AUTHOR=Kabanova Anastasia P. , Shneider Mikhail M. , Korzhenkov Aleksei A. , Bugaeva Eugenia N. , Miroshnikov Kirill K. , Zdorovenko Evelina L. , Kulikov Eugene E. , Toschakov Stepan V. , Ignatov Alexander N. , Knirel Yuriy A. , Miroshnikov Konstantin A.
TITLE=Host Specificity of the Dickeya Bacteriophage PP35 Is Directed by a Tail Spike Interaction With Bacterial O-Antigen, Enabling the Infection of Alternative Non-pathogenic Bacterial Host
JOURNAL=Frontiers in Microbiology
VOLUME=9
YEAR=2019
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.03288
DOI=10.3389/fmicb.2018.03288
ISSN=1664-302X
ABSTRACT=
Dickeya solani is a recently emerged virulent bacterial potato pathogen that poses a major threat to world agriculture. Because of increasing antibiotic resistance and growing limitations in antibiotic use, alternative antibacterials such as bacteriophages are being developed. Myoviridae bacteriophages recently re-ranked as a separate Ackermannviridae family, such as phage PP35 described in this work, are the attractive candidates for this bacterial biocontrol. PP35 has a very specific host range due to the presence of tail spike protein PP35 gp156, which can depolymerize the O-polysaccharide (OPS) of D. solani. The D. solani OPS structure, →2)-β-D-6-deoxy-D-altrose-(1→, is so far unique among soft-rot Pectobacteriaceae, though it may exist in non-virulent environmental Enterobacteriaceae. The phage tail spike depolymerase degrades the shielding polysaccharide, and launches the cell infection process. We hypothesize that non-pathogenic commensal bacteria may maintain the population of the phage in soil environment.