AUTHOR=Gupta Sudheer , Sharma Ashok K. , Jaiswal Shubham K. , Sharma Vineet K. TITLE=Prediction of Biofilm Inhibiting Peptides: An In silico Approach JOURNAL=Frontiers in Microbiology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.00949 DOI=10.3389/fmicb.2016.00949 ISSN=1664-302X ABSTRACT=
Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at