AUTHOR=de Curcio Juliana S. , Paccez Juliano D. , Novaes Evandro , Brock Mathias , Soares CĂ©lia Maria de Almeida
TITLE=Cell Wall Synthesis, Development of Hyphae and Metabolic Pathways Are Processes Potentially Regulated by MicroRNAs Produced Between the Morphological Stages of Paracoccidioides brasiliensis
JOURNAL=Frontiers in Microbiology
VOLUME=9
YEAR=2018
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.03057
DOI=10.3389/fmicb.2018.03057
ISSN=1664-302X
ABSTRACT=
MicroRNAs are molecules involved in post-transcriptional gene regulation. In pathogenic fungi, microRNAs have been described at different morphological stages by regulating targets involved in processes such as morphogenesis and energy production. Members of the Paracoccidioides complex are the main etiological agents of a systemic mycosis in Latin America. Fungi of the Paracoccidioides complex present a wide range of plasticity to colonize different niches. In response to environmental changes these fungi undergo a morphological switch, remodel their cellular metabolism and modulate structural cell wall components. However, the underlying mechanisms regulating the gene expression is not well understood. By using high performance sequencing and bioinformatics analyses, this work characterizes microRNAs produced by Paracoccidioides brasiliensis. Here, we demonstrated that the transcript encoding proteins involved in microRNA biogenesis were differentially expressed in each morphological stage. In addition, 49 microRNAs were identified in cDNA libraries with 44 differentially regulated among the libraries. Sixteen microRNAs were differentially regulated in comparison to the mycelium in the mycelium-to-yeast transition phase. The yeast parasitic phase revealed a complete remodeling of the expression of these small RNAs. Analyses of targets of the induced microRNAs, from the different libraries, revealed that these molecules may potentially regulate in the cell wall, by repressing genes involved in the synthesis and degradation of glucans and chitin. Furthermore, mRNAs involved in cellular metabolism and development were predicted to be regulated by microRNAs. Therefore, this work describes a putative post transcriptional regulation, mediated by microRNAs in P. brasiliensis and its influence on the adaptive processes of thermal dimorphic fungus.