AUTHOR=Guo Lingxi , Wei Dong , Zhang Xinxin , Wu Yurong , Li Qingyun , Zhou Min , Qu Jieming TITLE=Clinical Features Predicting Mortality Risk in Patients With Viral Pneumonia: The MuLBSTA Score JOURNAL=Frontiers in Microbiology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.02752 DOI=10.3389/fmicb.2019.02752 ISSN=1664-302X ABSTRACT=Objective

The aim of this study was to further clarify clinical characteristics and predict mortality risk among patients with viral pneumonia.

Methods

A total of 528 patients with viral pneumonia at RuiJin hospital in Shanghai from May 2015 to May 2019 were recruited. Multiplex real-time RT-PCR was used to detect respiratory viruses. Demographic information, comorbidities, routine laboratory examinations, immunological indexes, etiological detections, radiological images and treatment were collected on admission.

Results

76 (14.4%) patients died within 90 days in hospital. A predictive MuLBSTA score was calculated on the basis of a multivariate logistic regression model in order to predict mortality with a weighted score that included multilobular infiltrates (OR = 5.20, 95% CI 1.41–12.52, p = 0.010; 5 points), lymphocyte ≤ 0.8109/L (OR = 4.53, 95% CI 2.55–8.05, p < 0.001; 4 points), bacterial coinfection (OR = 3.71, 95% CI 2.11–6.51, p < 0.001; 4 points), acute-smoker (OR = 3.19, 95% CI 1.34–6.26, p = 0.001; 3 points), quit-smoker (OR = 2.18, 95% CI 0.99–4.82, p = 0.054; 2 points), hypertension (OR = 2.39, 95% CI 1.55–4.26, p = 0.003; 2 points) and age ≥60 years (OR = 2.14, 95% CI 1.04–4.39, p = 0.038; 2 points). 12 points was used as a cut-off value for mortality risk stratification. This model showed sensitivity of 0.776, specificity of 0.778 and a better predictive ability than CURB-65 (AUROC = 0.773 vs. 0.717, p < 0.001).

Conclusion

Here, we designed an easy-to-use clinically predictive tool for assessing 90-day mortality risk of viral pneumonia. It can accurately stratify hospitalized patients with viral pneumonia into relevant risk categories and could provide guidance to make further clinical decisions.