AUTHOR=Wei Hui , Chen Xiaomei , He Jinhong , Huang Letong , Shen Weijun TITLE=Warming but Not Nitrogen Addition Alters the Linear Relationship Between Microbial Respiration and Biomass JOURNAL=Frontiers in Microbiology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01055 DOI=10.3389/fmicb.2019.01055 ISSN=1664-302X ABSTRACT=

Soil contains a large amount of organic matter, which constitutes the largest terrestrial carbon pool. Heterotrophic or microbial respiration (Rh) that results from microbial decomposition of soil organic carbon (SOC) constitutes a substantial proportion of soil C efflux. Whether soil microbial biomass is of primary importance in controlling Rh remains under debate, and the question of whether the microbial biomass-decomposition relationship changes with warming and nitrogen (N) deposition has rarely been assessed. We conducted an incubation experiment to test the relationship between Rh and the size of soil microbial communities in two layers of soil collected from a natural subtropical forest and to examine whether the relationship was affected by changes in temperature and by added N in different forms. The results showed that regardless of the added N species, the N load did not significantly affect Rh or the size of the soil microbial communities. These results could be due to a long-term N-rich soil condition that acclimates soil microbial communities to resist N inputs into the studied forest; however, warming may significantly stimulate SOC decomposition, reducing soil microbial biomass under high temperatures. A significant linear soil microbial biomass-decomposition relationship was observed in our study, with the coefficients of determination ranging from 54 to 70%. Temperature rather than N additions significantly modified the linear relationship between soil microbial biomass and respiration. These results suggest that warming could impose a more substantial impact than N addition on the relationship between soil microbial biomass and SOC decomposition.