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We present a model of the growth rate and elemental stoichiometry of phytoplankton

as a function of resource allocation between and within broad macromolecular

pools under a variety of resource supply conditions. The model is based on four,

empirically-supported, cornerstone assumptions: that there is a saturating relationship

between light and photosynthesis, a linear relationship between RNA/protein and

growth rate, a linear relationship between biosynthetic proteins and growth rate,

and a constant macromolecular composition of the light-harvesting machinery. We

combine these assumptions with statements of conservation of carbon, nitrogen,

phosphorus, and energy. The model can be solved algebraically for steady state

conditions and constrained with data on elemental stoichiometry from published

laboratory chemostat studies. It interprets the relationships between macromolecular

and elemental stoichiometry and also provides quantitative predictions of the maximum

growth rate at given light intensity and nutrient supply rates. The model is compatible with

data sets from several laboratory studies characterizing both prokaryotic and eukaryotic

phytoplankton from marine and freshwater environments. It is conceptually simple,

yet mechanistic and quantitative. Here, the model is constrained only by elemental

stoichiometry, but makes predictions about allocation to measurable macromolecular

pools, which could be tested in the laboratory.

Keywords: phytoplankton, elemental stoichiometry, growth rate, macromolecule, photosynthesis, protein, RNA,

nutrient storage

INTRODUCTION

Phytoplankton are responsible for the majority of photosynthesis in the ocean (Field et al.,
1998) and more than half in lakes (Vadeboncoeur et al., 2002). The elemental stoichiometry of
phytoplankton varies significantly through acclimation and adaptation (Quigg et al., 2003, 2011;
Finkel et al., 2016), modulates fitness in different environments (Deutsch andWeber, 2012), global
ocean carbon storage (Galbraith and Martiny, 2015), and the nutrition of higher trophic levels
(Mitra et al., 2007). Population growth rates of phytoplankton depend on resource availability
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(Caperon and Meyer, 1972a,b; Paasche, 1973; Laws and
Bannister, 1980; Pedersen and Borum, 1996; Xu et al., 2010)
and also vary through acclimation and adaptation (Falkowski
and Owens, 1980; Levasseur et al., 1993; Litchman et al., 2002,
2003; Collos et al., 2005; Litchman and Klausmeier, 2008; Van
Mooy et al., 2009; Lewis et al., 2019). The environmentally
dependent growth rate of a population is an important
component of its fitness and significant for ecological and
biogeochemical modeling.

The elemental stoichiometry and growth rate of
phytoplankton are not independent. Robust qualitative

FIGURE 1 | Compiled laboratory data of growth rate and light dependence of chlorophyll and elemental stoichiometry, and light dependence of µI
max : nutrient replete

growth rate. Data are all from chemostat cultures where the growth rate, µ, is controlled by the dilution rate, D. Here, illustrated N:C data were all under N limitation

and P:C were all under P limitation. Points represent the original data and curves represent regression lines. (A–C) Chlorophyll:C for various light intensities for Pavlova

lutheri (Chalup and Laws, 1990), Skeletonema costatum (Sakshaug and Andersen, 1989), and Synechococcus linearis (Healey, 1985). Legends indicate light

intensities in µmol m−2 s−1. (D–F) N:C for various light intensities for the same organisms as (A–C), respectively. Legend values are light intensities as in (A–C).

(G) N:C for other organisms. (a) Synechococcus (WH8102) (Garcia et al., 2016). (b) Synechococcus (WH7803) (Liu et al., 1999). (c) Coccochloris stagnina (Caperon

and Meyer, 1972a). (d) Thalassiosira pseudonana (Claquin et al., 2002). (e) Dunaliella tertiolecta (Caperon and Meyer, 1972a). (f) Monochrysis lutheri (Caperon and

Meyer, 1972a). (H) P:C for three organisms. (g) Synechococcus (WH8102) (Garcia et al., 2016). (h) Selenastrum minutum (Elrifi and Turpin, 1985). (i) Synechococcus

linearis (Healey, 1985). In (G,H) a light intensity varied between experiments. (I) µI
max- light relationships for three organisms as in (A–C). (j) Pavlova lutheri (Chalup and

Laws, 1990). (k) Skeletonema costatum (Sakshaug and Andersen, 1989). (l) Synechococcus linearis (Healey, 1985). For Synechococcus linearis, only data points

where the limiting nutrient was fully consumed are plotted (this applies to other figures).

relationships between growth rate, elemental stoichiometry,
and resource availability are evident in controlled laboratory
cultures spanning wide taxonomic and allometric ranges. We
illustrate this in Figure 1, Supplementary Figure 1 with data
compiled from published, continuous culture laboratory studies
of 12 species, including marine, freshwater, prokaryotic, and
eukaryotic phytoplankton. In all cases, at a fixed irradiance,
Chl:C (chlorophyll per carbon) increases linearly with growth
rate, µ (Laws and Bannister, 1980; Healey, 1985; Sakshaug and
Andersen, 1989; Chalup and Laws, 1990), and both the slope and
the intercept increase as the irradiance declines (Figures 1A–C)
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FIGURE 2 | Illustration of general trends in laboratory data in chemostat culture studies. Growth rate (µ) and light dependence of (A) Chl:C, (B) N:C under N limitation,

and (C) P:C under P limitation, respectively, and (D) µI
max–light relationships. Whereas, Chl:C and N:C are described by linear curves, P:C has non-linear relationships

with µ. Black dotted lines represent µI
max .

TABLE 1 | Elemental stoichiometry of some macromolecules.

Molecule C:N:P Explanation

Chlorophyll 55:4:0 Chlorophyll A

Protein 3.82:1:0 Average value based on (Brown, 1991)

RNA 9.5:3.78:1 Based on CG = 0.563: Synechococcus spp.*

DNA 9.72:3.78:1 Based on CG = 0.563: Synechococcus spp.*

P lipid 40:0:1 Phosphatidylglycerol with C16 fatty acids

C store 1:0:0 Carbohydrate and non-phospholipid

N store 2:1:0 Cyanophycin

P store 0:0:1 Polyphosphate

*GC% [http://www.ncbi.nlm.nih.gov/genome/13522 (accessed December 13, 2018)].

(quantitative fits with R2 values in Supplementary Table 1).
Similarly, cellular N:C (nitrogen:carbon) increases linearly with
growth rate (Caperon and Meyer, 1972a; Laws and Caperon,
1976; Laws and Bannister, 1980; Healey, 1985; Sakshaug and
Andersen, 1989; Chalup and Laws, 1990; Figures 1D–G) and
its slope and intercept both increase with decreasing photon
flux (Healey, 1985; Sakshaug and Andersen, 1989; Chalup and
Laws, 1990; Figures 1D,F, R2 values in Supplementary Table 2).
In contrast, the cellular P:C (phosphorus:carbon) increases
non-linearly with growth rate (Figure 1H).

Here we define µI
max as maximum growth rate for a given

light intensity. µI
max can be also considered as a nutrient

replete growth rate. In the chemostat culture, as the dilution
rate increases, the rate of nutrient input increases. Despite the
increased rate, when the dilution rate is above µI

max, the cells

are flushed away, since cellular growth cannot increase further.
Thus, µI

max is indicated by the termination of the linear increase
in Chl:C and N:C, and the termination of the non-linear increase
in P:C with µ (Figures 1A–H, and indicated schematically by
the dotted line in Figures 2A–C). In Figure 1I, we plot µI

max

as a function of light intensity revealing the typical saturation
of growth rate at high light intensities (Healey, 1985) (we note
that none of the illustrated experiments were in a regime of
photo-inhibition). Figures 1A–I, Supplementary Figure 1 thus
reveal a set of robust qualitative relationships between light
intensity, growth rate, and the elemental stoichiometry of
diverse phytoplankton under steady-state growth conditions
(summarized schematically in Figure 2).

The common patterns in Figure 1 reflect the fact that, despite
the diversity of species represented, there are shared physiological
underpinnings. The elemental stoichiometry of a cell depends
on the relative abundances of the macromolecules from which
it is composed and they, in turn, are linked to environment
and physiological state (Sterner and Elser, 2002). The C:N:P
stoichiometry of phytoplankton can be largely accounted
for by the sum of contributions from a handful of major
macromolecular components: protein, pigment, carbohydrate,
lipid, DNA, RNA, and storage molecules (Liefer et al., 2019) each
of which has a distinct elemental stoichiometry (see Table 1). For
example, proteins are relatively rich in nitrogen so increasing the
cellular allocation to protein typically raises cellular N:C (Sterner
and Elser, 2002; Klausmeier et al., 2004). The broad-brush
response of the macromolecular allocation of phytoplankton
to changes in environmental factors is common across broad
taxonomic groupings; for example in laboratory studies of
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FIGURE 3 | Schematic of the two different views of the model: CFM-Phyto. (A) Allocation of C, N, and P to key macromolecular pools. Orange outline, cell membrane

layers; green background is cytoplasm. Arrows represent elemental fluxes; yellow, C; red, N; blue, P. Colors in boxes represent elements that are influenced by each

molecule most. Yellow: C. Red: N. Blue: P. Black dotted lines indicate possible intramolecular associations of C and P. Orange outline, cell membrane layers; green

background, cytoplasm; Chl, chlorophyll; thyla, thylakoid; CH, carbohydrate. (B) Simple view of macromolecular allocation grouped into four different functions; Bio,

biosynthetic molecules; Photo, photosynthetic molecules; Other, other constant molecules; Store, storage molecules. Bio affects growth rates and Photo affects

photosynthesis rates. Essential in Other indicates essential lipids and carbohydrates. Black dashed arrows indicate positive influences. Red dashed arrow

represents light.

nitrogen starvation in four marine species (Liefer et al., 2019)
and with changing temperature and growth rate amongst a wide
variety of freshwater phytoplankton (Fanesi et al., 2017, 2019).

Models of phytoplankton physiology have sought to relate
growth rate (related to fitness) and elemental stoichiometry
(related to biogeochemical impacts) to external resource
availability (Riley, 1946; Monod, 1949), internal stores of
resources (Caperon, 1968; Droop, 1968), and the internal
allocation between functional pools and storage molecules
(Shuter, 1979; Geider et al., 1998; Kooijman, 2010). Recent
models also explicitly represent trade-offs associated with
allocation of the resource and proteome (Bonachela et al., 2013;
Burnap, 2015; Smith et al., 2016; Reimers et al., 2017; Chen
and Smith, 2018; Faizi et al., 2018; Jahn et al., 2018; Faizi
and Steuer, 2019). We provide a more comprehensive review
of published physiological models in Supplementary Text. The
model presented here also aims to explicitly connect growth
rate, elemental stoichiometry, and environmental conditions. It
is based on the allocation of resources between and within the
major macromolecular pools. We seek to frame the model in
terms of measurable (rather than abstracted) pools, to provide
interpretations of observed laboratory relationships, and to keep
the model efficient and simple for practical applications.

MODEL DESCRIPTION

In Figure 3A we sketch the broad-brush allocation of C, N, and
P to key macromolecular pools in the phytoplankton model

(Cell Flux Model of Phytoplankton: CFM-Phyto). Cells also
allocate resources within themacromolecular pools. For example,
lipids incorporate lipid membranes and lipids storage molecules
(Shifrin and Chisholm, 1981; Lengeler et al., 1999). The protein
pool includes enzymes devoted to hundreds of reactions which
may be coarse-grained into several major categories including
those related to light-harvesting and electron transport, and those
related to biosynthesis, growth, and reproduction (Figure 3A).
Recent proteomic analyses are quantifying broad-brush protein
allocation (McKew et al., 2013, 2015; Christie-Oleza et al., 2017;
Jahn et al., 2018; Zavřel et al., 2019) in ways which connect
to such coarse-grained models (Scott et al., 2010; Burnap,
2015; Reimers et al., 2017; Faizi et al., 2018; Faizi and Steuer,
2019). Recent studies have revealed that a large and highly
variable fraction of phytoplankton proteome is devoted to light-
harvesting and electron transport (Jahn et al., 2018; Zavřel et al.,
2019) and this investment increases as light intensity decreases.
Themacromolecular pools identified in Figure 3A are potentially
measurable (Scott et al., 2010; McKew et al., 2013, 2015; Jahn
et al., 2018; Fanesi et al., 2019; Zavřel et al., 2019), which is useful
for testing and calibrating. At the same time, it is useful to recast
these macromolecular pools into “functional units.” For example,
in low light, cyanobacteria allocate to increase light harvesting
proteins, but also pigments and lipids in the thylakoidmembrane.
We illustrate this re-organization in Figure 3B. Allocation-based
models of phytoplankton populations have abstracted the system
at this level (Shuter, 1979; see Supplementary Text), providing
mechanistic representations of trade-offs but which are more
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difficult to directly constrain from observations. The relationship
between Figures 3A,B indicates how the two perspectives are
compatible. The model we outline below is developed in terms
of the measurable pools indicated in Figure 3A, but interpreted
in terms of their aggregated, functional allocation as depicted
in Figure 3B.

In the following sections, we outline an idealized, allocation-
based model of phytoplankton physiology and growth rate under
a range of resource conditions (N, P, light). We show that
the observed relationships between Chl:C, N:C, P:C growth
rate and light (Figure 1, Supplementary Figure 1; summarized
schematically in Figure 2) can be quantitatively modeled by
understanding carbon allocation between and within the major
macromolecular pools. By considering the allocation of nitrogen,
we find an interpretation for the linear relationship of N:C
with growth rate and its dependence on light intensity. By
relating allocation of phosphorus to the rate of biosynthesis,
we model and interpret the non-linear relationship between
P:C and growth rate. The model is developed with particular
reference to Healey’s study of Synechococcus linearis, a freshwater
cyanobacterium (Healey, 1985; Figures 1C,F,i,l), which provides
a comprehensive set of constraints on elemental stoichiometry
at multiple growth rates and light intensities, under both
N and P limitation. In the experimental data, there are no
direct constraints on macromolecular allocation, so we infer the
latter through combination of observed elemental stoichiometry
and model structure and discuss the inferred macromolecular
allocation with reference to other published studies. While the
model has been developed by exploiting the comprehensive data
set of Healey (1985), the physiology of allocation at this level
is common across taxa and it can be fitted to data from other
phytoplankton, as we also illustrate.

MODELED MACROMOLECULAR
COMPOSITION OF THE CELL

Carbon Allocation
Laboratory studies have shown that almost all the cellular carbon
in phytoplankton is accounted for by the major macromolecular
pools: proteins (CPro), chlorophyll and other pigments (C

Chl
),

nucleic acids (CNuc), carbohydrates (C
Carb

), and lipids (CLip)
(Anderson, 1995; Liefer et al., 2019). The carbon quota of a
phytoplankton cell,CCell (mol C cell−1) is thus defined as the sum
of these components along with carbon associated with nitrogen
storage molecules, CNsto:

CCell = CPro + CNuc + CLip + CCarb + CChl + CNsto (1)

While chlorophyll is a relatively minor contribution in this
regard, it provides a constraint on the light harvesting capacity
of the cells and is routinely measured. Here we neglect the
contribution from intra-cellular, dissolved metabolites which
are typically minor [e.g., ∼4% of cellular dry weight in
E. Coli (Lengeler et al., 1999) and predicted to be only
∼1% as inorganic ions in Synechococcus elongatus (PCC 7942)
(Reimers et al., 2017)].

Elemental variations referenced to carbon (C:C, N:C, P:C)
present clearer relationships withµ and light than cellular quotas
(Caperon andMeyer, 1972a; Laws and Bannister, 1980; Elrifi and
Turpin, 1985), so we define carbon normalized macromolecular
composition by dividing both sides of Equation (1) by CCell:

1 = QPro
C + QNuc

C + Q
Lip
C + QCarb

C + QChl
C + QNsto

C (2)

where Qi
C are ratios with units of (mol C mol C−1). Proteins

account for a large fraction of the carbon and nitrogen in a
phytoplankton cell (Anderson, 1995; Geider and La Roche, 2002).

Recent quantitative proteomics studies revealed a coarse-
grained reorganization of the proteome of Synechocystis in
response to a changing light environment: an increase in
photon flux drove an increase in growth rate with an associated
downregulation of light harvesting machinery and upregulation
of translational machinery (McKew et al., 2013; Jahn et al., 2018;
Zavřel et al., 2019). This motivates the resolution of protein pools
related to biosynthesis, QPro−Bio

C , and photosynthesis, QPro−Pho
C ,

the latter including contributions from light absorbing antennas,
as well as proteins for photosystems and electron transport.
Proteomic studies have shown that light-harvesting proteins
contribute as much as 38% of the proteome of Synechococcus
sp. WH7803 in culture (Christie-Oleza et al., 2017) and can vary
considerably (Jahn et al., 2018; Zavřel et al., 2019). We seek to
exploit these observed proteomic trade-offs and so resolve the
allocation of protein into three functional pools:

QPro
C = QPro−Pho

C + QPro−Bio
C + QPro−Other

C (3)

We also resolve a fixed-size pool of “essential” proteins,
QPro−Other
C which is necessary to close the cellular budget and

notionally includes enzymes associated with essential metabolism
(Jahn et al., 2018; Zavřel et al., 2019) and structure.

Nucleic acids include contributions from DNA and RNA:

QNuc
C = QDNA

C + QRNA
C (4)

where the contribution from RNA is significantly more variable
and related to growth rate; discussed in more detail below.
Intracellular dissolved pools are not resolved since they generally
represent <5% of the total cellular mass (Lengeler et al., 1999).

The lipid pool can be separated into three components. A
large fraction of thylakoid membrane is lipid (∼30%) (Kirchhoff,

2014), and we resolve a phospholipid fraction of it, Q
Plip−Thy
C ,

which also contributes significantly to the cellular phosphorus

budget. Q
Lip−Sto
C is a flexible pool of storage molecules (Werner,

1977; Shifrin and Chisholm, 1981), and Q
Lip−Other
C represents

essential structural components of the cell membrane (Neidhardt
et al., 1990; Lengeler et al., 1999), which we consider as a non-
flexible pool. Hence, we resolve three lipid pools:

Q
Lip
C = Q

Plip−Thy
C + Q

Lip−Sto
C + Q

Lip−Other
C (5)

We represent the total cellular carbohydrate pool as the sum of
two contributions: a flexible component, QCarb−Sto

C , representing
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storage (Shifrin and Chisholm, 1981; Deschamps et al., 2008;
Dron et al., 2012) and the pool of essential carbohydrate
metabolites (Lengeler et al., 1999; Michal, 1999), along with
an “essential,” fixed carbohydrate contribution, QCarb−Other

C
(Harrison et al., 1990; Anderson, 1995; Biersmith and Benner,
1998):

QCarb
C = QCarb−Sto

C + QCarb−Other
C (6)

Nitrogen Allocation
Cellular nitrogen (NCell) is mostly associated with protein (NPro)
(Anderson, 1995; Liefer et al., 2019), along with contributions
from RNA (NRNA), DNA (NDNA), chlorophyll (NChl), and
nitrogen storage (NSto):

NCell = NPro + NRNA + NDNA + NChl + NSto (7)

Since N:C presents clearer relationships with µ and light than
NCell (Caperon and Meyer, 1972a; Laws and Bannister, 1980;
Elrifi and Turpin, 1985), we divide both sides of Equation (7)
by CCell:

N :C = QPro
N + QRNA

N + QDNA
N + QChl

N + QSto
N (8)

where Qi
N are ratios with units of (mol N mol C−1). Each of

the macromolecular pools has a distinct elemental stoichiometry
(see Table 1), and carbon-normalized nitrogen quotas (Qi

N , mol
N mol C−1) are constructed accordingly. For example, the total
nitrogen content of cellular protein, QPro

N = QPro
C YN :C

Pro , where
YN :C
Pro is the empirically-informed, average N:C of protein (see

Table 1).

Phosphorus Allocation
Nucleic acids (PRNA and PDNA), phospholipids in the
thylakoid membrane (PThy), and storage compounds including
polyphosphate (PSto) are observed to account for most of the
cellular phosphorus in phytoplankton and bacteria (Anderson,
1995; Lengeler et al., 1999; Table 1). Phosphorus may also be
distributed in non-photosynthetic phospholipids and associated
with other molecules (e.g., phosphorylation; Lengeler et al.,
1999) which are here assumed to be in a fixed pool, POther0. We
also account for the flexible part of non-Thylakoid P-lipid in PSto.
Here we resolve phosphorus allocation to these distinct pools:

PCell = PRNA + PDNA + PThy + PSto + POther0 (9)

We note that a full accounting for the phosphorus in
phytoplankton has not been experimentally characterized to date
(Moreno and Martiny, 2018; Liefer et al., 2019). As we have done
for CCell and NCell, we divide both sides of Equation (9) and
obtain P:C:

P :C = QRNA
P + QDNA

P + Q
Thy
P + QSto

P + QOther0
P (10)

whereQi
P are ratios with units of (mol Pmol C−1). As for N:C,Qi

P
is constructed according to the distinct elemental stoichiometry
of each macromolecule (Table 1).

Representing Relationships Between
Macromolecular Pools and Rates
In addition to these statements of mass conservation and
allocation, we must connect macromolecular allocation to rates.
We do this assuming four mathematical representations of which
three are well-supported by laboratory observations:

(i) The per chlorophyll gross rate of photosynthesis, vI (mol C
(mol C in Chl)−1 d−1) is a saturating function of irradiance
I (µmol m−2 s−1). Following established models rooted
in empirical observations and target theory (Cullen, 1990;
Geider et al., 1998), we model photosynthesis as a function
of light intensity:

vI(I) = vmax
I

(

1− e−AI I
)

(11)

Here vmax
I is the maximum photosynthesis rate per

chlorophyll and AI is a coefficient characterizing
the absorption cross-section and turnover time of the
photosynthetic unit (Cullen, 1990).

(ii) The components of the photosynthetic machinery, namely
chlorophyll, light-related proteins, and the thylakoid
phospholipids co-vary linearly. In other words, the
composition of the thylakoid apparatus remains constant
but its amount per cell is varied with acclimation. Hence,
the allocations to photosynthetic protein and thylakoid
phospholipids are assumed linearly proportional to cellular
chlorophyll content:

QPro−Pho
C = APho Q

Chl
C (12)

and

Q
Thy
P = AP :Chl

Pho QChl
C (13)

where APho and AP :Chl
Pho

are constants of proportionality. It
is observed that the size of thylakoid membranes increases
under low light in phytoplankton (Geider et al., 1996)
and the chloroplasts of plants (Lichtenthaler et al., 1982).
The thylakoid membranes are generally highly crowded
with proteins (Folea et al., 2008; Kirchhoff et al., 2008;
Kirchhoff, 2014) but how the fraction of proteins might
change with growth conditions is less clear. Thus, we choose
the simplest model and assume a fixed composition of the
light harvesting apparatus.

(iii) Investment in biosynthetic protein is proportional to
growth rate:

QPro−Bio
C = ABio µ (14)

This is consistent with the observed linear increase in
the investment in ribosomal proteins with growth rate in
multiple cultures of Synechocystis (Jahn et al., 2018; Zavřel
et al., 2019). Cultures of Scenedesmus sp. (Rhee, 1978),
also show a near-linear relationship between protein-based
nitrogen and growth rate under constant light. We note
that QPro−Bio

C represents not only ribosomal proteins but
includes those involved in synthesis of lipid and nucleic
acids, C metabolism, and cell division.
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(iv) The investment in RNA, QRNA
P , varies linearly with total

protein content and with growth rate. This relationship is
derived from the observation that the RNA:protein ratio
is linear with growth rate in phytoplankton (Nicklisch
and Steinberg, 2009; Liefer et al., 2019), as is the case for
heterotrophic bacteria (Bremer and Dennis, 1996; Scott
et al., 2010). Thus, we model investment in RNA as

QRNA
P = AP

RNA µQPro
C + QRNA

P,min (15)

where QRNA
P, min is the minimum RNA (mol P mol C−1),

which occurs at zero growth rate. This relationship says that
cells need more RNA to divide faster and/or to reproduce a
higher cellular protein quota.

Relationships in (i), (iii), and (iv) above are directly supported
by empirical data in the associated citations. The relationship
between components of the light harvesting and photosynthesis
machinery in (ii) is logical and simple, but unconfirmed by direct
empirical data to our knowledge.

Using the above statements of mass conservation (Equations
12, 13) and representations of key relationships between
fluxes and pools (Equations 14, 15), we model the observed
dependencies of cellular stoichiometry (i.e., Chl:C, N:C, and P:C)
on growth rate, light intensity and limiting factor, as well as
the variation of maximum growth rate, µI

max, under different
light intensities. In the following sections we outline the model,
making some approximations to the full equations presented
above, in order to provide an illustrative and instructive
discussion. A complete approach to solution of the model is
presented in the Methods section and the solutions presented
in all figures were generated using the un-approximated
forms. Final equations of the un-approximated model are also
summarized in tabular form in Supplementary Table 3. We
frame our discussion of the model and its application by seeking
to explain the trends identified in Figures 1, 2.

Model Representation and Analysis
Why Does Chl:C Vary Linearly With Growth Rate?
Consider the rate of change of the cellular carbon quota, which
is increased by photosynthesis, and reduced by division with
population growth rateµ (d−1) andmaintenance respiration rate
m (d−1) (e.g., Geider et al., 1998; Pahlow and Oschlies, 2009):

dCCell

dt
= vIQ

Chl
C CCell − (1+ E)CCell µ −m CCell (16)

where QCell
C is cellular chlorophyll to cellular carbon ratio [(mol

C in Chl) mol C−1], and vI is the per chlorophyll rate of
photosynthesis as defined in Equation (11). E is the respiratory
cost of synthesis (moles C respired per mole C synthesized). E is
estimated based on the production of biomass with stoichiometry
of C5H7O2N1P1/30 using nitrate as the nitrogen source with
energy transfer efficiency of 0.6 (Rittmann and McCarty, 2001).
The assumed elemental stoichiometry is based on the suggested
values of C:H:O:N (Rittmann and McCarty, 2001) and within
the range observed in the laboratory experiments (Healey, 1985).
Idealized models have typically assumed that E is proportional to

cellular nitrogen content, assuming associated costs with nitrate
reduction and protein synthesis (Laws and Wong, 1978; Geider
et al., 1998; Pahlow and Oschlies, 2009). However, many aspects
of metabolism consume ATP, including the synthesis of lipid
and carbohydrate that contain little nitrogen (Lengeler et al.,
1999; Michal, 1999) so here we assume the respiratory cost of
biosynthesis is proportional to cellular carbon (i.e., EC

Cell
in

Equation 16).
In steady-state, the solution of Equation (16) anticipates the

observed linear relationship between the cellular chlorophyll to
carbon ratio (QChl

C = Chl :C) and growth rate for any given
photon flux, I (a similar relationship as in Laws and Bannister,
1980):

QChl
C = AChl (I) µ + BChl (I) (17)

where AChl(I) = (1+ E) /vI(I) and BChl(I) = m/vI(I). The
predicted linear trend in Equation (17) is consistent with the data
in Figure 1. We fitted Equation (17) to the data of Healey (1985)
using theMetropolis-Hastings procedure (Metropolis et al., 1953;
Hastings, 1970; Omta et al., 2017), a Markov Chain Monte Carlo
method which is described in detail inMethods. The values of the
parametersm, vmax

I , and AI were optimized in the model-data fit,
with single values for vmax

I and AI for all light levels.
Equation (17), indicates that the cell must maintain pigments

to sustain maintenance respiration even at a net zero growth
rate (y-intercept). It predicts a linear relationship between Chl:C
and µ, as well as an increase in both the slope and intercept
of the Chl:C ratio with decreasing irradiance (Figure 4). The
linear trend reflects the increased investment in light-harvesting
machinery to maintain the same growth rate or maintenance
costs at different light levels. The form of the model is also
consistent with data from cultures of other phytoplankton
(Pavlova lutheri and Skeletonema costatum; Sakshaug and
Andersen, 1989; Chalup and Laws, 1990), as illustrated by model
simulations in Supplementary Figure 2. Hence the model is

FIGURE 4 | Model-data comparison of chlorophyll per C of Synechococcus

linearis for various growth rates and light intensities. Curves: model solution

(Equation 17). Points: data (Healey, 1985; circles, N limited; diamonds, P

limited). Dotted line represents µI
max at various light intensities; high µI

max for

higher light intensity. µ in the x axis represents growth rates (d−1). Legend

values are light intensities (µmol m−2 s−1).
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not specific to a single organism, though each species requires
different parameter values, representing inter-species variations
in traits. We discuss the plausibility of inferred parameter values
at the end of the Results section (see the subsection “Plausibility
of the predicted macromolecular allocation”). We note that
Equation (17) does not predict µI

max, which requires additional
constraints brought to bear through N and/or P limitation when
the chlorophyll, C, N, and P conservation equations are coupled
(see the subsection “What is themaximum growth rate for a given
light intensity, µI

max?”).

Why Does N:C Vary Linearly With Growth Rate, and

Why Does It Change With Photon Flux?
Consider the case of nitrogen limitation, when allocation to
nitrogen storage is small. In this case, to a first approximation, the
cellular quota of nitrogen is dominated by that of protein (Liefer
et al., 2019).

Nucleic acids account for <7% of cellular dry weight in
phytoplankton (Parsons et al., 1984; Anderson, 1995), small
relative to that in heterotrophic bacteria. Thus, for explanatory
purposes we will use an approximate form of Equation (8)
that considers only the contribution from protein (a full, un-
approximated solution is provided in the Methods section and
is used in the figures of model solutions). In the case where most
nitrogen is associated with protein, Equation (8) becomes:

N :C ≈ YN :C
Pro

(

QPro−Pho
C + QPro−Bio

C + QPro−Other
C

)

(18)

Here nitrogen and carbon are linked by the constant elemental
ratio for protein, YN :C

Pro (Table 1). Other macromolecules have

different elemental stoichiometries. QPro−Other
C represents the

fixed, minimum complement of protein essential for the cell. The
cellular investment in the photosynthetic protein is assumed to
vary linearly with chlorophyll, and the investment in biosynthetic
protein pools is assumed to vary linearly with growth rate
using Equations (12, 14), respectively, as discussed above (in

“Representing relationships between macromolecular pools and
rates”). Combining Equations (12, 14, 17, 18) leads to an
expression that describes the relationship between N:C of the
population and growth rate under N-limiting conditions:

N :C ≈ YN :C
Pro

((

AChl(I)APho + ABio

)

µ

+

(

BChl (I)APho + QPro−Other
C

))

(19)

Equation (19) predicts a linear relationship between N:C and
growth rate which has decreasing slope and intercept as with
photon flux, qualitatively consistent with the observed data in
Figures 1D–F, 2B, 5A, Supplementary Figures 1, 2. Extending
the model to include N storage allows predictions of N:C under
P-limitation (Supplementary Figure 4) which is discussed later.

The model suggests that N:C increases with growth rate
at a fixed light intensity because there is a linear increase
in the investment in both biosynthetic protein (Equation 14)
and photosynthetic protein, latter being the associated with the
linear increase in Chl:C with growth rate at fixed light intensity
(Equations 12, 17). Likewise, a reduction of light intensity at
a fixed growth rate also demands a higher investment in both
chlorophyll and photosynthetic proteins, hence the slope of N:C
increases with decreasing light intensity.

Equation (19) can be fit to the data on S. linearis also using
the Metropolis-Hastings procedure (see Methods). The values
of parameters m, vmax

I , and AI (and thus AChl and BChl) were
solved by fitting Equation (17) above so the N:C vs. µ data
provide constraints onAPho andABio (the parameters which scale
photosynthetic protein to chlorophyll and biosynthetic protein
to growth rate) as well as the fixed pool of “essential” protein,
QPro−Other
C . In Figure 5A we illustrate fitted solutions of the

of the un-approximated version of Equation (19) (where the
minor contribution to N:C from RNA and chlorophyll are also
resolved). Similar simulations of Pavlova lutheri and Skeletonema
costatum are shown in Supplementary Figure 2. The ability of

FIGURE 5 | Model-data comparison of N:C and model prediction of macromolecular allocation of Synechococcus linearis. (A) N:C under N limitation under different

light intensities; light intensities (µmol m−2 s−1) are in the legend. Curves are model results and points are data (Healey, 1985). Dotted lines represent µI
max at various

light intensities; high µI
max for higher light intensity. (B) Macromolecular allocation in N, normalized by cellular C under the light intensity of 144 (µmol m−2 s−1). Black

points are data for total values under the same light intensity (Healey, 1985). See the legend for color definitions: Bio, biosynthetic protein + RNA; Photo, chlorophyll +

photosynthetic protein; Other, other molecules. Bio and Photo is dominated by biosynthetic protein and photosynthetic protein, respectively. Detailed macromolecule

allocation in Supplementary Figure 3 and N:C under P limitation in Supplementary Figure 4.
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FIGURE 6 | Model-data comparison of P:C and model prediction of macromolecular allocation in P for Synechococcus linearis. (A) P:C under P limitation under

different light intensities; light intensities (µmol m−2 s−1) are in the legend. Curves are model results and points are data (Healey, 1985). Dotted line represents P:C at

µI
max for various light intensities; high µI

max for higher light intensity. (B) Macromolecular allocation in P, normalized by cellular C under the light intensity of 62 (µmol

m−2 s−1). Black points are data for total values under the same light intensity (Healey, 1985). See the legend for color definitions: P thyla, P in thylakoid membranes;

Other: other molecules. Detailed macromolecule allocation in Supplementary Figure 3 and P:C under N limitation in Supplementary Figure 4.

the model to fit the data suggests that the model captures
major processes.

The model result shows a similar relative increase
in the investment in photosynthetic and biosynthetic
protein at moderate to high light levels (Figure 5B,
Supplementary Figures 2–4). At lower photon fluxes N:C
increases more rapidly (Figure 5A) because there is a much
higher demand for investment in photosynthetic machinery to
achieve the same growth rate (Supplementary Figures 2–4).
The model suggests that N:C increases linearly with growth
rate at fixed light because investment in both biosynthetic
and photosynthetic protein must increase linearly and protein
investment dominates the N:C ratio. The un-approximated
model (Equation 33 in Methods) suggests a non-linearity due to
investment in RNA, but its overall contribution to the cellular
nitrogen budget means that the non-linearity is very small and
Equation (19) is a good approximation.

Why Does P:C Increase Non-linearly With Growth

Rate?
A significant fraction of cellular phosphorus is present in
nucleic acids, lipid membranes, and storage compounds such as
polyphosphate. Consider the case for P-limited culture in which
luxury storage is small and the cellular quota of phosphorus is
approximated by the sum of the three pools:

P :C ≈ Q
Thy
P + QRNA

P + QOther
P (20)

whereQOther
P groups relatively stable pools of P:QOther

P = QDNA
P +

QOther0
P , required even in the absence of net growth.
Here we invoke two of the fundamental relationships

discussed earlier: the investment in thylakoid phospholipid,Q
Thy
P ,

is assumed linearly proportional to chlorophyll (Equation 13)
and the investment in RNA is modeled as linearly proportional
to total protein content and growth rate (Equation 15). (These
models, and the evidence for them, are discussed in the section
entitled “Representing relationships between macromolecular

pools and rates”). Substituting Equations (13, 15, 3, 12, 14, 17) (in
this order) into Equation (20), yielding a quadratic relationship
between cellular P:C with growth rate:

P :C ≈ aµ2
+ bµ + c (21)

where

a = AP
RNAAPhoAChl(I)+ AP

RNAABio

b = AP :Chl
Pho AChl(I)+ APhoA

P
RNABChl(I)+ AP

RNAQ
Pro−Other
C

c = AP :Chl
Pho BChl(I)+ QRNA

P,min + QOther
P

Equation (21) predicts a quadratic relationship of P:C with
growth rate, µ, is qualitatively consistent with the non-linear
relationship in the P-limited cultures of S. linearis (Figure 1H),
marine Synechococcus (WH8102) and Selenastrum minutum
(Figure 1H). The qualitative fit enabled the optimization of
parameters to match the S. linearis data (using the Metropolis
Hastings algorithm, seeMethods) and the resulting fit is shown in
Figure 6A. Using the optimized parameters, themodel provides a
prediction of the allocation of phosphorus, shown as a function of

growth rate at a single light intensity in Figure 6B.Q
Thy
P increases

linearly with growth rate for a fixed photon flux (Figure 6B) in
concert with QChl

C and the photosynthetic proteins (Figures 4,
5A). The inference is that the non-linear relationship of P:C with
growth rate (Figure 6B) is due to the investment in phosphorus-
rich RNA (Figure 6B) which increases in proportion to both the
growth rate and the cellular quota of protein, which also increases
with growth rate due to investment in biosynthesis and light
harvesting (Figure 5B). A similar non-linear relationship of P:C
vs. µ was shown to be consistent in the culture of Selenastrum
minutum (Elrifi and Turpin, 1985; Ågren, 2004).

What Is the Maximum Growth Rate for a Given Light

Intensity, µ
I
max?

Expanding the cellular carbon quota in terms of the
macromolecular components as described by Equations (2)–(6),
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FIGURE 7 | Simulated carbon allocation and µI
max of Synechococcus linearis under N limitation. The light intensities are (A) 12 and (B) 62 (µmol m−2 s−1). See (A) for

color definitions: C store, C storage; Bio, Biosynthetic protein + RNA; Photo, Chlorophyll + Photosynthetic protein + P-lipid in thylakoid membranes; Other, other

molecules with constant cellular investment. Bio and Photo are dominated by biosynthetic and photosynthetic proteins, respectively. C allocation and µI
max of

Synechococcus linearis under P limitation in Supplementary Figure 5. C allocations of other species (Pavlova lutheri and Skeletonema costatum) in

Supplementary Figure 6.

and accounting for only the most quantitatively influential
molecules in order to provide an analytic solution (the full,
un-approximated model is described in Methods), we describe
carbon allocation in the cell as

1 ≈ QPro
C + QCarb−Other

C + Q
Lip−Other
C + QCarb−Sto

C + Q
Lip−Sto
C

(22)

Using Equation (3), we can further resolve the proteomic
contributions into photosynthetic, biosynthetic, structural/other:

1 ≈ QPro−Pho
C + QPro−Bio

C + QOther
C + QCsto

C (23)

where QOther
C ≈ QPro−Other

C + QCarb−Other
C + Q

Lip−Other
C and

QCsto
C = QCarb−Sto

C + Q
Lip−Sto
C . Using Equations (12, 14, 17), we

can solve Equation (23) for the population growth rate, µ;

µ ≈

(

1− QOther
C − QCsto

C

)

vI(I)− A
Pho

m

ABiovI(I)+ A
Pho (1+ E)

(24)

This equation indicates that as the investment in carbon storage
QSto
C decreases, growth rate µ increases.
This inference is logical: the maximum growth rate for a given

light intensity, µI
max, should occur when as much biomass can be

allocated to growth related macromolecules as possible; in other
words when carbon storage is minimal and QCsto

C approaches 0.
In Figure 7 we illustrate this in terms of carbon allocation as a
function of growth rate in model solutions where the parameters
were fitted for S. linearis. Solutions are shown for two light levels:
at low light, the rapidly increasing allocation to photosynthetic
machinery as a function of growth rate means that cellular
allocation to storage becomes small (and allocation to functional
machinery becomes large) at quite a low growth rate. In contrast,
at high light, the lower demand for photosynthetic apparatus
allows a greater investment in biosynthesis and higher maximum
growth rate (Figure 7, Supplementary Figures 5A, 6).

The limit of the model, which occurs when QCsto
C approaches

zero in Equation (24), reproduces the observed µI
max–

light relation of S. linearis and two marine phytoplankton
(Pavlova lutheri and Skeletonema costatum; Figure 8,
Supplementary Figure 5B). The µI

max curve ultimately saturates
because photosynthesis per chlorophyll vI saturates. When
µI
max increases, due to an increase in light, there is a decreased

investment in light-harvesting proteins which is traded off
against increased biosynthetic proteins and a higher maximum
growth rate. This is qualitatively consistent with recent proteomic
studies (McKew et al., 2013; Jahn et al., 2018; Zavřel et al., 2019).

Differences Between µ
I
max and vI

Growth rates and photosynthesis are often used interchangeably
and the relationships for photosynthesis and light have often
been applied to growth rates in ecosystem models (Moore et al.,
2004; Buitenhuis et al., 2013; Dutkiewicz et al., 2015; Coles
et al., 2017). However, photosynthesis and growth (biosynthesis)
are metabolically distinct and need not be equivalent. The two
rates are qualitatively similar because both share a saturating
dependence on light (Figure 8). Growth rate has a non-zero
intercept on the light axis, which represents the minimum
light intensity required for cellular maintenance. Notably, µI

max

approaches the saturated value at a lower light intensity than
vI . This can be seen in Figure 8 where the model is fit to data
sets for S. linearis (Healey, 1985) and two photosynthetic algae
(Sakshaug and Andersen, 1989; Chalup and Laws, 1990). As
photon flux decreases, investment in photosynthetic apparatus
increases rapidly (Figure 7, Supplementary Figures 5A, 6) at the
expense of biosynthetic machinery and such that µI

max saturates
at a lower light intensity than vI . This highlights the high cost of
the photosynthetic apparatus.

What Does N:P Depend Upon?
The N:P ratio of plankton has been a topic of interest going
back to Redfield (1934, 1958). Could the framework presented
above be used to predict and interpret the N:P of primary
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FIGURE 8 | Simulated light dependence of maximum growth rate (µI
max ) and photosynthesis rate (vI ) under N limitation for three different phytoplankton.

(A) Synechococcus linearis, (B) Pavlova lutheri, and (C) Skeletonema costatum. Modeled µI
max is compared to data (Healey, 1985; Sakshaug and Andersen, 1989;

Chalup and Laws, 1990). There is one data point at the light intensity of 1,203 (µmol m−2 s−1) for Skeletonema costatum not included or considered since the cells

were likely photodamaged under such high light intensity, negatively altering µI
max . Light dependence of µI

max of Synechococcus linearis under P limitation in

Supplementary Figure 5, where µI
max is almost identical as (A), similarly reproducing the data (Healey, 1985).

FIGURE 9 | Model-data comparison of N:P. (A) Under N limitation. (B) Under P limitation. Curves: model. Points: data of Synechococcus linearis (Healey, 1985).

Dotted black line indicates values at µI
max for various light intensities. Numbers in the legend show light intensities (µmol m−2 s−1).

producers? The answer is not immediately clear: Equations (19,
21) represent the N:C ratio under N limitation and P:C under P
limitation. Simply dividing the two does not provide an accurate
prediction of N:P because, typically, one resource is limiting
and the other in excess in the environment, and non-limiting
resources accumulate in intracellular storage pools.

Using the comprehensive data set of Healey (1985), it is
possible to quantify the storage of N and P when each is the
non-limiting resource. For stoichiometric purposes, we assume
that P-storage is in the form of polyphosphate which has no
carbon content and that N-storage is in the form of cyanophycin
(Table 1). The storage capacity of the cells cannot be predicted
a priori so the model allows cells to take up and store the
non-limiting resource (N or P) until a maximum storage is
reached, constrained by the observed elemental stoichiometry.
Thus, we introduce two new, empirically constrained parameters;
the maximum storage capacities for N and P (see the subsection
“Evaluating cellular C concentration and N and P storage” in
Methods for details). Using this approach, we can model N:P
under both N and P limitation (illustrated in Figure 9), as
well as N:C under P limitation and P:C under N limitation

(Supplementary Figure 4). In Figure 9, model parameter values
are constrained (as discussed above) with data for S. linearis,
including the maximum storage capacities.

The model qualitatively captures the variations in N:P with
growth rate under both N and P limitation. Under N-limitation,
N:P (Figure 9A) has a linearly increasing trend with growth rate,
following N:C (Figure 5) because of the increasing investment
in N-rich proteins with growth rate. In this case P:C is
relatively constant regulated by the contribution of P storage
(Supplementary Figure 4B). Under P-limitation, N:P declines
rapidly with growth rate (Figure 9B) because the increase in
RNA with growth rate is quadratic (Figure 6), while that of
protein is linear (Supplementary Figure 4A), so the investment
in P increases more rapidly. N storage is a relatively moderate
contribution to the cellular N quota (Supplementary Figure 4A).
The model with the N and P storages captures and interprets
the trends of N:P observed in the laboratory study by simply
allowing storage up to an empirically informed limit. Further
basic study of the dynamics of, and limits to, nutrient storage
pools would be necessary to inform a model rooted in
first principles.
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FIGURE 10 | Model-data comparison of macromolecular allocation. (A) Modeled C allocation of Synechococcus linearis at the light intensity of 50 µmol m−2 s−1

under N limitation. Carb.: carbohydrate. (B) Measured C allocation of Prochlorococcus marinus (PCC 9511) at the light intensity of ∼50 µmol m−2 s−1 under N

limitation (Felcmanová et al., 2017). C allocation (%) for protein and carbohydrate (Carb.) are on the left axis and that for lipid is on the right axis. Dotted lines are linear

interpolation and error bars are the standard deviation. (C) Modeled protein allocation of Synechococcus linearis at µI
max , nutrient replete growth rate. Here changes in

µI
max are caused by changes in light intensities. Photo, photosynthetic proteins; Bio, biosynthetic proteins; Other, other proteins. (D) Observed protein allocation in

Synechocystis sp. (PCC 6803) (Jahn et al., 2018). LHC, light-harvesting complex; RIB, ribosome and protein production; CBM, proteins for C uptake, fixation and

metabolism. Compare the general trends in Photo with LHC and Bio + Other with RIB and CBM.

Plausibility of the Predicted Macromolecular

Allocation
We have used laboratory data on elemental stoichiometry to
constrain a model which resolves macromolecular allocation.
As such, the model makes testable predictions. Our estimated
photosynthetic parameters (vmax

I and AI) sit within the range
of observation (Platt et al., 1980; Cullen, 1990; Moore and
Chisholm, 1999) for the given range of chlorophyll vs. µ

(Figure 4, Supplementary Figure 2). While there are not direct
macromolecular or proteomic data available for the particular
laboratory studies which we simulated, some recent culture
studies have resolved macromolecular and proteomic allocation.
The predictions of changes in macromolecular allocation (e.g.,
Proteins, Lipids+ Carbohydrate and RNA) with growth rate
and light are qualitatively similar to those observed in a recent
laboratory studies (Liefer et al., 2019). Also, in Figures 10A,B,
we compare the inferred allocation to protein, carbohydrates
and lipids as a function of growth rate for S. linearis
with measurements of these bulk macromolecular pools in
chemostat cultures of Prochlorococcus marinus (PCC 9511)
(Felcmanová et al., 2017). The model qualitatively captures
the observed trends in allocation and the general magnitude
of the observed pools, though the specific values differ due
to either inter-species differences or model limitations. In
Figures 10C,D, we also compare the predictions for broad-scale

protein allocation with light-dependent growth rate (i.e.,
maximum growth rate for a given light intensity) from
the constrained Synechococcus model, and direct observations
of similar proteomic categories from turbidostat cultures of
Synechocystis (Jahn et al., 2018). Again, there is a qualitative
agreement between the predicted trends: as the light-limited
growth rate increases, the investment in light-harvesting proteins
declines while the investment in biosynthesis increases. The
inferred allocation to photosynthetic proteins tends to be rather
high relative to the direct proteomic study, likely reflecting inter-
species differences. Direct laboratory studies where elemental
stoichiometry, macromolecular composition, and proteomics are
all concurrently measured are possible and would allow a more
strenuous test and calibration of such models.

DISCUSSION

A Model of the Elemental Stoichiometry of
Phytoplankton in Relation to Light
Intensity, Growth Rate, and Limiting
Resource
The model presented above provides a conceptually simple,
yet quantitative description of the relationship between the
elemental stoichiometry of phytoplankton, their growth
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FIGURE 11 | How macromolecular allocation of phytoplankton responds to light and nutrient, constraining the growth rate based on CFM-Phyto. Bio, biosynthetic

molecules; Photo, photosynthetic molecules; Other, other constant molecules; Store, storage molecules. Red dashed arrows represent light intensities. Here the

growth rate µ is proportional to the ratio of Bio. When light and nutrient are sufficient, there is a high ratio of Bio with high µI
max (the maximum viable growth rate at a

certain light intensity) (A). Light limitation increases the fraction of Photo limiting that of Bio leading to lower µI
max (B). Nutrient limitation leads to a smaller allocation to

photosynthetic and growth-related molecules (Photo, Bio) leading to a growth rate µ lower than µI
max (C). Under both light and nutrient limitation, these effects are

combined, further limiting the ratio of Bio, thus limiting the growth rate (D). C storage lowers N:C of phytoplankton.

rate, resource availability, and macromolecular allocation
(Figure 11). It is based on a straightforward accounting of the
allocation between and within major pools of macromolecules,
along with four representations of the relationships between
pools and fluxes. These are (i) a saturating relationship
between light intensity and photosynthetic efficiency, (ii)
a constant ratio of chlorophyll to other light harvesting
and photosynthesis apparatus, (iii) a linear relationship
between allocation of biosynthetic protein and growth rate,
and (iv) a linear relationship between RNA:protein and
growth rate. Representations (i), (iii), and (iv) are empirically
driven, while (ii) is hypothetical, though simple and logical.
The ability of the model to fit laboratory data for diverse
phytoplankton taxa indicates that the model framework is
generally applicable.

The framework of the model is conceptually simple and
steady-state solutions can be solved algebraically and parameters
optimized to match empirical data. We have used it to model and
interpret laboratory data relating the elemental stoichiometry
of S. linearis to growth rate and light intensity under both
N- and P-limiting conditions. The stoichiometric data provide

indirect constraint on macromolecular allocation, which imply
a common set of allocation strategies amongst phytoplankton.
Below, we discuss some of the limitations and simplifications of
the approach.

By explicitly resolving the macromolecular allocation, the
model captures and provides a simple interpretation for the
contrast between cellular nitrogen quota (or N:C ratio) which
varies linearly with growth rate under N-limitation, and the
phosphorus quota (or P:C) which varies non-linearly with
growth rate under P-limitation. At fixed light intensity and
under nitrogen limitation, cellular protein increases linearly
with growth rate (Felcmanová et al., 2017), driving the linear
trend in N:C vs. µ captured in Equation (19). In contrasts,
the observed linear relationship between RNA:protein (Nicklisch
and Steinberg, 2009) combines with the increase in protein with
growth rate (Rhee et al., 1981; Liefer et al., 2019) to drive the non-
linear relationship of P:C with growth rate, captured in Equation
(21). This contrast was also captured in the more abstract model
of Ågren (2004). The explicit macromolecular resolution also
allows the model to capture the observed decrease of N:P with
growth rate under P limitation (Perry, 1976; Elrifi and Turpin,
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1985; Healey, 1985; Garcia et al., 2016; Figure 9B) which is driven
by the increasing RNA/protein ratio with µ (Bremer and Dennis,
1996; Nicklisch and Steinberg, 2009; Scott et al., 2010).

We suggest that the explicit resolution of macromolecular
reservoirs provides an important advantage over more
idealized frameworks. It allows the exploitation of key observed
relationships (e.g., RNA:protein vs. µ) and it explicitly couples
the dynamics of N, P and C providing a comprehensive
framework (c.f. N:C only in the case of Geider et al., 1998,
for example). The more idealized internal-stores model
(Droop, 1968) treats all resources alike and implicitly does
not capture this contrast in N:C and P:C variations with µ,
unless significantly different parameters are applied between
N:C and P:C. The chain model (Pahlow and Oschlies, 2009)
differentiates the dynamics of N and P, but still remains
abstracted from the macromolecular foundations. It predicts
non-linear relationships for both N:C and P:C with µ, which also
leads to compensation and predictions of a rather constant N:P
under P limitation (Pahlow and Oschlies, 2009), whereas as the
data generally shows decreasing N:P with µ (Perry, 1976; Elrifi
and Turpin, 1985; Healey, 1985; Garcia et al., 2016) as our model
predicts (Figure 9B).

We suggest that the explicit macromolecular representation
also has some interpretive and predictive advantages. It has the
potential to be directly compared with direct proteomic and
macromolecular observations (McKew et al., 2013; Felcmanová
et al., 2017; Jahn et al., 2018; Liefer et al., 2019; Zavřel et al.,
2019), which will leverage new data sets and technologies more
directly. For example, the calibrated model for Synechoccocus
linearis presented above indicates a strong relationship between
investment in photosystem proteins and light intensity. Under
fixed light intensity, both biosynthetic and photosynthetic
proteins increase with growth rate. However, under light co-
limitation, when varying the growth rate (i.e.,µI

max), by changing
light intensity, the model predicts a reduced requirement for
photo-proteins with increasing light accompanied by an increase
in biosynthetic protein, consistent with data from proteomic
studies (McKew et al., 2013; Jahn et al., 2018; Zavřel et al.,
2019). This mechanism stabilizes the amount of total protein and
explains relatively stable N:C with simultaneously varied light
and growth rate (Geider et al., 1985).

The model illustrates the relationship between the maximum
growth rate at a given light intensity and storage. In order to
increase the growth rate, cells invest in protein at the expense
of storage compounds. The maximum growth rate for a given
light intensity occurs when storage is minimized and functional
allocation is maximized. In some circumstances, maximizing
growth rate will be the best measure of fitness, but in others
storage is likely to be advantageous. For example, if we consider
phytoplankton-bloom conditions, maximizing growth rate may
be more important since in such situations, phytoplankton with
faster growth can outcompete others and dominate the region
(Dutkiewicz et al., 2009). However, in environments where the
nutrient level rapidly fluctuates (e.g., with time scale of days),
phytoplankton with high storage capacity might be advantageous
by being able to grow under nutrient depletion with stored

nutrients before another pulse of high nutrient occurs (Tozzi
et al., 2004; Grover, 2009, 2011).

Generality of the Model
While we have focused our development and discussion around
the data set of Healey (1985) for S. linearis, the framework
is sufficiently coarse-grained and rooted in basic, common
physiology that it is qualitatively compatible with data from
numerous phytoplankton, spanning a wide range of cell size
and taxonomic groups (Figure 1). We have fit the same
framework to several of these data sets (e.g., Figures 4–6, 8,
Supplementary Figure 2; Healey, 1985; Sakshaug and Andersen,
1989; Chalup and Laws, 1990). While different parameter values
are required, reflecting different allocation strategies or traits, the
basic framework is general, predicting the common trends from
the laboratory studies (Figures 1, 2, Supplementary Figure 1).
However, the allocation strategies (and parameter values) differ
between species. The use of different nitrogen substrates (e.g.,
nitrate vs. ammonium) could be represented by changes to the
respiratory cost of synthesis, E (Rittmann and McCarty, 2001).

Model Simplifications and Limitations
The model presented here represents an attempt to provide a
minimal, transparent and biologically meaningful framework
which relates allocation between and within the major
macromolecular pools to elemental ratios and growth rates
under diverse environmental conditions. It is framed so that
the internal allocation is, in principle, in terms of measurable
quantities (though not all were available in the data sets studied
here). These measurable pools can be mapped into categories
which are not directly measurable, but which are grouped by
function (Figures 3B, 11), in the spirit of allocation models
(Shuter, 1979; Scott et al., 2010). This functional mapping
enables simple interpretations of the relationships of interest.

As with any quantitative model, there is a trade-off between
realism, data constraints and insight, and we have not resolved
a number of potentially important factors. We have assumed a
fixed composition of thylakoid membranes which may vary in
reality. In particular, the fraction of light harvesting machinery
might change relative to other components, which would alter
the chlorophyll to protein or lipid ratio. The model could
be improved with an additional layer of detail, separating
the light harvesting and other components. To constrain the
model, combined measurements of chlorophyll and proteomics
(e.g., McKew et al., 2013, 2015; Zavřel et al., 2019) as well as
thylakoid lipid would be useful. Photo-inhibition has not been
addressed here and presumably would demand the resolution of
photoprotective proteins (Geider et al., 2009). Healey’s (1985)
data set focused on lower photon fluxes so this case was
not addressed here. We have also constrained a single set of
photosynthesis-vs.-light parameters to simulate experiments at
all light levels, though we are aware that acclimation would likely
modify them, however we found no significant improvement
in model fits when allowing this extra degree of freedom. We
have not addressed the potential for variations in allocation
and elemental ratios as a function of temperature, though it
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is known that there are indeed sensitivities (Thrane et al.,
2017) and this could be an interesting and important extension
to the study. We have also not explicitly resolved allocation
to nutrient uptake transporters, which varies with nutrient
concentration (McKew et al., 2015; Lin et al., 2016). However,
in overall elemental stoichiometry, the influence appears limited
since proteomic studies suggest that allocation to the nutrient
transporter proteins is modest (e.g., on the order of 10−1%
of total spectral counts in a recent proteomic study; McKew
et al., 2015) relative to investments in light harvesting and
biosynthesis (McKew et al., 2013; Jahn et al., 2018; Zavřel
et al., 2019). Also, investment in transporters increases under
low nutrients (McKew et al., 2015), so if the transporter
is a dominant part of protein, it would lead to high N:C
at low growth rate, but the data show otherwise (Figure 1,
Supplementary Figure 1). Hence, we suggest that investment
in transporters is a next-order effect which would have a
small impact for elemental stoichiometry in the phytoplankton
addressed here. Resolution of transporter allocation would also
introduce further unconstrained parameters. Other studies have
placed more emphasis on the allocation to transporters showing
it to be an important factor in expressing phenotypic diversity
and acclimation to different nutrient and light regimes (Smith
et al., 2009, 2016; Bonachela et al., 2013; Garcia et al., 2016; Chen
et al., 2019).

We have also neglected the substitution of non-P-lipids for
P-lipids under low P concentrations (Van Mooy et al., 2009),
which has a significant impact on the P budget of the cell, and
focused on the major macro-nutrient elements (C, N, P) though
trace metal allocation is also of significance (Ho et al., 2003; Saito
et al., 2011). The allocation of trace metals to specific protein
groups would provide a way to link them in such a model. As
discussed above, storage of non-limiting elements is important
for consideration of the N:P ratio and the applicability of the
Growth Rate Hypothesis (specifically under N-limitation). The
limits to storage and maximum quotas are not clearly defined
at present and worthy of further work. Such simplifications
and omissions could ultimately be addressed with coordinated
laboratory and modeling studies.

Perspective and Outlook
Despite the limitations of the study listed above, we have
shown that a conceptually simple model rooted in mass
balance and a few basic, empirically sound representations can
capture the relationships between growth rate and elemental
stoichiometry under a variety of environmental conditions
accurately. We suggest that the explicit representation of
measurable macromolecular pools allows an advantage over
more abstracted forms rooted in elemental quotas. It allows the
exploitation of key physiological observations such as the changes
in RNA:protein with µ, as well as testable predictions regarding
macromolecular allocation. Parameters controlling rates and
allocation can be calibrated with laboratory data, either inverted
from stoichiometric data as we have done here, or directly
measured (McKew et al., 2013, 2015; Felcmanová et al., 2017;
Jahn et al., 2018; Zavřel et al., 2019) though this is not yet
routinely the case.

Physiological models of “intermediate complexity” such as
this have a role to play in ecological and biogeochemical
studies. While Monod (1949) and Droop (1968) kinetics provide
much simpler frameworks which have fewer parameters and are
mathematically convenient, they lack some important biological
detail, especially if one wishes to relate elemental stoichiometry
to growth rate and environment. The approach presented here,
while still idealized, is economical and, with some modifications,
could be efficiently employed in biogeochemical and ecological
simulations. While modern Flux Balance Analysis approaches
now allow genome-scale representations of microbial physiology
(Orth et al., 2010) they are typically subject to an imposed
macromolecular composition (the “biomass function”) which is
generally empirically determined and invariant and so do not
address the elemental stoichiometry of the cell prognostically.
Laboratory studies reveal visible changes in biomass function
(i.e., the relative allocation to different macromolecules) over
reasonable ranges of environmental conditions (Rhee, 1978;
McKew et al., 2013, 2015; Felcmanová et al., 2017; Jahn et al.,
2018; Liefer et al., 2019; Zavřel et al., 2019). Thus, models
of the type presented here complement, and could potentially
couple to, more detailed genome-scale simulations. We suggest
that integrated laboratory and modeling studies in which a
comprehensive set of physiological measurements (i.e., elemental
stoichiometry, proteome, transcriptome) and a hierarchy of
models (coarse-grained and genome-scale) would be valuable.

METHODS

Full Model Description and Parameter
Estimation
Here we provide a complete version of the model: CFM-Phyto
(Figure 3). We first detail the organization of macromolecular
components into four functional classes (Photo, Bio, Store, and
Other). Then we discuss how maximum growth rate, µI

max,
can be predicted from macromolecular allocation. Then we
provide details on how storage, population density, elemental
stoichiometry and carbon biomass density are evaluated. Finally,
we describe how model parameters are estimated.

Re-framing the Model According to
Functional Allocation
Equations (2)–(6) lead to the following accounting for total
cellular carbon in various macromolecular pools:

1 = QPro−Pho
C + QPro−Bio

C + QPro−Other
C + QRNA

C + QDNA
C + QChl

C

+Q
Plip−Thy
C + QNsto

C + QCsto
C + QOther0

C (25)

where QOther0
C = QCarb−Other

C + Q
Lip−Other
C . The cellular pools,

defined in the main text, are described in carbon units, relative to
total cellular carbon (mol C mol−1 C). The cellular components
can be re-arranged and gathered into four functional classes, as
depicted in Figure 3B:

1 = QPho
C + QBio

C + QSto
C + QOther

C (26)
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where

QPho
C = QPro−Pho

C + QChl
C + Q

Plip−Thy
C

QBio
C = QPro−Bio

C + QRNA
C

QSto
C = QNsto

C + QCsto
C

QOther
C = QPro−Other

C + QDNA
C + QOther0

C

QPho
C includes all components in the thylakoidmembranes, which

are allocated according to the light intensity and growth rate.
The model assumes that all components of QPho

C are adjusted in
concert; i.e., the relative proportions of the components of QPho

C

are fixed and independent of variations in the magnitude ofQPho
C .

In other words, the makeup of the photosynthetic machinery
is invariant. QBio

C contains all components whose allocation
depends mostly on growth rate. QOther

C includes components
which are assumed to represent fixed fractions of the cell: both
QOther
C and its components are independent of light intensity and

growth rate (Figure 7, Supplementary Figures 5A, 6).

Evaluating Allocation to Photosynthetic
Apparatus
We first obtain QChl

C with Equation (17), and then QPro−Pho
C

and Q
Thy
P from Equations (12) and (13), respectively. Q

Thy
P is

stoichiometrically related to Q
Plip− Thy
C :

Q
Plip−Thy
C = Q

Thy
P YC : P

Plip (27)

where YC :P
Plip

is C:P of phospholipids.

Evaluating Allocation to Biosynthetic
Apparatus
To compute biosynthetic apparatus, we first compute QPro−Bio

C
and QRNA

P from Equations (14) and (15), respectively. QRNA
P is

stoichiometrically related to QRNA
C :

QRNA
C = QRNA

P YC : P
RNA (28)

where YC :P
RNA is the C:P of RNA.

Evaluating Maximum Growth Rate, µ
I
max

µI
max is the value of growth rate, µ, when all of the flexible

component of cellular carbon has been allocated to the growth-
related apparatus (QPho

C andQBio
C ) and allocation to C orN storage

is negligible. Phosphorus storage is assumed to be polyphosphate,
thus not contributing to the carbon budget. Given QSto

C = 0, and
substituting Equations (27, 13, 28, 15, 3, 14, 12, 17) (in this order)
into Equation (25) leads to the following quadratic equation inµ:

0 = aMµ2
+ bMµ + cM (29)

where

aM = YC : P
RNAA

P
RNA

(

APhoAChl (I) + ABio

)

bM =

(

1+ APho + YC : P
Plip AP :Chl

Pho

)

AChl(I)+ ABio

+ YC : P
RNAA

P
RNA

(

APhoBChl (I) + QPro−Other
C

)

cM =

(

1+ APho + YC :P
Plip AP :Chl

Pho

)

BChl(I)+ QOther
C

+ YC : P
RNAQ

RNA
P,min − 1

Here, the positive solution for µ- equals µI
max:

µI
max =

−bM +

√

b2M − 4aMcM

2aM
(30)

Obtaining N:C
N:C is represented by the sum of N fromN-containing molecules
normalized by cellular C quota:

N :C = QChl
N + QPro

N + QRNA
N + QDNA

N + QNsto
N (31)

Here, we define YN :C
Chl

, YN :C
Pro , YN :C

DNA, and YN :P
RNA as N:C of

chlorophyll, protein and DNA and N:P of RNA, respectively
(value in Table 1). Using these conversion terms:

N :C = YN :C
Chl Q

Chl

C
+ YN :C

Pro Q
Pro

C + YN : P
RNAQ

RNA
C

+ YN :C
DNAQ

DNA

C + QNsto
N (32)

Then, by substituting Equations (15, 3, 14, 12, 17) (in this order)
into Equation (32), we obtain

N :C = aNµ2
+ bNµ + cN (33)

where

aN = YN :P
RNAA

P
RNA (ABio + APhoAChl (I))

bN =
(

YN :C
Chl AChl (I) + YN :C

Pro

(

ABio + APhoAChl(I)
)

+ YN : P
RNAA

P
RNA

(

APhoBChl (I) + QPro−Other
C

))

cN = YN :C
Chl BChl (I) + YN :C

Pro

(

APhoBChl (I) + QPro−Other
C

)

+ YN :P
RNAQ

RNA
P,min + YN :C

DNAQ
DNA
C + QSto

N

When the nitrogen content of RNA is accounted for, we predict a
quadratic relationship between N:C and growth rate. However,
since the contribution from RNA is small, that from protein
dominates and the linear approximation of Equation (19) works
well (as seen in the data and un-approximated solution shown
in Figure 5A). We define QN as N:C and QNonSto

N as N:C without
N storage:

QNonSto
N = QN − QSto

N (34)

Obtaining P:C
P:C is represented by the sum of N from N-containing molecules
normalized by cellular C quota:

P :C = QRNA
P + QDNA

P + Q
Thy
P + QOther0

P + QSto
P (35)
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We define YP :C
DNA as P:C of DNA (value in Table 1), which leads to

P :C = QRNA
P + YP :C

DNAQ
DNA
C + Q

Thy
P + QOther0

P + QSto
P (36)

By substituting Equations (15, 3, 14, 13, 12, 17) (in this order)
into Equation (36), we obtain

P :C = aPµ
2
+ bPµ + cP (37)

where

aP = AP
RNA

(

ABio + APhoAChl(I)
)

bP = AP
RNA

(

APhoBChl(I)+ QPro−Other
C

)

+ AP :Chl
Pho AChl(I)

cP = QRNA
P,min + YP :C

DNAQ
DNA
C + AP :Chl

Pho BChl (I) + QOther0
P + QSto

P

We define QP as P:C and QNonSto
P as P:C without P storage:

QNonSto
P = QP − QSto

P (38)

Since RNA is the dominant contribution to cellular phosphorus,
the relationship between P:C and growth rate is non-linear
(Figures 1H, 6A).

Obtaining N:P
Once we obtain N:C and P:C, N:P can be obtained as follows:

N : P =
N :C

P :C
(39)

Evaluating Cellular C Concentration and N
and P Storage
There are three types of storage: C in carbohydrates and lipids, N
storage assumed to be cyanophycin, and P storage assumed to be
polyphosphate. Only C and N storage affect the carbon budget.
To compute N and P storage, which we assume accumulate only
when each element is not limiting, we must first determine which
nutrient is limiting. To do that, we first compute the carbon-
based biomass in the culture under N or P limitation, [CCell]i
(mol C m−3), where i is N or P, respectively. Carbon biomass,
[CCell]i, is by definition the product of the cellular carbon quota,
CCell (mol C cell−1), and the cell density, Xi (cell m−3):

[CCell]i = CCellXi (40)

Under N limitation, the time variation of dissolved inorganic N
(or NO3− ) [N] (mol Nm−3) in the culture is based on the balance
between dilution and uptake:

d[N]

dt
= D ([N]in − [N]) − VNCCellXN (41)

where D is the dilution rate (d−1), [N]in (mol N m−3) is the
concentration of dissolved inorganic N (orNO−

3 ) in the incoming
medium, VN is the N uptake rate per cellular C (mol N mol C−1

d−1), XN (cell m−3) is the cell density in the culture under N
limitation. We also consider the time variation of XN :

dXN

dt
= µXN − DXN (42)

At steady state (i.e., d[N]/dt= 0), Equation (41) suggests that

[CCell]N =
D ([N]in − [N])

VN
(43)

where [CCell]N (mol C m−3) (= CCellXN) is the carbon biomass
in the culture under N limitation. The steady state of Equation
(42) leads to the following well-known relation for a chemostat at
steady state:

D = µ (44)

To relate VN to known parameters, we further consider the
balance of QN :

dQN

dt
= VN − µQN (45)

The steady state of this equation leads to a simple relation
between the uptake and consumption of N:

VN = µQNonSto
N (46)

as QN = QNonSto
N under N limitation (given N storage would

be small). By assuming that the amount of limiting nutrient
is small relative to that in the incoming medium (here [N]in
>> [N]) as in previous chemostat simulations (Inomura et al.,
2017, 2018) and as justified by laboratory observations (Laws
and Bannister, 1980; Healey, 1985; Bühler et al., 1987), and by
substituting Equations (44, 46) into Equation (43), we obtain the
simple expression for [CCell]N :

[CCell]N =
[N]in
QNonSto
N

(47)

We follow the same procedures above (Equations 41–47) by
replacingNwith P to obtain an expression for the carbon biomass
in the culture under P limitation [CCell]P (mol C m−3):

[CCell]P =
[P]in

QNonSto
P

(48)

Here [P]in (mol m−3) is the concentration of dissolved inorganic
P (PO3−

4 ) in the incoming medium.
We assume that the limiting resource is that which gives the

smallest cellular C concentration in the culture. For example,
when [CCell]N < [CCell]P, the culture is limited by N since
this relationship with Equations (47) and (48) leads to the
following equation:

[N]in
[P]in

<
QNonSto
N

QNonSto
P

(49)

showing that the input N:P (left hand side) is lower than
required N:P (right hand side). On the other hand, when [CCell]N
> [CCell]P, input N:P is higher than required N:P indicating
excess N and thus P limitation. Once the nutrient limitation is
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determined, we define the actual cellular C concentration in the
culture [CCell] (cell−1 m−3):

[CCell] = min
(

[CCell]N , [CCell]P
)

(50)

With this equation, we have simulated the relationship between
biomass, [CCell], and growth rate, µ, which reveals a decreasing
trend with dilution rates, capturing the observation (Healey,
1985; Supplementary Figure 7).

If the culture is N limited, there is an excess of P, which could
be stored in the cell. To determine the potential level of cellular P
based on the P availability (QPot

P ) (mol P mol C−1), we follow the
same procedure as when determining [CCell]N from Equations
(41)–(47), by using P instead of N, except for using XN and
[CCell]N obtained previously:

QPot
P =

[P]in
[CCell]N

(51)

Then we compare this potential quota with the maximum
capacity of cellular P (Qmax

P ) (mol P mol C−1) (mol P mol C−1)
and define QP:

QP = min
(

QPot
P ,Qmax

P

)

(52)

and by rearranging Equation (38) we determine QSto
P :

QSto
P = QP − QNonSto

P (53)

Under P limitation, N storage is accumulated since excess N is
available. By following the same steps as above with reversed
N and P and by rearranging Equation (34), we obtain the
following relations:

QPot
N =

[N]in
[CCell]P

(54)

QN = min
(

QPot
N ,Qmax

N

)

(55)

QSto
N = QN − QNonSto

N (56)

where QPot
N (mol N mol C−1) is the potential cellular quota of

N normalized by C based on the N availability and the cellular
C determined by P limitation and Qmax

N (mol N mol C−1) is
the maximum cellular capacity of N normalized by cellular C.
We note that in most cases, QPot

N > Qmax
N (or QPot

P > Qmax
P ).

However, when the N:P ratio without storage molecules (i.e.,
QNonSto
N /QNonSto

P ) is close to the N:P ratio of the resource (i.e.,
[N]in/[P]in), the excess nutrient is relatively small and QPot

N <

Qmax
N (or QPot

P < Qmax
P ) can occur (e.g., at the light intensity of

12 µmol m−2 s−1 in Supplementary Figure 4A).
The data and model together reveal that N and P “storage”

work differently (Supplementary Figure 4) in S. linearis (Healey,
1985). Under nitrogen limitation, the total phosphorus quota per
carbon appears relatively constant while under P-limitation, N
storage appears to be relatively constant. Hence, to model the
storage contributions, we have imposed maximum total P quota
per carbon (Qmax

P ) (mol P mol C−1) and maximum N storage
per carbon (QSto,max

N ) (mol N mol C−1); thus Qmax
N = QSto,max

N +

QNonSto
N . In other words, maximumP storage depends on the level

of other P molecules while maximum N storage is independent
from the level other N molecules. These simple assumptions
allow us reproduce N:C under P limitation and P:C under N
limitation (Supplementary Figure 4) as well as N:P (Figure 9).

This model of the storage pools is simple and logical, yet
still somewhat ad hoc and empirically driven. Because of the
importance of storage of the non-limiting element, prediction
of the N:P ratio depends on this. Clearer understanding of
the dynamics of the storage pools will be necessary to provide
more mechanistic models. Laboratory data which resolves the
macromolecular pools in sufficient detail would aid this effort.
Interpretations of the Redfieldian N:P ratio as a homeostatic
protein:RNA ratio (Loladze and Elser, 2011), while revealing
the central controls, do not necessarily reflect these important
“storage” dynamics (Supplementary Figure 4).

N storage has an associated C (e.g., cyanophycin), which can
be obtained from a given elemental ratio of N storage:

QNsto
C = YC :N

Nsto Q
Sto
N (57)

Evaluating C Storage
The difference between the total cellular C and computed sum of
macromolecular C is assumed to be C storage:

QCsto
C = 1− QChl

C − QPro
C − QRNA

C − QDNA
C − Q

Plip−Thy
C

− QNsto
C − QOther0

C (58)

Parameter Estimation
Elemental stoichiometry of each molecule and some
parameters are assumed based on available information
(Supplementary Table 4). As a result, there are 11 parameters
that need to be estimated from the data: m, vmax

I , AI , APho
,

ABio, Q
Pro−Other
C , AP

RNA, Y
P :Chl
Pho

, QOther0
P , QSto,max

N , QOther0
C (values

in Supplementary Table 5). To estimate parameter values
that best fit experimental data, we adapt the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970;
Omta et al., 2017), a Markov Chain Monte Carlo method.
The implementation of the algorithm is described in detail
below. We begin by using the Metropolis-Hastings algorithm
to fit Equation (17) to the chlorophyll:C vs. µ data for
S. linearis (Healey, 1985; Figure 4), estimating the values
for 3 chlorophyll related parameters (m, vmax

I , AI). We
estimate these independently of the other parameters, which
do not influence chlorophyll. Next, we estimate nitrogen
related parameters (A

Pho
, ABio, Q

Pro−Other
C , QSto,max

N ) and the

parameter QOther0
C , by fitting Equations (33, 50, 30) to the

observed data for N:C vs. µ under both N and P limitations
(Figure 5A, Supplementary Figure 4Ai) for C concentration
vs. µ under N limitation (Supplementary Figure 7A) and
for µI

max vs. I under both N and P limitations (Figure 8A,
Supplementary Figure 5B), respectively. Finally, we estimate
the remaining three parameters (AP

RNA, YP :Chl
Pho

, QOther0
P ) by

fitting Equations (50, 37) to data for the concentration of
cellular C (Supplementary Figure 7B) and for P:C (Figure 6A)
under P limitation.
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For Pavlova lutheri (Chalup and Laws, 1990) and Skeletonema
costatum (Sakshaug and Andersen, 1989), we use the data of
chlorophyll (Supplementary Figure 2i) to estimate m, vmax

I , AI ,
and N:C (Supplementary Figure 2ii) and µI

max (Figures 8B,C)
to estimateA

Pho
,ABio,Q

Pro−Other
C ,QOther0

C . For these cases, certain
parameters are adopted from S. linearis since the experimental
information is less comprehensive and appropriate data is not
available to constrain them; these other parameters have limited
influence on the specific model results illustrated here (i.e.,
Chl:C, N:C, µI

max).

Algorithm
The model is first solved with an initial set of parameters,
which are determined by manually tuning values until model
solutions are reasonably consistent with the data. The algorithm
then proceeds in a series of steps (a “chain” of steps) that
introduce random perturbations to the parameter values. It
finds a set of values that provide a good fit to the data by
keeping new parameter values that fit the data well (the new
parameters become the “current” state of the parameters), and
usually discarding others. That is, if the new parameters fit the
data much more poorly than the “current” state, there is a high
probability they will be rejected. In aggregate, the algorithm
evaluates many combinations of parameters in the search for
globally optimal solutions.

Evaluating the Fit Between Model and Data
For a given set of parameters (Pset), beginning with the initial set,
we compute a measure of the fit between the model and data. We
use the sum of squared errors for each data set between the model
(with parameters Pset) and data points, given by

Errorkj =
∑

i

(

Data
(

µk
i , I

k
i

)

−Model
(

µk
i , I

k
i , Psetj

))2

2σ 2
k

(59)

where i and k indicate the ith measurement of kth data
set, j is the jth iteration (initial step, j =1), Data

(

µk
i , I

k
i

)

are data for different growth rates µ and light intensities I,

Model
(

µk
i , I

k
i , Psetj

)

is the model estimated for the same µ and

I with a parameter set Psetj, and σk is an estimate of the
measurement error of the kth dataset. We estimate these values
based on the magnitude of scatter among measurements that are
made under similar experimental conditions. Once we obtain
an error value for each dataset, we normalize the data with the
number of data nk and add them up to obtain the error covering
all the datasets:

Errorj =
∑

k

Errorkj

nk
(60)

This normalization by nk is intended to give similar weight to
data sets with different numbers of observations and resulted in
slightly improved model-data fit for µI

max at high light intensities
while keeping other model outputs visually unchanged.

Iteration
At each step in the chain, we generate a new parameter set with
small random perturbations of the previous set (in this study,
within the range of ±20%). In Psetj we only accept positive
values and chlorophyll related parameters less than certain values
(mostly ∼5 times of the estimated values), since values outside
of these ranges are less likely. We then compare the fit of the jth
proposed parameter set to the current set, based on the likelihood
ratio, given by

Ratioj = exp
(

−Errorj + ErrorCurrent
)

(61)

Once we obtain the likelihood ratio, we generate a uniform
random number (Random) between 0 and 1 and compare it with
Ratioj. If Ratioj > Random, we update the current parameter set
to be the jth set. Therefore, if Errorj is smaller than ErrorCurrent
(i.e., the model with Psetj fits better than the current model), the
current parameters are updated to Psetj. However, if ErrorCurrent
is smaller than Errorj, the jth state will be accepted with a
probability that declines as a function of the difference between
the error terms. This means good parameter sets tend to be kept,
but the acceptance of poorer sets provides a mechanism to get out
of the local maxima. After many steps (106 steps), we identified
the parameter set that gives the smallest errors between model
and data.
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