AUTHOR=Nair Rashmi Ravindran , Sharan Deepti , Ajitkumar Parthasarathi TITLE=A Minor Subpopulation of Mycobacteria Inherently Produces High Levels of Reactive Oxygen Species That Generate Antibiotic Resisters at High Frequency From Itself and Enhance Resister Generation From Its Major Kin Subpopulation JOURNAL=Frontiers in Microbiology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01842 DOI=10.3389/fmicb.2019.01842 ISSN=1664-302X ABSTRACT=
Antibiotic-exposed bacteria produce elevated levels of reactive oxygen species (ROS), to which either they succumb or get mutated genome-wide to generate antibiotic resisters. We recently showed that mycobacterial cultures contained two subpopulations, short-sized cells (SCs; ∼10%) and normal/long-sized cells (NCs; ∼90%). The SCs were significantly more antibiotic-susceptible than the NCs. It implied that the SCs might naturally be predisposed to generate significantly higher levels of ROS than the NCs. This in turn could make the SCs more susceptible to antibiotics or generate more resisters as compared to the NCs. Investigation into this possibility showed that the SCs in the actively growing mid-log phase culture naturally generated significantly high levels of superoxide, as compared to the equivalent NCs, due to the naturally high expression of a specific NADH oxidase in the SCs. This caused labile Fe2+ leaching from 4Fe-4S proteins and elevated H2O2 formation through superoxide dismutation. Thus, the SCs of both