AUTHOR=Kang Xingxing , Guo Yu , Leng Shuang , Xiao Lei , Wang Lanhua , Xue Yarong , Liu Changhong
TITLE=Comparative Transcriptome Profiling of Gaeumannomyces graminis var. tritici in Wheat Roots in the Absence and Presence of Biocontrol Bacillus velezensis CC09
JOURNAL=Frontiers in Microbiology
VOLUME=10
YEAR=2019
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01474
DOI=10.3389/fmicb.2019.01474
ISSN=1664-302X
ABSTRACT=
This study aimed to explore potential biocontrol mechanisms involved in the interference of antagonistic bacteria with fungal pathogenicity in planta. To do this, we conducted a comparative transcriptomic analysis of the “take-all” pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) by examining Ggt-infected wheat roots in the presence or absence of the biocontrol agent Bacillus velezensis CC09 (Bv) compared with Ggt grown on potato dextrose agar (PDA) plates. A total of 4,134 differentially expressed genes (DEGs) were identified in Ggt-infected wheat roots, while 2,011 DEGs were detected in Bv+Ggt-infected roots, relative to the Ggt grown on PDA plates. Moreover, 31 DEGs were identified between wheat roots, respectively infected with Ggt and Bv+Ggt, consisting of 29 downregulated genes coding for potential Ggt pathogenicity factors – e.g., para-nitrobenzyl esterase, cutinase 1 and catalase-3, and two upregulated genes coding for tyrosinase and a hypothetical protein in the Bv+Ggt-infected roots when compared with the Ggt-infected roots. In particular, the expression of one gene, encoding the ABA3 involved in the production of Ggt’s hormone abscisic acid, was 4.11-fold lower in Ggt-infected roots with Bv than without Bv. This is the first experimental study to analyze the activity of Ggt transcriptomes in wheat roots exposed or not to a biocontrol bacterium. Our results therefore suggest the presence of Bv directly and/or indirectly impairs the pathogenicity of Ggt in wheat roots through complex regulatory mechanisms, such as hyphopodia formation, cell wall hydrolase, and expression of a papain inhibitor, among others, all which merit further investigation.