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Editorial on the Research Topic

Environmental Bacteriophages: From Biological Control Applications to Directed

Bacterial Evolution

The first bacterial viruses (termed bacteriophages, or phages, “eaters of bacteria”) were discovered
only at the beginning of the twentieth century, independently in England by Twort in 1915 and in
France by d’Herelle in 1917 (Hadley, 1928; Abedon, 2008). Soon after their initial discovery, they
have been investigated for the cure or prevention of dozens of bacterial diseases in humans and
animals (Duckworth and Gulig, 2002; Buttimer et al., 2017). This therapeutic focus has however
declined in the next 30 years due to the discovery of the first antibiotics and rapid development of
antibiotic-based therapies in 1950s and 1960s (Sulakvelidze and Morris, 2001).

Despite the fact that phages were recognized early to be extremely abundant in the biosphere,
existing in all environments where bacteria occur, only very little research was targeted to
understand their ecological roles (Summers, 2012). Even today, studies about the role of bacterial
viruses in most complex ecosystems are uncommon and the impact of bacterial viruses on
cohabitating microorganisms is little appreciated (Rohwer et al., 2009). While knowledge of
environmental bacteriophages has increased in the last 10 years (Miller, 2001; Muniesa et al.,
2013), there is still much to learn about their roles in even about the most widely-studied
environments such as the rhizosphere, phyllosphere, and human gut. It will be through such
work that we might more wisely use phages in medical and biotechnological applications. To
bolster the field, the Research Topic “Environmental Bacteriophages: from Biological Control
Applications to Directed Bacterial Evolution” was developed with the aim of emphasizing the role
of bacterial viruses in the spread, adaptation, evolution, and control of their bacterial hosts with an
environmental perspective.

Many of the known roles of bacteriophages in natural ecosystems have been developed from
studies of phage-microbial communities in both freshwater and seawater habitats (Middelboe and
Brussaard, 2017). In the global ocean, lytic bacteriophages are known to be the key regulators
of nutrient cycles as organic matter derived from lysed host cells are immediately consumed
by heterotrophic bacteria (Fuhrman, 1999). As natural inhabitants of aquatic environments,
bacteriophages have also been investigated as biological control agents of marine pathogenic
bacteria (Sandaa et al., 2009). Two studies in this Research Topic targeted the use of bacterial viruses
to control pathogens in aqueous systems. The paper of Jacquemot et al. describes the isolation and
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characterization of the lytic bacteriophage BONAISHI. This
phage was able to effectively reduce populations of Vibrio
coralliilyticus causing bleaching of coral reefs. The results suggest
that the virus can be utilized as a biological control agent to
protect coral reefs against V. coralliilyticus pathogens. In the
second study, Scarascia et al. used lytic bacteriophages isolated
from a wastewater treatment plant to control Pseudomonas
aeruginosa under saline conditions. In addition to being
human pathogens, these biofilm-developing bacteria are a major
problem in water-desalination systems in which they cause
clogging of the membranes used in this process and consequently
cause malfunctions of desalination plants. The work of Scarascia
et al. provides proof-of-concept of the use of bacteriophages
to decrease the size of biofilms—a process that may prove
to be an environmental friendly alternative to the use of
chemical and physical treatments to reduce biofilm formation in
seawater systems.

Three additional papers describe the interaction of
phage particles with their bacterial hosts in more complex
environments. Balogh et al. and Balogh et al. assessed the
potential of eight lytic bacteriophages infecting the plant
pathogen Xanthomonas perforans to reduce population sizes of
the pathogen in the phyllosphere of grapefruit and tomato plants.
In these two ecosystems the effectiveness of bacteriophages in
killing the pathogen was variable. A strong, positive association
was only found, surprisingly, between features of the leaf surface
and bacteriophage survival on the leaf. This indicates that
spatial and temporally variable features of the leaf surface may
have a significant impact on bacteriophage multiplication and
viability, and therefore the efficacy of biological control of plant
disease in vivo. Furthermore, these results suggest that the plant
species on which the phages will be applied is an important
component to be recognized in successful biological control of
plant pathogens with lytic bacteriophages. The authors postulate
that due to the different viral survival on different plant species,
phage therapy may be more effective on some crops than on
others—a concept that may revolutionize our understanding of
biological control with the use of bacterial viruses in agriculture.
In another report, Kabanova et al. studied the interaction of lytic
bacteriophage PP35 with its host Dickeya solani—a necrotrophic
plant pathogen causing severe damage to agricultural crops
worldwide (Charkowski, 2007; Van Der Wolf et al., 2014). While
assessing the host range of the virus, the authors found the
saprophytic bacterium Lelliottia sp. strain F154, a member of
the Enterobacteriaceae family but not closely-related to Dickeya
spp., can serve as an alternative host for PP35. In contrast
to D. solani, Lelliottia spp. is an inhabitant of surface waters,
and in the experiments performed by the authors, was found
not to cause disease symptoms in plants. Until this report,
no alternative hosts for lytic phages capable of infecting plant
pathogenic Dickeya spp. had been found (Czajkowski, 2016).
This study, importantly, shows that such an alternative host
may play a pivotal role in facilitating the dissemination of the
bacteriophages in various environments (Koskella and Meaden,
2013). Furthermore, it also shows that lytic phages infecting plant
pathogens may have a broader host range than initially assumed,
and may commonly also be able to infect other saprophytic,

non-pathogenic bacteria, suggesting that their ecological role
may be larger, and potentially more elusive, than previously
supposed (Hyman et al., 2010). A third report by Wandro
et al. addressed the co-evolution of phage EfV12-phi1 and its
host Enterococcus faecium. In this study the authors identified
specific phage and host genes that are undergoing strong
selection pressure during co-evolution in this interaction. Such
experiments may help to both better understand the process of
co-adaptation of viruses and their hosts (Dennehy, 2012), and
also to develop engineered bacteriophages against which the host
cannot easily become resistant (Pires et al., 2016).

By far, the biggest driver in interest of bacterial viruses
remains that of their isolation and use for the control of diseases
in humans, animals and plants (Wagner and Waldor, 2002;
Karthik et al., 2014). The spread of multidrug-resistant human
pathogens as well as the inability to use antibiotics in agriculture
to control pathogens of important crops have led to a resurgence
in interest in environmentally-sound phage therapy to replace the
highly problematic antibiotic therapies. This concept is addressed
by six studies in this Research Topic. Gašić et al. and Attai
et al. isolated and characterized bacteriophages able to control
the plant pathogenic bacterium Xanthomonas euvesicatoria with
phage Kϕ1 andAgrobacterium tumefacienswith phage Atu-ph07.
In these two papers the authors detail the characterization of
the viruses and evaluated them in proof-of-concept experiments
with the pathogens. Both studies postulated that the viruses could
be used to control plant pathogens in situ either alone or as a
part of a cocktail containing several such viruses. The control
of human pathogenic bacteria with the use of lytic phages is
addressed in three reports. The studies of both Topka et al. and
Manohar et al. targeted development of antibacterial therapies
against pathogenic Escherichia coli, Klebsiella pneumonia, and
Enterobacter spp. It is noteworthy that both studies were
done using clinical isolates with confirmed virulence, and that
the phages were tested under conditions resembling natural
settings. Another report by Ahmadi et al. analyses the stability
of two Listeria monocytogenes lytic bacteriophages P100 and
A511 under temperature conditions expected during preparation
of ready-to-use meats. L. monocytogenes remains one of the
most important human pathogens, causing life-threatening
disease with an average mortality of between 25 and 30%. The
use of lytic bacteriophages of L. monocytogenes can reduce
pathogen populations in raw meat products and is an accepted
method to control the spread of this pathogen. The efficacy
of such phage treatments may be, however, variable due to
the high temperatures applied during processing of raw meat.
Bacteriophages P100 and A511 exhibited different temperature-
resistant patterns, with P100 being readily inactivated after
exposure to 71◦C for 30 s, whereas phage A511 was rather
stable under these same conditions. The study of Ahmadi et al.
indicated that when considering the use of phages for control of
pathogenic bacteria in food products, the thermal stability of the
virus is a particularly important consideration. The temperature
component of bacteriophage fitness should remain of utmost
importance also when considering using viruses to control
bacterial pathogens in agriculture and/or environment. It has to
be noted that probably due to the different weather conditions
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(temperatures) in different parts of the globe, phage-based
products may have inconsistent activity on the same pathogen.

A final study in this section describes the analysis of
the lytic Staphylococcus aureus bacteriophage phiAGO1.3.
Glowacka-Rutkowska et al. identified specific features
contributing to the wide host range of this virus as well as
the authors described the strategy utilized by it to co-exist
with its host in the environment. The virus can modulate the
response of S. aureus to phage infection to exhibit a carrier
state (Barksdale and Arden, 1974; Abedon, 2009) in which both
phage-sensitive and phage-insensitive host populations persist in
the same environment.

With the development of new, high-throughput DNA
sequencing methods, the significant decrease in sequencing costs
is a well-recognized benefit for enhancing research (Schuster,
2007). The reduced cost of viral genome sequencing has
resulted in a stunning increase in the number of available
bacteriophage genomes and has facilitated associated genome-
wide taxonomic and metagenomic studies (Hendrix, 2003).
This new thrust is reflected in this Research Topic, in which
one study characterized the genomes of newly discovered
bacteriophages, while another presents a bioinformatic approach
to identify genes encoding endolysins in the genomes of
uncultured environmental bacteriophages. The work of Xu
et al. concentrated on a phage isolated from waste water that
exhibits lytic activity to multidrug-resistant E. coli strains. The
bacteriophage vB_EcoS-B2 was considered to be virulent on
the basis of genomic analyses that revealed the absence of
genes putatively encoding integrase, repressor, and/or anti-
repressor proteins. Likewise, Fan et al. isolated bacteriophage
AJO2 from sludge that was lytic to Acinetobacter johnsonii and
characterized it. The extensive genome analysis revealed that
AJO2 possesses unique features and has low genomic similarity
to other knownAcinetobacter bacteriophages. The features of this
newly characterizedA. johnsonii bacteriophagemay lead to better
control strategies for this pathogen and will undoubtedly shed
light on the adaptation and co-evolution of the bacterial host with
its bacteriophages.

Using the available viral genomic and metagenomic data
and a newly developed bioinformatic pipeline, Fernández-Ruiz
et al. found new genes encoding endolysins by analyzing more

than 180,000 genomes of uncultured bacteriophages. Endolysins

are lytic enzymes that destroy components of host cells.
They are produced by phages at the end of their replication
cycle, thereby allowing the progeny (daughter) viruses to
be released. While many endolysins have been characterized,
the majority of the reported genes and enzymes come from
cultured phages having known hosts, while uncultured bacterial
viruses were identified solely from metagenomic data. The
findings of Fernández-Ruiz et al. reveal that environmental
phage genomes, collected from complex environments including
aquatic and gut microbiomes, may be a valuable source of
new lytic enzymes that can be used in medicine as well as
in biotechnological applications, even if the phages carrying
the genes-of-interest cannot be currently multiplied under
laboratory conditions.

The future of phage research seems to be bright. With
more than two thousand scientific publications related to
bacteriophages appearing annually in the last 10 years (Web
of Science, www.webofknowledge.com/), this field has emerged
from a forgotten, peripheral research area to become a major,
broad scientific topic of the twenty-first century. Bacterial viruses
are now used not only as new therapies for infections caused
by antibiotic-resistant pathogens or the prevention of bacterial
diseases of agriculturally-important crops, but they are also
being used to study the ecological fitness of their hosts and the
biodiversity of complex environments.

Finally, we would like to thank all the authors for their
contributions in this Research Topic, as well as acknowledge
the many reviewers for their critical assessments of the
submitted manuscripts.
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