal fungi had on average significantly more genes
than animal endosymbionts, animal pathogens and fungal
parasites. Undefined saprotrophs were represented by the largest
number of fungal genomes (n = 79) followed by plant pathogens
(n = 46), animal pathogens (n = 36), wood saprotrophs
(n = 33), ectomycorrhizal (n = 24), endophytes (n = 13),
fungal parasites (n = 4), and animal endosymbionts and dung
saprotrophs (both n = 3). Significant differences were found
in the number of KEGG functions, with more functions in
genomes of the Ascomycota compared to the Basidiomycota
that, in turn, had a significantly higher number of functions
per genome compared to Chytridiomycota, Mucoromycota,
and Zoopagomycota (Figure 1B). On the level of fungal
ecologies, genomes of endophytes comprised significantly more
KEGG functions than those of animal endosymbionts and
fungal parasites.

Inter- and Intraspecies Functional
Redundancy
Interspecies functional redundancy describes the performance of
one metabolic function by multiple coexisting and taxonomically
distinct organisms (Louca et al., 2016) while intraspecies
functional redundancy accounts for the number of replicated
functions within one genome (Figure 2A). Across all 377
fungal genomes, the median of interspecies functional
redundancy was found to be 0.03 (Figure 2B). Functions
showed either high redundancy as 1,592 KEGG functions
were found in more than 90% of the fungal genomes or low
redundancy with 4,537 KEGG functions in less than 10% of
the species. Together, 77.3% of all functions showed either
high or low redundancy while 22.7% appeared intermediate
with an interspecies functional redundancy between 0.1
and 0.9. The median of intraspecies functional redundancy
across all 377 fungal genomes was found to be 2.0 gene
copies per KEGG function with a maximum of 118 gene
copies (Figure 2C). Among fungal phyla, Ascomycota and
Chytridiomycota showed a significantly lower interspecies
functional redundancy than Mucoromycota that, in turn, was
lower than in Zoopagomycota and Basidiomycota (Figure 3A).
Within fungal guilds, animal pathogens showed a significantly
lower interspecies functional redundancy than ectomycorrhizal
fungi, fungal parasites and wood saprotrophs that, in turn,
were significantly less functionally redundant than animal
endosymbionts, plant pathogens, animal pathogens and
undefined saprotrophs. Intraspecies functional redundancy
was significantly (P-value < 0.05) lower in Ascomycota and
Basidiomycota than in Chytridiomycota and Mucoromycota
(Figure 3B). When separated into guilds, intraspecies functional
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FIGURE 1 | Gene counts (A) and the number of different KEGG functions (B) per genome across fungal guilds and phyla shown as average with standard deviation.
The number of fungal genomes per guild and phylum is given in italic. Groups followed by the same letter are not significantly different according to the HSD-test
(P-value > 0.05).

FIGURE 2 | The distribution of interspecies functional redundancy as the total share of functions within fungi relative to the total number of fungal species in the
database and intraspecies functional redundancy as the number of replicated KEGG functions within one fungal species in the database. As example, two functions
in red and yellow are presented in three taxonomically distinct fungi in different shades of orange (A), and the distribution of interspecies (B) and intraspecies
functional redundancy (C) in all 377 analyzed fungal genomes.

redundancy was not different compared to the mean of
all fungal genomes.

Modeling of the Total Fungal Microbiome
Diversity/Functionality Relationship
The unsaturated model described the dependence of functional
categories on species richness significantly better than the
saturated model with both lower AIC and residual sum of
squares (Table 1). The unsaturated model was described by the
maximum functional richness fmax of 4,716 ± 18∗∗∗ across the
377 fungal species with an accretion rate Af of 2.1 ± 0.1∗∗∗
per fungal species, consistent with the estimate of intraspecies
functional redundancy (Figure 4A). However, the relationship

did not plateau as indicated by the constant of the additive
term k that is 9.0 ± 0.1∗∗∗. Considering one of the recent
fungal species richness estimates of 3.8 million on Earth
(Hawksworth and Lücking, 2017) and assuming that the yet
unknown fungal microbiome functionality are rare functions, the
propagation of the unsaturated model predicted the total fungal
microbiome functionality on Earth to be 42,373,186 ± 459,560
KEGG functions (with 41,574,275–43,376,938 as 95% confidence
intervals). This estimate was validated by using random subsets
of 10, 20, 30, 40, 50, 60, 70, 80, and 90% of all 377 fungal
species, which yielded to a plateau of predicted functions when
at least 70% of the species were used (Table 2). The non-
parametric estimator of functional richness Chao-1 that assumes
the existence of a maximum functional richness showed no
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FIGURE 3 | Interspecies (A) and intraspecies functional redundancy (B) in fungal guilds and phyla. The number of fungal genomes per guild and phylum is given in
italic. Groups followed by the same letter are not significantly different according to the HSD test (P-value > 0.05).

TABLE 1 | The fit of the saturated (S) and the unsaturated model (US) of the accumulation curve (AC) indicated by the Akaike’s An Information Criterion (AIC) and residual
sum of squares (Res. Sum Sq), the P-value that describes the significant difference between the saturated and the unsaturated model, and the mean prediction with
standard deviation (SD) and 95% confidence intervals (CI) at 3.8 million fungal species.

Model AIC Res. Sum Sq P-value Prediction SD Lower CI Higher CI

S 5,843.751 1.17E + 08 7,659 62 7,537 7,779

US 4,693.567 5,514,694 <2.2E-16 42,373,186 459,560 41,574,275 43,376,938

plateau with increasing species richness of the lower bound
estimate (Figure 4B).

DISCUSSION

Fungal Genomes From IMG
Only 8.5% of the 377 completely annotated fungal genomes
were indeed labeled as finished while the majority of the
fungal genomes are drafts or permanent drafts, indicating the
incompleteness of the fungal genomes. In addition to that, four
of the genomes used in the analysis in August 2019 were not
found in the database in January 2020, showing the fast turnover
of genomes that makes the reanalysis of the data inevitable.
Only five of the 377 fungal genomes showed low quality with
thousands of scaffolds while the majority of the genomes were
of high quality with scaffolds as low as 4 for the finished
genomes of Komagataella pastoris and Schizosaccharomyces
pombe. Logically, since the scaffolds of the finished genomes
were a magnitude smaller than the ones of the drafts, the
completion of fungal genomes is of outmost importance for
meta-analyses. Noteworthy, even though finished, the scaffold
count of the genome of M. perniciosa still indicates low quality
which is why not only the completion but also quality control
becomes necessary.

Genome Content
Fungal genomes are small compared to the genome sizes of
animals and plants (Tunlid and Talbot, 2002). The higher number
of predicted gene sequences in Basidiomycota as compared to
Ascomycota was consistent with the previous examination of 172
fungal species from the same database in 2015 (Mohanta and Bae,
2015). Generally, the genome size of an organism depends on
its developmental and ecological needs (Petrov, 2001). A large
genome directly increases the nuclear and cellular volumes
(Cavalier-Smith, 1978), which helps to buffer fluctuations in
concentrations of regulatory proteins or to protect coding
DNA from spontaneous mutation (Vinogradov, 1998). Hence,
variation in genome size is due to adaptive needs or due to natural
selection in different organisms (Petrov, 2001); the so-called
adaptive theory of genome evolution. A higher evolutionary
rate in Ascomycota compared to Basidiomycota (Wang et al.,
2010) could be directly related to its smaller genome. However,
Ascomycota were functionally more diverse than Basidiomycota.
The difference between the number of predicted gene sequences
and KEGG functions per genome could also derive from
functions without biochemical transformations as those are not
captured by KEGG Orthology, i.e., structural proteins necessary
to form unique structures found in many fungal guilds. This is
clearly a bottleneck to using KEGG for functionality especially
in complex multicellular organisms. The potential difference
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FIGURE 4 | Parametric (A) and non-parametric (B) estimation of total functional richness. The unsaturated model of the ACs as gray points with error bars for the
total known fungal microbiome functions derived from the KEGG database by 1,000 random permutations for every one species richness with 95% confidence
intervals. The maximum functional richness is represented by fmax , Af is the accretion rate of functions with increasing number of species, and k is the constant of
the additive term. Significance of the parameter estimates are indicated by asterisks (∗∗∗ equals P < 0.001). The Chao-1 was calculated using 20 replicates shown in
gray for every 10% of the total fungal species richness in the database starting with two species.

in functional diversity between Ascomycota and Basidiomycota
could be described by different tools for functional annotations
such as the carbohydrate-active enzymes (CAZymes). Fungal
phyla can comprise of a variety of different trophic modes and
thus ecological evaluation of genome content and functional
diversity can partly reflect different lifestyles among guilds.
In fact, Ascomycota contained a total of 12 different guilds
compared to 10 guilds in Basidiomycota. The larger genome of
ectomycorrhizal fungi in comparison to the specialist fungi of
animal endosymbionts, animal pathogens and fungal parasites
may explain their persistence over competitors such as wood
saprotrophic fungi (Tedersoo et al., 2010). Similarly, functional
diversity was the highest in endophytic fungi compared to the
same specialists as before – animal endosymbionts and fungal
parasites. Fungal symbionts such as mycorrhizal or endophytic

TABLE 2 | The mean prediction of total fungal microbiome functionality with
standard deviation (SD) and 95% confidence intervals (CI) given a richness of 3.8
million fungal species on Earth estimated by the Monte Carlo simulation when
random subsamples of the 377 fungal species are used.

Species (%) Prediction SD Lower CI Higher CI

377 (100) 42,373,186 459,560 41,574,275 43,376,938

339 (90) 37,575,880 658,902 36,285,040 38,868,781

302 (80) 46,712,785 732,903 45,274,956 48,152,062

264 (70) 38,412,964 315,475 37,794,156 39,031,118

226 (60) 62,515,150 2,085,421 58,421,494 66,607,622

189 (50) 63,362,037 1,645,403 60,134,332 66,591,118

151 (40) 77,516,964 1,427,367 74,713,805 80,321,171

113 (30) 97,942,669 7,026,524 84,131,304 111,757,847

76 (20) 104,882,008 11,188,137 82,875,937 126,831,401

38 (10) 107,435,329 3,650675 100,235,159 114,636,999

The prediction stabilized at around 40 million functions with random subsets of at
least 264 fungal species.

fungi can have profound effects on plant ecology, fitness, and
evolution (Brundrett, 2007) by shaping the plant communities
(Clay and Holah, 1999) and their microbiome (Omacini et al.,
2001). Plants have been associated with endophytic (Krings
et al., 2007) and mycorrhizal fungi (Redecker et al., 2000) for
more than 400 million years but unlike mycorrhizal fungi that
colonize plant roots and grow into the rhizosphere, endophytes
reside entirely within plant tissues and can grow within roots,
stems and leaves (Sherwood and Carroll, 1974; Carroll, 1988;
Mueller et al., 2004). Endophytes comprise of a higher functional
arsenal by aiding to the health and survival of the host plant
acting toward biotic threats such as pathogens or herbivores
but also environmental factors such as heat or water stress, and
soil factors such as nutrient availability or salinity (Hardoim
et al., 2015). Here, we demonstrate that the difference in lifestyle
between endophytic and ectomycorrhizal fungi could derive from
functional diversity and genome content, respectively, despite
both being associated with plants. Admittedly, the importance
of the genome content of mycorrhizal fungi is questionable as
the convergent evolution of the mycorrhizal habit occurred via
the repeated evolution from saprotrophic ancestors (Kohler et al.,
2015) but genomic sequencing revealed substantial variation
between species from the same functional guild resulting in
the analysis of trait-based approaches for understanding fungal
activity instead of continuous classifications (Zanne et al., 2019).
A trait-based approach to measure enzyme activity directly
will be necessary when taxa do not fit into functional guilds
(Peay et al., 2016). Indeed, some endophytic fungi of roots,
leaves and stems have recently shown to protect plants from
pathogens (Arnold et al., 2003), herbivores (Clay et al., 2005),
and challenging environmental conditions (Márquez et al., 2007)
while others might facilitate disease in the presence of more
virulent pathogens (Busby et al., 2013). Hence, the genome
content and its functional diversity may relate better to the
trait-based approach.
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Functional Redundancy
Most major biogeochemical reactions are driven by a limited
set of metabolic pathways that are found in a variety of
microbial clades (Falkowski et al., 2008). In line with this
observation, taxonomic diversity was found to correlate strongly
with functional diversity and many ectomycorrhizal fungal
species with similar ecological effects co-occurred in the
same community (Rineau and Courty, 2011), implying a high
interspecies functional redundancy to mobilize nutrients from
organic compounds (Walker et al., 1999; Bolger, 2001). Here,
interspecies redundancy was either high or low for 77.3% of
all KEGG functions. Hence, functions appear to diverge into
two groups: (i) highly redundant across fungal species (in
more than 90% of the species) or (ii) unique to only a few
(in less than 10% of the species). However, the presence of
intermediate functions found in between 10 and 90% of the
species suggests a less strict classification with more than two
groups. Generally, low intraspecies functional redundancy could
derive from different KEGG functions performing functionally
similar processes. In fact, all malate dehydrogenases perform
the same metabolic function but are annotated by different
KEGG functions (K00024-K00029) due to their involvement
in a variety of metabolic pathways. The highest intraspecies
redundancy was found for the ascomycete Coccidioides immitis
that featured 35 gene copies for the prolyl 4-hydroxylase
(K00472, EC 1.14.11.2) and 29 gene copies for the glutathione
S-transferase (K00799, EC 2.5.1.18); both are functions with low
interspecies redundancy. Noteworthy, the median intraspecies
redundancy of C. immitis of 1.0 was lower compared to the
other fungi in the database, which could relate to a rather
uncommon lifestyle and a higher share of unique but not essential
functions. Indeed, comparative genomic analysis revealed that
C. immitis is a primary pathogen of immunocompetent mammals
(Sharpton et al., 2009). Functions with high interspecies and
high intraspecies redundancy included the yeast amino acid
transporter (K16261) with 14.5 ± 8.2 gene copies found in 351
of the 377 fungal species (93.1%), the salicylate hydroxylase
(K00480, EC 1.14.13.1) with 13.9 ± 9.5 gene copies (81.7%)
and the glutathione S-transferase (K00799, EC 2.5.1.18) with
12.7 ± 11.7 gene copies (98.9%). All of the above belong to the
maintenance apparatus of the fungus, namely the transport of
amino acids, the incorporation/reduction of oxygen by salicylate
hydroxylase, and the detoxification of xenobiotic substrates by
glutathione S-transferase. Hence, functions with high interspecies
and high intraspecies redundancy are both widespread and
essential to every fungus. Functions with high interspecies and
low intraspecies redundancy were not found in the 377 genomes.
Logically, there might not exist widespread functions that are not
essential. As suggested by the interspecies redundancy, the better
fit of the unsaturated model inferred the presence of two types of
microbiome functions. On the one hand, widespread functions
rapidly increase with the number of species and are ubiquitously
abundant in all living fungi. In total, nine functions were found
in all of the 377 fungal species. All of these are crucial to sustain
life – examples include the ribose-phosphate pyrophosphokinase
(K00948, EC 2.7.6.1) necessary for nucleotide synthesis and the

citrate synthase (K01647, EC 2.3.3.1) of the TCA cycle or the
superoxide dismutase (K045654, EC 1.15.1.1) that is an important
antioxidant defense mechanism. The number of widespread
functions is likely to be limited and amounted to 3,593 ± 31
KEGG functions (with 3,534–3,654 as 95% confidence intervals);
nearly half of all known functions as of today. Otherwise, roughly
4,300 functions are rare and increase at a much slower rate
with an increasing number of species but require time and the
evolution of “dead ends,” i.e., species that were unable to evolve a
particular function. The addition of more fungal genomes may
increase the interspecies redundancy but it is questionable if
a function only found in a few of the 377 fungal species can
potentially be widespread amongst fungi.

The Total Fungal Microbiome
Functionality
The propagation of the unsaturated model describing the
increase in functions for 377 fungal species to 3.8 million fungi
on Earth as the potential maximum of functional diversity
(Hawksworth and Lücking, 2017) yielded 42.4 ± 0.5 million
KEGG functions, which plateaued at around 40 million functions
when a random subset of at least 264 species (70%) were used to
compute the AC, fit the unsaturated model and propagate to the
global species richness on Earth. Logically, this suggests that the
addition of new species will not result in a different prediction of
total functionality. However, the addition may lead to a different
categorization into widespread and rare functions of individual
functions and can thus result in a different prediction. Further
support for the unsaturated model was the non-parametric
estimator of functional richness. Chao-1 provides a lower bound
estimate for the functional richness (Chao, 1984, 1989), assuming
that the number of functions plateaus with higher number of
species. In our data, however, the Chao-1 estimator did not
plateau with an increasing number of randomly chosen fungal
species. In theory, more and more species must be sampled
until no new functions are found and the AC reaches an
asymptote (Gotelli and Colwell, 2011) but, in practice, this
approach is generally impossible due to the prohibitively large
number of species that need to be sampled to reach an asymptote
(Chao et al., 2009). Indeed, every of the predicted 3.8 million
fungal species on Earth must be sampled in order to reach the
maximum of 42.4 ± 0.5 million KEGG functions. Admittedly,
the exploration beyond the limits of the data is likely to be
imprecise and the predictions of fungal microbiome functionality
may differ once additional fungal genomes with potentially new
functions have been added. It is also likely that the discovery
rate of novel functions decreases to a saturated model with
higher species richness, but the validation requires both more
sequenced genomes of taxonomically distinct fungi and the
discovery of novel functions. As of today, our understanding of
fungal microbiome functionality is likely limited to a marginal
part of all functions.

Taken together, we suggest the presence of widespread and
rare functions within the fungal microbiome. Our predictions
revealed a potential for millions of as-yet unknown functions
that, logically, can only be unveiled by novel and more
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sophisticated methods. However, due to the vast amount of
yet unknown functions, it is questionable (i) if the relationship
between taxonomy and function is in fact explained by an
unsaturated model, (ii) if only two types of functions exist as
the distribution of interspecies functional redundancy pointed
toward the presence of intermediate functions, (iii) if it is similar
when different tools for the functional annotation are used and
(iv) if the predictions change once more fungal genomes have
been sequenced, finished and completely annotated. Similarly,
the total bacterial microbiome functionality could be predicted
using more than 70,000 completely annotated genomes of
bacterial species. Given the predictions of 100 million bacterial
species on Earth (Curtis et al., 2002; Schloss and Handelsman,
2006) together their lifestyle as micro-environment niche
specialists (Simard et al., 2012), the total bacterial microbiome
functionality is likely much higher as recently shown by proteins
(Starke et al., 2019a) and hence, our understanding of the
involvement of microbes in ecosystem functioning even lower.
Noteworthy, on average only a quarter of the genes in the
fungal genomes were affiliated with a KEGG function, clearly
demonstrating the limitations of the database as the prediction
of functionality technically excluded three quarter of the full
functional potential. However, it is likely that other phylogenomic
databases provide similar coverages which is why different
approaches and definitions of functionality will be necessary to
estimate the actual number of functions.
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