AUTHOR=Tan Xiang , Zhang Quanfa , Burford Michele A. , Sheldon Fran , Bunn Stuart E. TITLE=Benthic Diatom Based Indices for Water Quality Assessment in Two Subtropical Streams JOURNAL=Frontiers in Microbiology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.00601 DOI=10.3389/fmicb.2017.00601 ISSN=1664-302X ABSTRACT=

Benthic diatoms have been universally used as indicators to assess water quality in lotic ecosystems. However, most diatom-based indices developed in Europe have not been widely used or tested in other continents such as Asia or Oceania. This study compared the performance of 14 widely-applied diatom indices in assessing ecological conditions in subtropical streams in South East Queensland (SEQ) in Australia and in the upper Han River in China. Most water quality variables in the upper Han River including dissolved organic carbon (DOC), total nitrogen (TN), and soluble reactive phosphorus (SRP) had strong relationships with at least one diatom index, with the exception of IDAP (Index Diatom Artois-Picardie), and TDI (Trophic Diatom Index). However, in SEQ, most of the environmental variables including DOC, ammonia nitrogen (NH4-N), TN, SRP, and electrical conductivity (EC) showed no significant relationships with diatom indices, and the DI-CH (Swiss Diatom Index) and WAT (Watanabe's Index) were unrelated to any of the variables examined. Only pH and nitrite or nitrate nitrogen (NOX-N) were significant predictors of several diatom indices in SEQ, especially TID (Rott trophic index). In the upper Han River, much of the spatial variation in most diatom indices was explained by proximate determinants alone, including EC, DOC, dissolved oxygen (DO) or SRP, or a combination of ultimate (canopy, forest) and proximate factors (R2 in most models> 0.75). Most diatom indices performed as predicted in the upper Han River where nutrient and organic matter pollution was relatively high, and variation in pH low. However, the indices performed poorly in SEQ where the water quality gradient was low and instead most responded to spatial variation in pH. This finding serves as a caution to the application of diatom indices in river basins that fall outside of the range of water quality values of the systems in which they originally developed.