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Plants in soil are not solitary, hence continually interact with and obtain benefits
from a community of microbes (“microbiome”). The meta-functional output from the
microbiome results from complex interactions among the different community members
with distinct taxonomic identities and metabolic capacities. Particularly, the bacterial
communities of the root surface are spatially organized structures composed of root-
attached biofilms and planktonic cells arranged in complex layers. With the distinct but
coordinated roles among the different member cells, bacterial communities resemble
properties of a multicellular organism. High throughput sequencing technologies have
allowed rapid and large-scale analysis of taxonomic composition and metabolic
capacities of bacterial communities. However, these methods are generally unable
to reconstruct the assembly of these communities, or how the gene expression
patterns in individual cells/species are coordinated within these communities. Single-
cell transcriptomes of community members can identify how gene expression patterns
vary among members of the community, including differences among different cells of
the same species. This information can be used to classify cells based on functional
gene expression patterns, and predict the spatial organization of the community. Here
we discuss strategies for the isolation of single bacterial cells, mRNA enrichment,
library construction, and analysis and interpretation of the resulting single-cell RNA-
Seq datasets. Unraveling regulatory and metabolic processes at the single cell level
is expected to yield an unprecedented discovery of mechanisms involved in bacterial
recruitment, attachment, assembly, organization of the community, or in the specific
interactions among the different members of these communities.

Keywords: rhizosphere, microbiome, droplet-sequencing, split pool ligation-based transcriptome sequencing,
fluorescence-activated cell sorting, rolling circle amplification, single primer isothermal amplification

INTRODUCTION

Plants are holobionts and are associated with complex and very diverse microbiomes (Simon et al.,
2019). The long co-evolution of plants and their microbial communities has shaped the holobiont,
and contributed to the development of microbial species that are specifically adapted to their
respective plant host, and play a significant role in plant productivity and stress resistance. The
microbiome or the second plant genome (Turner et al., 2013) represents a highly under-explored
genetic resource with thousands of genes that can potentially be harnessed to increase crop yield
and to alleviate stress responses. The advantages of using a microbiome-based solution include:
(1) a typically shorter discovery to application pipeline due to a streamlined regulatory process,
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(2) a higher specificity compared to currently available crop
protection products, and (3) a better compatibility with emerging
precision agriculture technologies (Parnell et al., 2016; Deshayes
et al., 2017). Due to the important role that the microbiome plays
in plant health, stress resistance and nutrition acquisition, there is
an increasing interest to design microbial communities that can
promote plant growth in diverse environments. Plant-associated
microbial communities are not randomly assembled; structure
and composition of these microbiomes change in response
to different environmental parameters (Bogino et al., 2013).
Primary determinants of plant-associated microbial community
composition and function include soil type (Lundberg et al.,
2012), plant compartment (Bai et al., 2015), plant genotype
(Bouffaud et al., 2014), activity of the plant immune system,
and plant developmental stage (reviewed by Hassani et al.,
2018). However, our current understanding about how microbial
community compositions are shaped, how these communities
are assembled, and how the interactions among specific bacteria
affect the function of these communities is very limited.

Most plant-associated microbial communities, for example
root surface bacterial communities, are spatially organized
structures composed of root-attached biofilms and planktonic
cells arranged in complex layers (Castiblanco and Sundin, 2016).
In addition, evidence for bacterial co-association, symbiosis, and
habitat sharing suggest that interactions among members might
dynamically shape the community composition and function
(Sloan and Lebeis, 2015). In this context, a microbiome can
be compared to a multi-cellular organism, in which different
cells serve distinct, but coordinated roles that control organismal
function (Stovicek et al., 2012). The development of high
throughput sequencing technologies allowed rapid and large-
scale analysis of microbial ribosomal amplicons, metagenomes,
or metatranscriptomes, and have provided us with insights
into the taxonomic composition, collective gene pool, and
gene expression patterns of microbiomes (Knief, 2014; Zhou
et al., 2015). However, these methods are unable to reconstruct
how gene pools and gene expression patterns are organized
in individual cells of microbiomes. Single-cell genomics of
microbial cells offers a solution to this limitation and can define
the metabolic features and potential of individual cells that shape
microbiome function. Application of single-cell approaches in
microbes including single-cell transcriptomics of individual
species have been reviewed recently (Chen Z. et al., 2017; Hwang
et al., 2018; Zhang et al., 2018). Here, we discuss strategies
on how currently available methods in single-cell RNA-Seq
(scRNA-seq) including the highly scalable split pool ligation-
based transcriptome sequencing (SPLiT-seq; Rosenberg et al.,
2017, 2018) can be adapted for the exploration of plant-associated
bacterial communities.

METHODS FOR ISOLATION OF SINGLE
BACTERIAL CELLS FOR GENOMICS
ANALYSES

Methods for isolation of bacterial communities from plant
root surfaces and apoplastic compartments without plant tissue

contamination are available (White et al., 2015; McPherson
et al., 2018; Gentzel et al., 2019). Isolation of bacterial
cells from root surfaces typically involves sonication or
vortexing in buffers containing mild detergents to dislodge
cells from the root. Bacteria residing in plant apoplasts can
be isolated by infiltrating the plant tissues with appropriate
buffers followed by centrifugation to isolate the apoplastic
wash fluids. Contamination with plant cells or other materials
can be minimized by passing these fractions through a
20 µm sieve. These methods have been used to evaluate the
composition of bacterial communities in a variety of plant
species (Lundberg et al., 2012; Peiffer et al., 2013; Edwards
et al., 2015; Wang et al., 2017; White et al., 2017). The
same methods can be used to obtain source communities
for single cell isolation and analysis. The compatibility of
these methods with fixed cells negates any concerns on
changes in microbial gene expression during the isolation
process. Several approaches have been developed/adapted for
genomics of single bacterial cells including serial dilution
(Zhang et al., 2006), microfluidics (Chen et al., 2011), flow
cytometry (Raghunathan et al., 2005), micromanipulation (Ishoy
et al., 2006), or encapsulation in droplets (Tolonen and Xavier,
2017). The majority of these methods require the capability to
isolate single cells and prepare individually labeled sequencing
libraries from each of these cells. scRNA-Seq approaches of
bacterial cells, however, are particularly challenging due to
the lack of polyadenylated mRNAs and the lower number
of template molecules per cell compared to those in plants
and other eukaryotes. Strategies to adapt specialized methods
to distinguish coding and non-coding RNAs and those for
linear amplification of RNA/cDNA molecules for successful
scRNA-Seq of bacterial cells are discussed in see section
“Methods for construction of RNA-seq libraries from single
bacterial cells”.

Serial Dilution
A simple but effective method to isolate single cells from
a bacterial population is serial dilution. After determining
cell densities by direct counting via a Helber counting
chamber or other reliable methods, cells are diluted to single
cells into microtiter plate wells. These single cells can be
enzymatically manipulated to lyse the cell wall and denature
the membrane to release cellular contents for cDNA synthesis
and library construction. Serial dilution has successfully been
applied to single cells of Escherichia coli and Procholorococcus
to develop a polymerase-based whole genome amplification
method, polymerase cloning or “ploning” (Zhang et al., 2006).
Serial dilution is an easy method that can be applied by
most laboratories as it is simple and does not require any
specialized instrumentation. One of the major limitations for
this technique is, however, the risk of DNA contaminations
from the environment or from reagents and labware that
can lead to background amplifications. Strict sample handling
and experimental protocols involving a clean air chamber
and UV treatment of reagents and labware can lower these
contamination risks. However, current assessments suggest that
the precision of this methodology is insufficient, even if its
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accuracy of 88% is comparable to traditional flow cytometry-
based technologies for single cell isolation (Raghunathan et al.,
2005; Zhang et al., 2006).

Micromanipulation
Many micromanipulation methods driven by the desire to culture
single prokaryotic and eukaryotic cells were developed and
improved throughout the last century (reviewed by Fröhlich and
König, 2006). The low magnification of standard microscopical
systems precluded their use for the isolation of single prokaryotic
cells. Developments in resolution and magnification of modern
microscopy has led to the adaptation of these methods for
the investigation of larger prokaryotes such as filamentous
bacteria (Kämpfer, 2006) and cyanobacteria (Šulčius et al., 2017).
Micromanipulation has also been used to isolate individual
bacterial cells from food samples (Hohnadel et al., 2018) and
hot spring sediments (Ishoy et al., 2006). Two of the major
approaches used in micromanipulation are (1) the use of a
focused laser beam to capture and transfer the cell of interest from
a population to a compartment (e.g., Keloth et al., 2018), and
(2) the use of microinjectors in combination with the precision
of a micromanipulator that can handle single prokaryotic cells
(e.g., Ishoy et al., 2006). While the methodology is continuously
improving and can be applied to address questions of organismal
survival and success rate of recovery, it is laborious, very low
throughput, and requires specialized equipment.

Laser Capture Microdissection (LCM)
Laser Capture Microdissection is a contact- and contamination-
free method for isolating specific single cells or entire areas of
tissue from a wide variety of samples. In this technique the
desired cell, or group of cells, is cut off a tissue section or
other source, and is transferred without contact to a microtube
for further processing (Nakazono, 2003). The advantage of this
method is that it allows selecting individual cells of interest; but
since the technique is very laborious and time-consuming, it
only supports low throughput approaches. While this method has
been used to for example study cell development in plant tissues
or gene expression in mutualistic and pathogenic interactions
(Balestrini et al., 2009; Gomez and Harrison, 2009), the
insufficient spatial resolution makes this technique undesirable
to isolate small bacterial cells from a dense community. Unlike
eukaryotic cells that are in complex tissues, individual cells in
bacterial communities can be easily separated by vortexing or
other methods to obtain single cells. Therefore, other methods
such as serial dilution (see section “Serial dilution”) or flow
cytometry (see section “Fluorescence activated cell sorting”) may
be more practicable than LCM. However, the ability to observe
bacterial cells by LCM before they are selected provides some
advantages, and the technique has been applied to isolate single
bacterial cells from environmental samples. When plant microbe
interactions are examined, LCM can be effectively applied to
evaluate gene expression patterns in plant endophytes that are
associated with specific regions of the plant. For example, root
cortex and vascular tissues that are isolated by LCM can be
subsequently used to evaluate single-cell genomics of endophytic
microbes that reside within these tissues (Jahiri, 2013).

Fluorescence Activated Cell Sorting
Fluorescence activated cell sorting (FACS) can be used to detect
and sort cells from a population based on their different chemical
or physical characteristics. Cells in suspension are transported,
one cell at a time, and pass through a laser beam. Scattered light
is characteristic of individual cells based on their composition
and/or physical properties and is used to gate cells into collection
chambers (Müller and Nebe-von-Caron, 2010). Typically, cells
are labeled with one or more fluorescence markers to sort the cells
into different chambers. This principle has been used to collect
individual bacterial cells and determine their identities using
multiple displacement amplification (Raghunathan et al., 2005).

One of the most common labels used for bacterial cell sorting
is target-specific 16S rRNA fluorescence-in situ-hybridization
(FISH). Limitations of the traditional 16S rRNA FISH technology,
for example the limited and variable amounts of rRNA, have
been addressed by the development of liquid phase tyramide
signal amplification FISH (TSA-FISH), which is compatible with
flow sorting. Similarly, custom made µFACS systems have been
developed that support faster throughput and less expensive
applications with lower contamination risks due to their use of
closed systems, and their higher sorting efficiency (Chen et al.,
2011). However, the sorting accuracy of these systems still needs
to be significantly improved to be comparable to commercial cell
sorters. However, single-cell genomics approaches do not rely on
accurate sorting of different cell types, but rather accurate sorting
of one cell per container (i.e., cell clumps must be avoided).
Therefore, the combination of µFACS systems with viable cell
deposition modules such as microwell arrays could make these
technologies applicable despite their inaccuracies in sorting.
The ability of µFACS systems to apply optical, electroosmotic,
dielectrophoretic, and hydrodynamic switching methods for cell
sorting offers advantages for their adaptability to a broad range
of sample types (Müller and Nebe-von-Caron, 2010). Typical
contamination risks from cell free DNA in liquid phase cell
isolation systems particularly in environmental samples can be
reduced in FACS/µFACS systems by multiple rounds of sorting
(Chen et al., 2011).

Droplet-Based Systems
Recent developments in microfluidic technologies have led to
the development of instrumentation capable of sorting individual
cells by encapsulating each of them in individually barcoded
gel beads followed by the library preparation of individually
barcoded RNAseq libraries. The current commercially available
microfluidic platforms are the 10 X Genomics Chromium
platform (Pleasanton, CA, United States) with a cell size range
of up to 50 µm, and the Fluidigm C1 platform (South San
Franscisco, CA, United States) with a cell size range of 10–
17 µm. Recently, single-cell printing methods were adapted for
the encapsulation of single bacterial cells in droplets (Riba et al.,
2016). These systems use a transparent microfluidic drop-on-
demand dispenser chip coupled with a camera-assisted automatic
cell detection system. Cell detection and classification helps to
avoid the collection of empty droplets and thus enables a “one cell
per droplet” printing mode (Gross et al., 2013). Dispenser chips
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with smaller channel depth and nozzle to allow the detection
and printing of cells down to 1 µm in size were developed
for bacterial cells (Riba et al., 2016). However, in all these
platforms, bacterial cell walls need first to be permeabilized
in order to incorporate the barcoded beads. In recent studies,
partial spheroplasts of yeast were generated by treating the
cell suspensions with zymolyase to digest cell walls before the
encapsulation (Gasch et al., 2017). A similar approach can be
adapted for bacterial cells. The main advantage of microfluidics
resides in the high throughput capabilities by which these systems
can yield encapsulated cells; up to 100,000 or 800 cells in the 10 X
and Fluidigm platforms, respectively.

Alternatively, it is possible to use custom-made drop-seq
devices in combination with commercially available barcoded
beads (Macosko et al., 2015). It is important to note that the
approach also requires modifications in the cDNA synthesis
phase due to the lack of polyadenylation of bacterial transcripts.

METHODS FOR CONSTRUCTION OF
RNA-SEQ LIBRARIES FROM SINGLE
BACTERIAL CELLS

Many of the cell isolation methods have successfully been used
to obtain genome sequences of individual bacterial cells, and
can be adapted to obtain epigenomes as well. However, their
adaptability for scRNA-seq is limited. Lack of polyadenylation
in bacterial mRNAs, for example, requires methodologies to
selectively enrich these molecules from the ∼10 times more
abundant tRNA and rRNA molecules (see section “Methods to
enrich bacterial mRNAs”). The very low RNA content of bacterial
cells is another challenge, and requires the amplification of RNA
or cDNA molecules, while amplification biases are avoided (see
section “Methods to amplify RNA or cDNA”). Finally, the highly
complex bacterial cell wall poses a challenge since enzymatic and
chemical approaches to disrupt the cell wall and membrane may
not be compatible with the reagents for the subsequent steps in
RNA-seq library construction.

Methods to Enrich Bacterial mRNAs
The need to prepare individually labeled sequencing libraries
from individual cells precludes the use of typical affinity-based
methods for enrichment of mRNAs or removal of rRNAs.
In contrast, in-cell mRNA enrichment methods are suitable
for this purpose.

Selective Exonuclease Based Enrichment of
Messenger RNAs
TerminatorTM 5′-phosphate-dependent-5′- 3′exonuclease
digests rRNAs and tRNAs, but not RNA molecules with a
5′-triphosphate, a 5′-cap, or a 5′-hydroxyl group. Consequently,
TerminatorTM exonuclease can be used to selectively degrade
rRNA and tRNA molecules with a 5′-phosphate structure, but
not mRNA molecules. An exonuclease treatment at optimal
concentrations enriched mRNA molecules from single cells of
Burkholderia thailandensis and enables its potential use for next-
generation sequencing (Kang et al., 2011, 2015). Measurements

of different classes of RNA molecules by q-PCR indicated a
significant reduction in the levels of tRNAs and rRNAs after
exonuclease treatment. Comparison of gene expression profiles
between enriched and unenriched samples using microarrays
showed a negligible bias after the enrichment. While the use
excess nuclease resulted in a better enrichment of mRNA
molecules, a higher level of amplification bias was observed,
possibly due to a non-specific digestion of mRNAs.

Reducing Non-desired Molecules in a
Sequence-Specific Manner
There are two other methods with which rRNA or other non-
target molecules can be reduced or eliminated. In the “not-so-
random” (NSR) primer approach, random hexamers that match
rRNA (or other non-target RNA) sequences are left out from
the pool of random primers used for cDNA synthesis (Armour
et al., 2009). This approach enriched non-rRNA derived cDNA
molecules by four-fold (22% of the library to 87%). However, it is
possible that a selected subset of hexamer primers can distort the
resulting cDNA populations. In an alternate method, undesired
sequences were eliminated after cDNA synthesis by random
priming (Armour et al., 2018). Here, first strand synthesis was
performed using random primers with an adapter containing a
restriction enzyme recognition sequence. Subsequently, a second
strand synthesis reaction was performed using primers specific to
rRNAs or other undesired molecules resulting in double stranded
cDNA molecules that contained these undesirable sequences.
Next, restriction digestion was used to remove the adapters from
these molecules and prevented their amplification during the
next step of library preparation. In either case, prior knowledge
about the undesirable sequences is required, what makes it
difficult to use these methods for the evaluation of bacterial
communities of unknown composition. A successful application
of these methods for the enrichment of bacterial RNA has not yet
been demonstrated.

Methods to Amplify RNA or cDNA
Rolling Circle Amplification of RNA
Rolling circle amplification has been used to evaluate global gene
expression in single cells of B. thailandensis (Kang et al., 2011).
After cDNA synthesis, bacterial chromosomal DNA or other
contaminant DNA molecules were digested by methylation-
dependent restriction enzymes (e.g., McrBC and DpnI), and
the newly synthesized single-stranded cDNA (ss-cDNA) was
circularized via 5′-end phosphorylation and intramolecular
ligation. The circularized ss-cDNA was then randomly primed
with RNA hexamers and subjected to multiple displacement
amplifications using φ29 DNA polymerase. Thiophosphate-
linked RNA random hexamers were used to reduce primer
dimers and non-specific priming (Takahashi et al., 2009). This
method yielded 25–30 µg cDNA from 0.2 to 1 pg RNA. The
method was efficient and successfully amplified approximately
94–96% of the total transcripts. While absolute gene expression
levels were poorly correlated between amplified single-cell
transcriptomes vs. non-amplified bulk cell transcriptomes, the
fold-change values were highly correlated. Using the same
protocol single cell transcriptomes of Pseudomonas aeruginosa
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and Burkholderia pseudomallei were analyzed, and the authors
suggested that the protocol might also be suitable for the
analysis of mixed bacterial communities, and that identical
amplification conditions for all samples should be used to avoid
any interference from amplification bias (Kang et al., 2011, 2015).

Single Primer Isothermal Amplification
In single primer isothermal amplification (SPIA), a unique
chimeric 5′-RNA/DNA-3′ primer is used for first strand cDNA
synthesis. Second strand synthesis results in a double-stranded
cDNA with a unique DNA/RNA heteroduplex at one end.
RNase H–mediated degradation of RNA in this heteroduplex
enables binding of another chimeric 5′-RNA/DNA-3′ primer
which is then extended to displace the existing first strand. The
process of chimeric DNA/RNA primer binding, DNA replication,
strand displacement and repeated RNA cleavage leads to a rapid
accumulation of amplified cDNA (Kurn et al., 2005). SPIA
was successfully used to obtain ∼7–17 µg of cDNA from just
5 fg of RNA from single cells of Synechocystis sp. PCC 6803.
RNA-seq was used to evaluate changes in gene expression in
three single cells each after nitrogen starvation. The average
gene numbers in single cells were comparable to the numbers
of bulk cell populations at each individual time point. Up to
98.6% of the genes in bulk cell populations were also detected
in single cells underscoring the efficiency of SPIA amplification
(Wang et al., 2015).

A number of other methods typically used for the
amplification of polyadenylated mRNA molecules from single
cells of eukaryotic organisms (Ziegenhain et al., 2017) can also be
modified to amplify single-cell bacterial mRNA, but examples for
the successful adaptation of these techniques are not yet available.
Some of these techniques, such as single-cell universal poly(A)-
independent RNA sequencing (SUPeR-seq) (Fan et al., 2015) are
compatible with drop-seq and microfluidics-based approaches
reviewed by Chen Z. et al. (2017). However, these methods
might need to be preceded by mRNA enrichment as they do not
distinguish between bacterial mRNAs, rRNAs or tRNAs.

ADAPTING SPLIT POOL
LIGATION-BASED TRANSCRIPTOME
SEQUENCING FOR BACTERIAL
SINGLE-CELL RNA-SEQ

Split pool ligation-based transcriptome sequencing, a recently
developed alternative for scRNA-seq, labels the cellular origin of
RNA through combinatorial indexing (Rosenberg et al., 2018).
This method has two major advantages: (1) it does not require the
physical separation of single cells, and thus there is no need for
specialized equipment; and (2) it uses unencapsulated and fixed
cells and therefore provides maximized reagent compatibility
with downstream molecular biological reactions for library
construction (Rosenberg et al., 2017, 2018). For combinatorial
indexing, (1) fixed and permeabilized cells are split into different
microtiter plate wells, (2) a well-specific barcode is appended
to intracellular transcripts, and (3) the cells are pooled back

together (Figure 1). By repeating this process several times, each
cell travels through a unique combination of wells with very
high likelihood. Consequently, all transcripts from the same cell
will contain a unique combination of barcodes indicating their
cellular origin (Figure 1).

This method was originally developed for single-cell
transcriptomics of mammalian cells, but could be ideal for
scRNA-seq of bacterial communities due to its robust scalability
in addition to the above described benefits. However, the
presence of the bacterial cell wall and transcripts without
a polyA tail will require the optimization of steps that are
involved in cellular fixation, permeabilization, and in-cell library
construction (see below). The successful application of methods
for the permeabilization of bacteria for in situ hybridization and
PCR as well as the selective enrichment and amplification of
bacterial mRNAs are very promising for the effective adaptation
of SPLiT-seq for bacterial scRNA-seq (Figure 1).

Cell Permeabilization
Methods have already been established for the in situ localization
of RNA through hybridization and PCR in a number of Gram-
positive and Gram-negative bacteria (Tani et al., 1998; Russell
and Keiler, 2009; Parsley et al., 2010). These methods can
be used to effectively permeabilize bacterial cells for SPLiT-
seq. Fixation of bacterial cells using para-formaldehyde and
ethanol, followed by permeabilization using lysozyme and
proteinase K treatment, for example, enabled the successful
identification of specific transcripts in microbial communities
through in situ reverse transcription (RT) and PCR with
labeled nucleotides (Hodson et al., 1995; Tani et al., 1998).
Since in-cell RNA-seq library construction essentially utilizes
RT, adapter ligation, and PCR, we propose the use of these
methods for the fixation and permeabilization of bacterial
cells for SPLiT-seq.

mRNA Enrichment
TerminatorTM 5′-phosphate-dependent-5′ – 3′exonuclease
treatment to selectively enrich prokaryotic mRNA will be ideal
for bacterial SPLiT-seq. Following mRNA enrichment, multiple
options exist for amplification and library construction. For
example, the remaining RNA molecules (primarily mRNAs) can
be polyadenylated at the 3′-end using a Poly(A) polymerase in
the presence of ATP (Figure 1). These molecules will now be
compatible with the cell scRNA-seq library construction method
that has been developed for eukaryotic cells (Rosenberg
et al., 2017). However, the relatively small amounts of
RNA in single bacterial cells might make efficient library
construction difficult. In that case, the SPLiT-seq protocol
can be easily modified to incorporate one of the RNA/cDNA
amplification methods that have successfully been applied
in prokaryotic systems (e.g., rolling circle amplification or
SPIA, see above).

In-Cell Library Construction
The SPLiT-seq method involves in-cell RT using barcoded oligo-
dT and/or random hexamer primers, followed by ligation of
subsequent barcodes. Briefly, the cells are split into 48 wells each
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FIGURE 1 | Proposed SPLiT-Seq workflow for scRNA-seq of bacterial communities. Following cell permeabilization and in-cell mRNA enrichment and
polyadenylation, the cells go through three rounds of splitting and pooling, first for RT, followed by two rounds for adapter ligation. Wells of different colors depict
distinct barcode sequences. Sequential addition of 3′ barcodes to a single mRNA molecule followed by terminal tagging to add the 5′ adapter is depicted on the
right. The sequential addition of barcodes to mRNA molecules in different bacterial cells at each split-pool round is depicted on the left.

containing barcoded well-specific RT primers, and subjected to
in cell RT reactions. If amplification is desired, random hexamer
primers can be used in the RT step followed by barcoded
primers for rolling circle amplification. This will be followed
by two rounds of pooling and random splitting into 48 wells
for barcode ligation (Figure 1). A total of three rounds of
barcoding (one via RT and two via ligation) can sufficiently
distinguish 100,000 single-cell libraries (483 = 110,592 potential
barcode combinations). The ligation plate wells would have
dsDNA molecules with three distinct functional domains: a 5′-
overhang that is complementary to the 5′-end on the cDNA
molecule (originating from the RT primer), a unique well-specific
barcode sequence, and the other 5′-overhang complementary to
the 5′-overhang present on the DNA molecule that is ligated
in the next ligation round (Figure 1). For the barcodes in
the third round, the dsDNA molecules will have a 5′-overhang
that is complementary to the 5′-end on the ligated cDNA
molecule (originating from the previous round of ligation),

a unique well-specific barcode sequence, and the other 5′-
overhang with a universal PCR handle (suitable for Illumina
Next-Gen sequencing and flow cell amplification), and a biotin
molecule (Figure 1).

Terminal Tagging and Amplification
After in-cell cDNA synthesis and a third round of
barcoding, the cells can be lysed, and first strand cDNAs
can be isolated by biotin-streptavidin affinity purification.
A second Illumina compatible sequencing adapter will be
appended to the 3′-end of the first strand cDNAs through
terminal tagging (Illumina Script Seq kit; Figure 1). The
resulting molecules that are tagged on both ends with
Illumina-compatible adapters can be amplified, size-selected
for 300–400 bp amplicons using solid phase reversible
immobilization (SPRI) beads, and will be ready for next-
generation sequencing. Based on the already available
examples, we believe that adaptation of SPLiT-Seq for
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scRNA-Seq of bacterial communities will provide the entire
plant-associated microbiome research community with
a transformative technology to explore single-cell level
changes in gene expression, and to spatially reconstruct
microbiome processes.

BIOINFORMATICS OF BACTERIAL
SCRNA-SEQ DATA

Read Mapping and Normalization
The major steps in the analytical pipelines for scRNA-seq
typically mirror those used for bulk cell RNA-seq analysis.
Reads from each cell after barcode splitting and quality
control will be mapped separately to reference genomes. For
a bacterial community RNA-seq, >13,500 complete bacterial
genomes (NCBI as of 04/2019) is a good starting point,
as a reference resource. Following regular read mapping
(Langmead, 2010), normalization of read counts is a crucial
step in RNA-seq analysis. It is generally agreed that compared
to “within sample” normalization methods (e.g., FPKM -
Fragments Per Kilobase per Million mapped reads), “between
sample” normalization methods (e.g., TMM – Trimmed Mean
of M values, DESeq) are more robust and accurate (Evans
et al., 2018). However, the latter methods might perform
poorly when zero counts are present due to a relatively large
number of dropouts or cell-specific transcripts in scRNA-
seq datasets. A recent method overcomes this by performing
normalization based on summed expression values from pools
of cells (Lun et al., 2016). While this improves normalization
accuracy, it is obvious that the normalized expression values
will only be applicable to the pools of cells, what makes
this method undesirable for single-cell expression analysis.
Therefore, the authors deconvolved the estimates for each
pool into the estimates for its constituent cells, ensuring
proper normalization of cell-specific biases. Therefore, pool-
based normalized read counts can be effectively combined
with differential expression analysis methods such as edgeR
(McCarthy et al., 2012).

Due to the complex nature of microbiomes, one can
expect a large number of unmapped reads. The use of single
cell transcriptomes would allow generation and/or updating
of reference resources. For example, de novo assembly of
unmapped reads in each single cell to construct contigs using
the assembly tool, Minia (Chikhi and Rizk, 2013) followed by
scaffolding can be used to generate a new genome based on
the Genome-organization-framework-assisted assembly pipeline
and our previous knowledge of prokaryotic genome organization
principles (Yin et al., 2010; Ma and Xu, 2013; Yuan et al., 2017).

Bacterial Transcription Unit Profiling
Based on the normalized read counts data, the basic transcript
units (TU) and their expression values are determined by
counting the number of reads that map to each TU. Machine
learning algorithms such as SeqTU also enable accurate
prediction and identification of TUs (Chou et al., 2015).

A web server of this algorithm1 was developed in 2017 and
is available to automatically identify TUs with given RNA-
seq data for any bacterium (Chen X. et al., 2017). In 2019,
an R package was released to perform the TU identification
locally (Niu et al., 2019). The predicted TUs are displayed
intuitively using HTML format along with a graphic visualization
of the prediction.

Species and Cell Clustering
In scRNA-seq of bacterial communities, clustering based on
their expression profiles and the cluster can be evaluated
in two different ways: (1) biological process-based, and (2)
taxonomy-based. In the first approach, each cluster is evaluated
for enriched biological processes compared to other clusters
using Gene set enrichment analysis (Subramanian et al.,
2005) and the Database for annotation, visualization and
integrated discovery (Dennis et al., 2003). This approach can
be expected to determine distinct groups of cells within the
microbiome that are enriched in distinct biological processes,
for example chemotaxis, cell attachment, N fixation and
metabolism, and cell multiplication. In addition, it may be
possible to identify groups of cells with a distinct spatial
location within the plant-associated microbiome based on
their expression profiles; for example, those bacterial cells
expressing attachment proteins are likely to be attached to
plant surfaces, those expressing extra cellular matrix-associated
proteins and displaying reduced expression of flagellar proteins
are likely to be embedded in biofilms, and those expressing
flagellar proteins are likely to be planktonic cells. In the
second approach, the distribution of cells of the same species
in different functional clusters and spatial groups can be
evaluated. The results can be used to determine if and how
different cells of the same species are functionally organized
within the microbiome community at each given time point.
Reconstructing the predicted microbiomes at each time point
based on their spatial and functional information can be a
crucial outcome of these analyses. A number of additional
single-cell analytical tools are also available for these steps
(see Table 1).

DEVELOPMENT OF SCRNA-SEQ
METHODS FOR PLANT-ASSOCIATED
BACTERIAL COMMUNITIES

Establishment of Defined Microbial
Communities for Method Development
We suggest selecting a defined microbial community with
8–10 distinct representative bacterial isolates. For example, to
evaluate the assembly of a diazotroph community in cereal
plant rhizospheres a mixture of Herbaspirillum seropedicae
(20%), Azospirillum brasiliense (5%), Bacillus thuringiensis (10%),
Rhizobium leguminosarum (15%), Flavobacterium frigidarium
(8%), Actinokineospora diospyrosa (12%), Bradyrhizobium sp.

1http://bmbl.sdstate.edu/SeqTU_dev/
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TABLE 1 | Summary of popular analytical tools for scRNA-Seq.

Tools Year Program Tags

SAMtools (Li et al., 2009) 2009 C (Not scRNA-Seq specific) post-alignment processing

STAR (Dobin et al., 2013) 2013 C (Not scRNA-Seq specific) alignment

Monocle2 (Qiu et al., 2017) 2017 R Clustering, differential expression, dimensionality reduction, visualization

BackSPIN (Zeisel et al., 2015) 2015 Python Gene filtering, biclustering, cell type prediction

SINCERA (Guo et al., 2015) 2015 R Quality control, normalization, gene filtering, clustering, differential expression, marker
genes, cell type prediction

MAST (Finak et al., 2015) 2015 R Quality control, normalization, differential expression, network construction

Kallisto (Bray et al., 2016) 2016 C Quantification

BPSC (Vu et al., 2016) 2016 R beta-Poisson mixture model

salmon (Patro et al., 2017) 2017 C++ UMI, quantification

UMI-tools (Smith et al., 2017) 2017 Python UMI, quantification

SC3 (Kiselev et al., 2017) 2017 R Gene filtering, clustering, cell type prediction

Scater (McCarthy et al., 2017) 2017 R Quantification, quality control, normalization, dimensional reduction, visualization

SCENIC (Aibar et al., 2017) 2017 R/Python Clustering, network construction, regulon prediction, visualization

Seurat (Butler et al., 2018) 2018 R Normalization, gene filtering, clustering, differential expression, marker gene, dimensionality
reduction, visualization

SAVER (Huang et al., 2018) 2018 R Imputation

SCDE (Fan et al., 2016) 2016 R Differential expression, pathway analysis, visualization

GeneQC (McDermaid et al., 2018) 2018 Server Alignment, mapping uncertainty, realignment, quantification

IRIS-EDA (Monier et al., 2019) 2019 Server Database Correlation analysis, clustering, differential expression, visualization, dimensionality reduction

KEGG (Kanehisa et al., 2017) 2017 Gene annotation

EnrichR (Kuleshov et al., 2016) 2016 Database Enrichment analysis

Harmonizome (Rouillard et al., 2016) 2016 Gene/protein function

SwissRegulon (Pachkov et al., 2012) 2013 Regulon database

reactome (Joshi-Tope et al., 2005) 2005 Gene annotation, pathway construction

The tool names are hyperlinked to the relevant package, and the publication year is hyperlinked to the relevant reference.

(20%), and Methylibium sp. (10%) can be used (Mao et al.,
2014; Soni et al., 2017). A subset of ∼5,000 cells of this
defined microbiome can be used to develop and optimize
bacterial single-cell sequencing technologies. Single-cell
transcriptomes of mammalian cells at a depth of 50,000 paired
end reads per cell were sufficient to distinguish different stages
of developing human neuronal cortex cells (Pollen et al.,
2014). This and other similar studies showed that merged
single-cell transcriptomes accurately represent a majority
of the ensembled transcriptomes with strongly correlated
expression levels. Plant-associated microbial communities
on the other hand, contain uncharacterized species with
genomes that are not as well annotated as the human genome.
However, bacterial genomes typically have <5000 ORFs.
Therefore, we expect that a sequencing depth of ∼100,000
reads per cell will allow a meaningful gene annotation and
data interpretation.

Evaluation of scRNA-Seq Results
Distinct benchmarks are essential to evaluate the results from
scRNA-seq of the defined microbiomes and to validate the
developed method for experimental samples. After reads are split
according to barcode or assigned to individual microbial cells,
they can be mapped to the known genomes of the 8 selected
microbial species (see above) in a defined community. Ideally,
all reads with the same barcode or those that came from a

single cell should map to a single bacterial genome barring
some highly conserved genes. Nevertheless, the results from these
analyses can provide a benchmark to evaluate the accuracy with
which scRNA-seq is able to distinguish transcripts from each
individual bacterial species. Similar to the comparison of scRNA-
seq data to bulk cell RNA-seq datasets from individual species
(Kang et al., 2011; Wang et al., 2015), community scRNA-seq
data need to be compared to metatranscriptomes of the same
defined microbiome after mRNA enrichment and in vitro library
construction. The results from this comparison can be used to
evaluate the conformity of both data sets.

OPPORTUNITIES AND CHALLENGES IN
SCRNA-SEQ OF PLANT-ASSOCIATED
BACTERIAL COMMUNITIES

Evaluating the gene expression patterns in individual cells
of plant-associated bacterial communities can provide
transformative information not only about the gene expression
levels and thereby function in individual members of different
species but also about the spatial organization of bacterial
communities in plant microbiomes. For example, cells with
a higher expression of genes involved in exopolysaccharide
synthesis are likely part of biofilms, while those expressing
pili-encoding genes are likely attached to the plant surface. The
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estimated sequencing depth of 500 million reads per sample of
5000 cells [100,000 reads per cell] can be obtained from two
sequencing runs (e.g., one high output run with ∼350–400 Mio
reads and one medium output run with 120–130 Mio reads
on an Illumina NextSeq500) making this approach relatively
inexpensive given the depth of information obtained. One of
the major challenges is the complexity associated with multiple
bacterial genomes present in the community, and the extent
of genome sequence information available for each species.
Nevertheless, since transcripts from each cell are tagged, general
functional capacities expressed in individual bacterial cells can
be determined. In fact, it becomes increasingly clear that
the metabolic functions of bacterial communities are more
important than their taxonomic composition (Louca et al., 2016;
Wallace et al., 2018).

AUTHOR CONTRIBUTIONS

SS conceptualized the review topic. All authors wrote and
edited the manuscript.

FUNDING

Research in the authors’ laboratories are supported by funds from
grant awards from the National Science Foundation/EPSCoR
Cooperative Agreements #IIA-1355423 and 1849206, NSF-PGRP
(IOS-1350189 to SS), NSF-MRI (#1532189 to JG), USDA-NIFA-
AFRI (2016-67014-24589 to SS and 2017-67014-26530 to HB),
and SD Agricultural Experiment Station (SD00H543-15 to SS and
SD00H642-18 to HB).

REFERENCES
Aibar, S., Gonzalez-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,

Hulselmans, G., et al. (2017). SCENIC: single-cell regulatory network inference
and clustering. Nat. Methods 14, 1083–1086. doi: 10.1038/nmeth.4463

Armour, C. D., Amorese, D., Li, B., and Kurn, N. (2018).Compositions andMethods
for Negative Selection of Non-Desired Nucleic Acid Sequences. Palo Alto, CA:
USA patent application.

Armour, C. D., Castle, J. C., Chen, R., Babak, T., Loerch, P., Jackson, S., et al.
(2009). Digital transcriptome profiling using selective hexamer priming for
cDNA synthesis. Nat. Methods 6, 647–649. doi: 10.1038/nmeth.1360

Bai, Y., Muller, D. B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., et al.
(2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature
528, 364–369. doi: 10.1038/nature16192

Balestrini, R., Gómez-Ariza, J., Klink, V. P., and Bonfante, P. (2009). Application
of laser microdissection to plant pathogenic and symbiotic interactions. J. Plant
Interact. 4, 81–92. doi: 10.1080/17429140902770396

Bogino, P., Abod, A., Nievas, F., and Giordano, W. (2013). Water-limiting
conditions alter the structure and biofilm-forming ability of bacterial
multispecies communities in the alfalfa rhizosphere. PLoS One 8:e79614.
doi: 10.1371/journal.pone.0079614

Bouffaud, M. L., Poirier, M. A., Muller, D., and Moenne-Loccoz, Y. (2014). Root
microbiome relates to plant host evolution in maize and other Poaceae. Environ.
Microbiol. 16, 2804–2814. doi: 10.1111/1462-2920.12442

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi: 10.
1038/nbt.3519

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411–420. doi: 10.1038/nbt.4096

Castiblanco, L. F., and Sundin, G. W. (2016). New insights on molecular regulation
of biofilm formation in plant-associated bacteria. J. Integr. Plant Biol. 58,
362–372. doi: 10.1111/jipb.12428

Chen, C. H., Cho, S. H., Chiang, H. I., Tsai, F., Zhang, K., and Lo, Y. H. (2011).
Specific sorting of single bacterial cells with microfabricated fluorescence-
activated cell sorting and tyramide signal amplification fluorescence in situ
hybridization. Anal. Chem. 83, 7269–7275. doi: 10.1021/ac2013465

Chen, X., Chou, W.-C., Ma, Q., and Xu, Y. (2017). SeqTU: a web server for
identification of bacterial transcription units. Sci. Rep. 7:43925. doi: 10.1038/
srep43925

Chen, Z., Chen, L., and Zhang, W. (2017). Tools for genomic and transcriptomic
analysis of microbes at single-cell level. Front. Microbiol. 8:1831. doi: 10.3389/
fmicb.2017.01831

Chikhi, R., and Rizk, G. (2013). Space-efficient and exact de Bruijn graph
representation based on a Bloom filter. Algorithms Mol. Biol. 8:22. doi: 10.1186/
1748-7188-8-22

Chou, W.-C., Ma, Q., Yang, S., Cao, S., Klingeman, D. M., Brown, S. D., et al. (2015).
Analysis of strand-specific RNA-seq data using machine learning reveals the

structures of transcription units in Clostridium thermocellum. Nucleic Acids Res.
43:e67. doi: 10.1093/nar/gkv177

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C.,
et al. (2003). DAVID: database for annotation, visualization, and integrated
discovery. Genome Biol. 4:R60.

Deshayes, C., Siegwart, M., Pauron, D., Froger, J. A., Lapied, B., and Apaire-
Marchais, V. (2017). Microbial pest control agents: are they a specific and
safe tool for insect pest management? Curr. Med. Chem. 24, 2959–2973.
doi: 10.2174/0929867324666170314144311

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K.,
Bhatnagar, S., et al. (2015). Structure, variation, and assembly of the root-
associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911–E920.
doi: 10.1073/pnas.1414592112

Evans, C., Hardin, J., and Stoebel, D. M. (2018). Selecting between-sample RNA-
Seq normalization methods from the perspective of their assumptions. Brief
Bioinform. 19, 776–792. doi: 10.1093/bib/bbx008

Fan, J., Salathia, N., Liu, R., Kaeser, G. E., Yung, Y. C., Herman, J. L., et al.
(2016). Characterizing transcriptional heterogeneity through pathway and gene
set overdispersion analysis. Nat. Methods 13, 241–244. doi: 10.1038/nmeth.
3734

Fan, X., Zhang, X., Wu, X., Guo, H., Hu, Y., Tang, F., et al. (2015). Single-
cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse
preimplantation embryos. Genome Biol. 16:148. doi: 10.1186/s13059-015-
0706-1

Finak, G., Mcdavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., et al. (2015).
MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol.
16:278. doi: 10.1186/s13059-015-0844-5

Fröhlich, J., and König, H. (2006). “Micromanipulation techniques for the isolation
of single microorganisms,” in Intestinal Microorganisms of Termites and Other
Invertebrates., Vol. 6, eds H. König, and A. Varma, (Heidelberg: Springer),
425–437. doi: 10.1007/3-540-28185-1_18

Gasch, A. P., Yu, F. B., Hose, J., Escalante, L. E., Place, M., Bacher, R., et al.
(2017). Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory
heterogeneity in yeast responding to stress. PLoS Biol. 15:e2004050. doi: 10.
1371/journal.pbio.2004050

Gentzel, I., Giese, L., Zhao, W., Alonso, A. P., and Mackey, D. (2019). A simple
method for measuring apoplast hydration and collecting apoplast contents.
Plant Physiol. 179, 1265–1272. doi: 10.1104/pp.18.01076

Gomez, S. K., and Harrison, M. J. (2009). Laser microdissection and its application
to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest. Manag.
Sci. 65, 504–511. doi: 10.1002/ps.1715

Gross, A., Schondube, J., Niekrawitz, S., Streule, W., Riegger, L., Zengerle, R., et al.
(2013). Single-cell printer: automated, on demand, and label free. J. Lab. Autom.
18, 504–518. doi: 10.1177/2211068213497204

Frontiers in Microbiology | www.frontiersin.org 9 October 2019 | Volume 10 | Article 2452

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.1360
https://doi.org/10.1038/nature16192
https://doi.org/10.1080/17429140902770396
https://doi.org/10.1371/journal.pone.0079614
https://doi.org/10.1111/1462-2920.12442
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1111/jipb.12428
https://doi.org/10.1021/ac2013465
https://doi.org/10.1038/srep43925
https://doi.org/10.1038/srep43925
https://doi.org/10.3389/fmicb.2017.01831
https://doi.org/10.3389/fmicb.2017.01831
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1093/nar/gkv177
https://doi.org/10.2174/0929867324666170314144311
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1073/pnas.1414592112
https://doi.org/10.1093/bib/bbx008
https://doi.org/10.1038/nmeth.3734
https://doi.org/10.1038/nmeth.3734
https://doi.org/10.1186/s13059-015-0706-1
https://doi.org/10.1186/s13059-015-0706-1
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1007/3-540-28185-1_18
https://doi.org/10.1371/journal.pbio.2004050
https://doi.org/10.1371/journal.pbio.2004050
https://doi.org/10.1104/pp.18.01076
https://doi.org/10.1002/ps.1715
https://doi.org/10.1177/2211068213497204
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02452 October 25, 2019 Time: 17:20 # 10

Ma et al. Single-Cell RNA-Seq in Bacteria

Guo, M., Wang, H., Potter, S. S., Whitsett, J. A., and Xu, Y. (2015). SINCERA:
a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput. Biol.
11:e1004575. doi: 10.1371/journal.pcbi.1004575

Hassani, M. A., Durán, P., and Hacquard, S. (2018). Microbial interactions within
the plant holobiont. Microbiome 6:58. doi: 10.1186/s40168-018-0445-0

Hodson, R. E., Dustman, W. A., Garg, R. P., and Moran, M. A. (1995). In situ PCR
for visualization of microscale distribution of specific genes and gene products
in prokaryotic communities. Appl. Environ. Microbiol. 61, 4074–4082.

Hohnadel, M., Maumy, M., and Chollet, R. (2018). Development of a
micromanipulation method for single cell isolation of prokaryotes and its
application in food safety. PLoS One 13:e0198208. doi: 10.1371/journal.pone.
0198208

Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., et al. (2018).
SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods
15:539. doi: 10.1038/s41592-018-0033-z

Hwang, B., Lee, J. H., and Bang, D. (2018). Single-cell RNA sequencing
technologies and bioinformatics pipelines. Exp. Mol. Med. 50:96. doi: 10.1038/
s12276-018-0071-8

Ishoy, T., Kvist, T., Westermann, P., and Ahring, B. K. (2006). An improved
method for single cell isolation of prokaryotes from meso-, thermo- and
hyperthermophilic environments using micromanipulation. Appl. Microbiol.
Biotechnol. 69, 510–514. doi: 10.1007/s00253-005-0014-x

Jahiri, X. (2013). Isolation of Fungal Endophytes from Grasses by Laser Micro
Dissection & Pressure Catapulting. Harstad: The Arctic University of Norway.

Joshi-Tope, G., Gillespie, M., Vastrik, I., D’eustachio, P., Schmidt, E., De Bono, B.,
et al. (2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids
Res. 33, D428–D432.

Kämpfer, P. (2006). Detection and cultivation of filamentous bacteria from
activated sludge. FEMS Microbiol. Ecol. 23, 169–181. doi: 10.1111/j.1574-6941.
1997.tb00400.x

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 45, D353–D361. doi: 10.1093/nar/gkw1092

Kang, Y., Mcmillan, I., Norris, M. H., and Hoang, T. T. (2015). Single prokaryotic
cell isolation and total transcript amplification protocol for transcriptomic
analysis. Nat. Protoc. 10, 974–984. doi: 10.1038/nprot.2015.058

Kang, Y., Norris, M. H., Zarzycki-Siek, J., Nierman, W. C., Donachie, S. P.,
and Hoang, T. T. (2011). Transcript amplification from single bacterium for
transcriptome analysis. Genome Res. 21, 925–935. doi: 10.1101/gr.116103.110

Keloth, A., Anderson, O., Risbridger, D., and Paterson, L. (2018). Single
cell isolation using optical tweezers. Micromachines 9:E434. doi: 10.3390/
mi9090434

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., et al.
(2017). SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14,
483–486. doi: 10.1038/nmeth.4236

Knief, C. (2014). Analysis of plant microbe interactions in the era of next
generation sequencing technologies. Front. Plant Sci. 5:216. doi: 10.3389/fpls.
2014.00216

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang,
Z., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 44, W90–W97. doi: 10.1093/nar/gkw377

Kurn, N., Chen, P., Heath, J. D., Kopf-Sill, A., Stephens, K. M., and Wang, S.
(2005). Novel isothermal, linear nucleic acid amplification systems for highly
multiplexed applications. Clin. Chem. 51, 1973–1981. doi: 10.1373/clinchem.
2005.053694

Langmead, B. (2010). Aligning short sequencing reads with bowtie. Curr. Protoc.
Bioinform. Chapter 11:Unit11.7. doi: 10.1002/0471250953.bi1107s32

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., Srivastava, D. S., Parfrey, L. W.,
et al. (2016). High taxonomic variability despite stable functional structure
across microbial communities. Nat. Ecol. Evol. 1:15. doi: 10.1038/s41559-016-
0015

Lun, A. T., Bach, K., and Marioni, J. C. (2016). Pooling across cells to normalize
single-cell RNA sequencing data with many zero counts. Genome Biol. 17:75.
doi: 10.1186/s13059-016-0947-7

Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S.,
et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature
488, 86–90. doi: 10.1038/nature11237

Ma, Q., and Xu, Y. (2013). Global genomic arrangement of bacterial genes is closely
tied with the total transcriptional efficiency. Genom. Proteomics Bioinform. 11,
66–71. doi: 10.1016/j.gpb.2013.01.004

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al.
(2015). Highly parallel genome-wide expression profiling of individual cells
using nanoliter droplets. Cell 161, 1202–1214. doi: 10.1016/j.cell.2015.05.002

Mao, Y., Li, X., Smyth, E. M., Yannarell, A. C., and Mackie, R. I. (2014). Enrichment
of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass
(Panicum virgatum L.) through root exudates. Environ. Microbiol. Rep. 6,
293–306. doi: 10.1111/1758-2229.12152

McCarthy, D. J., Campbell, K. R., Lun, A. T., and Wills, Q. F. (2017). Scater:
pre-processing, quality control, normalization and visualization of single-cell
RNA-seq data in R. Bioinformatics 33, 1179–1186. doi: 10.1093/bioinformatics/
btw777

McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis
of multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res. 40, 4288–4297. doi: 10.1093/nar/gks042

McDermaid, A., Chen, X., Zhang, Y., Wang, C., Gu, S., Xie, J., et al. (2018). A
new machine learning-based framework for mapping uncertainty analysis in
rna-seq read alignment and gene expression estimation. Front. Genet. 9:313.
doi: 10.3389/fgene.2018.00313

McPherson, M. R., Wang, P., Marsh, E. L., Mitchell, R. B., and Schachtman, D. P.
(2018). Isolation and analysis of microbial communities in soil, rhizosphere,
and roots in perennial grass experiments. J. Vis. Exp. 137:e57932. doi: 10.3791/
57932

Monier, B., Mcdermaid, A., Wang, C., Zhao, J., Miller, A., Fennell, A., et al.
(2019). IRIS-EDA: an integrated RNA-Seq interpretation system for gene
expression data analysis. PLoS Comput. Biol. 15:e1006792. doi: 10.1371/journal.
pcbi.1006792

Müller, S., and Nebe-von-Caron, G. (2010). Functional single-cell analyses: flow
cytometry and cell sorting of microbial populations and communities. FEMS
Microbiol. Rev. 34, 554–587. doi: 10.1111/j.1574-6976.2010.00214.x

Nakazono, M. (2003). Laser-capture microdissection, a tool for the global analysis
of gene expression in specific plant cell types: identification of genes expressed
differentially in epidermal cells or vascular tissues of maize. Plant Cell 15,
583–596. doi: 10.1105/tpc.008102

Niu, S.-Y., Liu, B., Ma, Q., and Chou, W.-C. (2019). rSeqTU—a machine-learning
based R package for prediction of bacterial transcription units. Front. Genet.
10:374. doi: 10.3389/fgene.2019.00374

Pachkov, M., Balwierz, P. J., Arnold, P., Ozonov, E., and Van Nimwegen, E. (2012).
SwissRegulon, a database of genome-wide annotations of regulatory sites:
recent updates. Nucleic Acids Res. 41, D214–D220. doi: 10.1093/nar/gks1145

Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., et al.
(2016). From the lab to the farm: an industrial perspective of plant beneficial
microorganisms. Front. Plant Sci. 7:1110. doi: 10.3389/fpls.2016.01110

Parsley, L. C., Newman, M. M., and Liles, M. R. (2010). Fluorescence
in situ hybridization of bacterial cell suspensions. Cold Spring Harb. Protoc.
2010:pdb.prot5493. doi: 10.1101/pdb.prot5493

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017).
Salmon provides fast and bias-aware quantification of transcript expression.
Nat. Methods 14:417. doi: 10.1038/nmeth.4197

Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., et al. (2013).
Diversity and heritability of the maize rhizosphere microbiome under field
conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553. doi: 10.1073/pnas.
1302837110

Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H.,
et al. (2014). Low-coverage single-cell mRNA sequencing reveals cellular
heterogeneity and activated signaling pathways in developing cerebral cortex.
Nat. Biotechnol. 32, 1053–1058. doi: 10.1038/nbt.2967

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., et al. (2017).
Reversed graph embedding resolves complex single-cell trajectories. Nat.
Methods 14, 979–982. doi: 10.1038/nmeth.4402

Raghunathan, A., Ferguson, H. R. Jr., Bornarth, C. J., Song, W., Driscoll, M.,
Lasken, R. S., et al. (2005). Genomic DNA amplification from a single

Frontiers in Microbiology | www.frontiersin.org 10 October 2019 | Volume 10 | Article 2452

https://doi.org/10.1371/journal.pcbi.1004575
https://doi.org/10.1186/s40168-018-0445-0
https://doi.org/10.1371/journal.pone.0198208
https://doi.org/10.1371/journal.pone.0198208
https://doi.org/10.1038/s41592-018-0033-z
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1007/s00253-005-0014-x
https://doi.org/10.1111/j.1574-6941.1997.tb00400.x
https://doi.org/10.1111/j.1574-6941.1997.tb00400.x
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1038/nprot.2015.058
https://doi.org/10.1101/gr.116103.110
https://doi.org/10.3390/mi9090434
https://doi.org/10.3390/mi9090434
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.3389/fpls.2014.00216
https://doi.org/10.3389/fpls.2014.00216
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1373/clinchem.2005.053694
https://doi.org/10.1373/clinchem.2005.053694
https://doi.org/10.1002/0471250953.bi1107s32
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/s41559-016-0015
https://doi.org/10.1038/s41559-016-0015
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1038/nature11237
https://doi.org/10.1016/j.gpb.2013.01.004
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1111/1758-2229.12152
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/nar/gks042
https://doi.org/10.3389/fgene.2018.00313
https://doi.org/10.3791/57932
https://doi.org/10.3791/57932
https://doi.org/10.1371/journal.pcbi.1006792
https://doi.org/10.1371/journal.pcbi.1006792
https://doi.org/10.1111/j.1574-6976.2010.00214.x
https://doi.org/10.1105/tpc.008102
https://doi.org/10.3389/fgene.2019.00374
https://doi.org/10.1093/nar/gks1145
https://doi.org/10.3389/fpls.2016.01110
https://doi.org/10.1101/pdb.prot5493
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1073/pnas.1302837110
https://doi.org/10.1073/pnas.1302837110
https://doi.org/10.1038/nbt.2967
https://doi.org/10.1038/nmeth.4402
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02452 October 25, 2019 Time: 17:20 # 11

Ma et al. Single-Cell RNA-Seq in Bacteria

bacterium. Appl. Environ. Microbiol. 71, 3342–3347. doi: 10.1128/aem.71.6.
3342-3347.2005

Riba, J., Gleichmann, T., Zimmermann, S., Zengerle, R., and Koltay, P. (2016).
Label-free isolation and deposition of single bacterial cells from heterogeneous
samples for clonal culturing. Sci. Rep. 6:32837. doi: 10.1038/srep32837

Rosenberg, A. B., Roco, C., Muscat, R. A., Kuchina, A., Mukherjee, S., Chen, W.,
et al. (2017). Scaling single cell transcriptomics through split pool barcoding.
bioRxiv [preprint]. doi: 10.1101/105163

Rosenberg, A. B., Roco, C. M., Muscat, R. A., Kuchina, A., Sample, P., Yao, Z., et al.
(2018). Single-cell profiling of the developing mouse brain and spinal cord with
split-pool barcoding. Science 360, 176–182. doi: 10.1126/science.aam8999

Rouillard, A. D., Gundersen, G. W., Fernandez, N. F., Wang, Z., Monteiro, C. D.,
Mcdermott, M. G., et al. (2016). The harmonizome: a collection of processed
datasets gathered to serve and mine knowledge about genes and proteins.
Database 2016:baw100. doi: 10.1093/database/baw100

Russell, J. H., and Keiler, K. C. (2009). Subcellular localization of a bacterial
regulatory RNA. Proc. Natl. Acad. Sci. U.S.A. 106, 16405–16409. doi: 10.1073/
pnas.0904904106

Simon, J. C., Marchesi, J. R., Mougel, C., and Selosse, M. A. (2019). Host-microbiota
interactions: from holobiont theory to analysis. Microbiome 7:5. doi: 10.1186/
s40168-019-0619-4

Sloan, S. S., and Lebeis, S. L. (2015). Exercising influence: distinct biotic interactions
shape root microbiomes. Curr. Opin. Plant Biol. 26, 32–36. doi: 10.1016/j.pbi.
2015.05.026

Smith, T., Heger, A., and Sudbery, I. (2017). UMI-tools: modeling sequencing
errors in unique molecular identifiers to improve quantification accuracy.
Genome Res. 27, 491–499. doi: 10.1101/gr.209601.116

Soni, R., Kumar, V., Suyal, D. C., Jain, L., and Goel, R. (2017). “Metagenomics of
plant rhizosphere microbiome,” inUnderstanding Host-Microbiome Interactions
- An Omics Approach: Omics of Host-Microbiome Association, eds R. P. Singh,
R. Kothari, P. G. Koringa, and S. P. Singh, (Singapore: Springer Singapore),
193–205. doi: 10.1007/978-981-10-5050-3_12

Stovicek, V., Vachova, L., and Palkova, Z. (2012). Yeast biofilm colony as
an orchestrated multicellular organism. Commun. Integr. Biol. 5, 203–205.
doi: 10.4161/cib.18912

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102
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