AUTHOR=Benchouaia Médine , Ripoche Hugues , Sissoko Mariam , Thiébaut Antonin , Merhej Jawad , Delaveau Thierry , Fasseu Laure , Benaissa Sabrina , Lorieux Geneviève , Jourdren Laurent , Le Crom Stéphane , Lelandais Gaëlle , Corel Eduardo , Devaux Frédéric
TITLE=Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata
JOURNAL=Frontiers in Microbiology
VOLUME=9
YEAR=2018
URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.02689
DOI=10.3389/fmicb.2018.02689
ISSN=1664-302X
ABSTRACT=
In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.