
PERSPECTIVE
published: 17 May 2016

doi: 10.3389/fmicb.2016.00669

Frontiers in Microbiology | www.frontiersin.org 1 May 2016 | Volume 7 | Article 669

Edited by:

Cristina Vilaplana,

Institut d’Investigació Germans Trias i

Pujol, Spain

Reviewed by:

Clara Prats,

Universitat Politècnica de Catalunya,

Spain

James McCracken Trauer,

Monash University, Australia

*Correspondence:

Robert S. Wallis

rwallis@auruminstitute.org;

rswallis@gmail.com

Specialty section:

This article was submitted to

Infectious Diseases,

a section of the journal

Frontiers in Microbiology

Received: 17 December 2015

Accepted: 22 April 2016

Published: 17 May 2016

Citation:

Wallis RS (2016) Mathematical Models

of Tuberculosis Reactivation and

Relapse. Front. Microbiol. 7:669.

doi: 10.3389/fmicb.2016.00669

Mathematical Models of Tuberculosis
Reactivation and Relapse
Robert S. Wallis *

The Aurum Institute, Johannesburg, South Africa

The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly

variable, as is the response to treatment of active tuberculosis. There is presently

no direct means to identify individuals in whom Mtb infection has been eradicated,

whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy.

Mathematical models can assist in such circumstances by measuring or predicting

events that cannot be directly observed. The 3 models discussed in this review illustrate

instances in which mathematical models were used to identify individuals with innate

resistance toMtb infection, determine the etiologic mechanism of tuberculosis in patients

treated with tumor necrosis factor blockers, and predict the risk of relapse in persons

undergoing tuberculosis treatment. These examples illustrate the power of various types

of mathematic models to increase knowledge and thereby inform interventions in the

present global tuberculosis epidemic.
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INTRODUCTION

The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly variable.
Some individuals appear able to eradicate the infection spontaneously, either with or without
expansion ofMtb-specific T cells. In others, the infection is contained but not eradicated, resulting
in a latent Mtb infection (LTBI) that may reactivate years or even decades later. In the most
highly susceptible individuals, Mtb infection may progress directly to active disease, without an
intervening period of latency.

The response to tuberculosis treatment is similarly variable, due to the recurrence of active
disease in some patients ostensibly appearing cured at the end of treatment. There is presently
no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a
bactericidal immune response or sterilizing antimicrobial chemotherapy. Indeed, LTBI presently
can only be definitively identified by its capacity to reactivate or relapse. This inability has hindered
basic research and has delayed tuberculosis vaccine and drug development.

Mathematical models can assist in such circumstances by measuring or predicting events that
cannot be directly observed. Markov models describe time-dependent transitions among states
of a system (Bhat and Miller, 2002), such as the acquisition of Mtb infection and progression to
active tuberculosis. Hidden Markov models can reveal transitions that cannot be observed directly,
such as those preceding active tuberculosis, by the analysis of fluxes through observable transitions.
This approach, which is commonly used in voice recognition software and DNA sequencing, had
not previously been applied in tuberculosis. Mathematical models can also predict clinical events
that have not yet occurred, based on analysis of markers associated with the long-term outcome
of interest. Both approaches can use aggregated data to assess events in cohorts when individual
outcomes cannot be ascertained.
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Three models will be discussed in this review. In the first,
which has not previously been published, a Markov model was
used to assess the likelihood of enhanced innate resistance to
Mtb infection in individuals remaining tuberculin skin test (TST)
negative despite repeated apparent exposure. In the second,
a hidden Markov model was used to determine the relative
involvements of reactivation of latent infection vs. progression
of new infection to the development of active tuberculosis in
persons treated with tumor necrosis factor (TNF) antagonists
(Wallis, 2008). Details from both models have been included
to illustrate how they were created and solved using simple
mathematical tools in Excel. In the last, a statistical model was
developed to predict tuberculosis relapse risk based on treatment
duration and proportion of individuals sputum culture positive
after 2 months (Wallis et al., 2013, 2015). These examples
illustrate the power of various types of mathematic models to
increase knowledge and thereby inform interventions in the
present global tuberculosis epidemic.

IDENTIFYING INNATE RESISTANCE TO
Mtb INFECTION

Transmission of Mtb infection occurs by inhalation of infected
cough generated aerosols by active tuberculosis cases. As a
result, the annual risk of acquiring Mtb infection (ARTI) is
closely linked to tuberculosis prevalence. However, even in a
high-burden country such as South Africa where the majority
of adults are TST positive, TST negative status may indicate
innate resistance to Mtb infection or merely lack of exposure.
South African gold miners, however, are a unique subpopulation
with extraordinarily high tuberculosis risk (3%/year in 2011;
Churchyard et al., 2014).Molecular strain typing indicates at least
32% of cases in this population represent recent transmission
(Mathema et al., 2015). Congregate working, living, and social
conditions in the mines, combined with high prevalence rates
of HIV and silicosis contribute to high levels of ongoing
transmission and disease. Mathematical modeling has estimated
the ARTI among miners is at least 20% (Vynnycky et al.,
2015), roughly 5 times that in high-burden non-mining South

FIGURE 1 | Results of Markov modeling of Mtb infection in South African miners and non-miners. (A) distribution of likely numbers of infection episodes in

40 year old miners and non-miners. (B) Specificity of negative TST for innate Mtb resistance in relation to age. (C) Specificity of negative TST for innate Mtb resistance

in relation to degree of conferred resistance.

African townships (Wood et al., 2010). However, despite this
high level of Mtb exposure, one survey found 13% of 115
HIV-uninfected miners were uninfected (TST = 0mm; Hanifa
et al., 2009). The finding that this relatively large minority of
individuals in this heavily exposed population remain uninfected
was unanticipated.

A Markov model was therefore developed to determine

the likelihood that this unique population represented innate

resistance toMtb infection. It was initially assumed: (1) the ARTI

in the susceptible South African non-mining population was

0.05; (2) this risk was increased 5x among susceptible miners;

(3) work in the mines commenced at age 20 and was continuous

through age 40; (4) the proportion of individuals with innate

resistance to Mtb infection was 0.05 in both the mining and

non-mining populations; and (5) individuals with the resistant

phenotype had 1/5th the ARTI risk of susceptible individuals.

The model did not assess whether TST positive individuals could

resist subsequent infections, nor did it account for removal

of subjects due to active tuberculosis. An Excel file describing

the model is provided as an online Supplementary Material.

The model was then interrogated annually to examine Mtb

infection status in miners and non-miners from birth to age 40

(Figure 1). The most likely number of Mtb infection episodes

in susceptible 40 year olds increased from 2 in non-miners to 6

in miners (Figure 1A). The proportion of uninfected susceptible

individuals dropped from 13% in non-miners to 0.1% in miners.

As a result, the specificity of TST = 0mm as an indicator

of innate Mtb resistance improved from 22% in 40 year old

non-miners to 93% in miners (Figure 1B). Specificity remained

adequate until the degree of conferred resistance dropped below

2 (Figure 1C). The key finding from the modeling exercise was

that, among individuals with a long history of employment

underground in the mines in South Africa, negative TST status

was highly likely to reflect innate resistance to Mtb infection.

Interferon gamma release assay testing can help confirm

the uninfected status of these individuals. Understanding

the mechanism(s) of resistance may lead to therapeutic

strategies targeting the host to counter immune evasion

byMtb.
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DETERMINING THE ETIOLOGY OF
TUBERCULOSIS IN PATIENTS RECEIVING
TNF BLOCKERS

TNF is required for host defenses against mycobacterial infection
(Kindler et al., 1989). It is also central to the pathogenesis of
inflammatory conditions such as rheumatoid arthritis (RA) and
Crohn’s disease. The 2 main classes of TNF blockers include
antibody (e.g., infliximab) and soluble receptor (etanercept being
the sole example at present). The 2 classes are considered
therapeutically equivalent for RA. However, differences in
function among these agents have emerged that appear to
reflect differences in their structures. Infliximab and adalimumab,
for example, are effective in the treatment of granulomatous
conditions such as Crohn’s disease and sarcoidosis, whereas
etanercept is not (Sandborn et al., 2001; Hanauer et al., 2002;
Utz et al., 2003). In vitro, TNF antibodies inhibit T cell activation
and interferon gamma production, whereas etanercept does not
(Saliu et al., 2006; Haider et al., 2007). Inmice, both TNF antibody
and its soluble receptor markedly increase mortality in acuteMtb
infection, but only the antibody exacerbates chronic infection
(Plessner et al., 2007), which is thought to model human latent
infection. The basis of these observations is not fully understood.

Treatment with anti-TNF agents for conditions such as RA
places patients at increased risk of tuberculosis (Keane et al.,
2001; Wallis et al., 2004a,b). The time to tuberculosis onset
after starting an anti-TNF agent provides an important clue
from which its etiology can be discerned, since the clustering of
cases shortly after the start of anti-TNF treatment is consistent
with reactivation of latent infection. For example, the median
time to tuberculosis onset after starting infliximab treatment is
uniformly short (12–21 weeks) in all series in which this has
been examined (Keane et al., 2001; Wallis et al., 2004a; Brassard
et al., 2006). In contrast, this interval for etanercept is 3–5
times longer, nearly equaling the midpoint of the period of data
collection in each study (solid lines, Figure 2 left panel, P <

0.001 by Kaplan-Meier log rank analysis). This pattern, in which
cases accumulate linearly, could be consistent with progression
of new infection to active disease as such events would occur

at random during the period of observation. Alternatively, it
could be due to inefficient reactivation of latent infection, or a
combination of both mechanisms. These mechanisms cannot be
readily distinguished by ordinary clinical observation.

In 2008, a hidden Markov model with 5 states was used

to examine this phenomenon (Figure 2 right panel; Wallis,

2008). The model assumed: (1) no cases of active tuberculosis

are present at baseline; (2) an unknown proportion of persons

have LTBI at baseline (L); (3) the variables describing state

transitions areN (the incidence of new infections each month); R

(the proportion of latent infections that reactivate each month);

and P, the proportion of new infections that progress directly

to tuberculosis) are fixed and unknown. The two treatments

were permitted to affect P and R, but not L or N. Predicted

results were compared to those reported to the US FDA Adverse

Events Reporting System by physicians caring for US and EU

patients treated with anti-TNF agents (solid lines, Figure 2 left

panel). An accuracy score was calculated as the mean squared

difference between observed and predicted recurrences. The

Solver module of Excel was used to iteratively determine values L,

N, P, andR thatminimized this score, using a generalized reduced

gradient algorithm (Walsh and Diamond, 1995). The model was

interrogated at monthly intervals to determine the number of

tuberculosis cases. A range of case rate ratios for infliximab and

etanercept spanning the reported values were then tested in a

Monte Carlo simulation of 600 cases.
The results of a typical simulation are illustrated by the dotted

lines in Figure 2. The close approximation of the observed and
modeled time-to-onset distributions indicate a good fit of this
model. A summary of the Markov model parameters derived
from the Monte Carlo simulations is shown in Table 1. Although
there was a 12.1-fold difference in the apparent monthly rate
of reactivation of latent infection between the 2 treatments
(P < 0.001 by Wilcoxon’s signed rank test), they did not differ
in their effects on new infection, in that both drugs resulted in
progression of all new infections to active disease in all of the
models tested. Both these findings are consistent with studies in
mice (Plessner et al., 2007). Moreover, the apparent risk of new
Mtb infection in this analysis, 0.00194% per month or 0.023% per

FIGURE 2 | Tuberculosis occurring during tumor necrosis factor blockade. Left: Solid lines indicate time to onset distributions as reported to US FDA from

January 1998 through March 2003. Dotted lines indicate the distributions resulting from a typical mathematical model during Monte Carlo simulation. Right: Hidden

Markov model of tuberculosis etiology during TNF blockade. N = monthly proportion acquiring new infection with Mycobacterium tuberculosis; P = proportion of new

infections progressing directly to active TB; R = monthly proportion of latent TB infections undergoing reactivation. From (Wallis, 2008), with permission.
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year, is highly consistent with that estimated in white men in the
US (0.03%) using conventional methods (Daniel and Debanne,
1997).

Markov model parameters at the case rate ratio of 1.9
indicated by the FDA AERS data (Wallis et al., 2004a) were
then used to examine 100,000 hypothetical patients over time
(Figure 3). Infliximab treatment efficiently converted latent
infections to active disease, leaving only 6% of latent infections
remaining at 1 year. After that time point, the progression of new
infection became the predominant cause of TB for infliximab-
treated patients. In contrast, the low monthly rate of reactivation
by etanercept resulted in reduced total numbers of cases, for
which the contributions of reactivation and progression were
nearly equal. After 2 years, infliximab had reactivated 3.4 times
more cases than etanercept.

In 2013, Agliari et al. (2013) used formal stochastic modeling
to confirm that the reduced tuberculosis risk after the first year
of infliximab treatment was due to depletion of the pool of LTBI
cases. The authors extended their analysis to examine the etiology
of non-tuberculous mycobacterial (NTM) infections, making

TABLE 1 | Derived Markov chain parameters, based on Monte Carlo

simulations of 600 pairs of case rates for infliximab- and

etanercept-associated TB that span published values.

Parameter Infliximab Etanercept Ratio (I:E)

R 0.208 (0.195–0.237) 0.0158 (0.012–0.026) 12.1 (8.7–17.3)

P 1.0 (1.0–1.0) 1.0 (1.0–1.0) 1.0 (1.0–1.0)

L 0. 0014 (0.00085–0.00228)

N 0.0000194 (0.000013–0.000026)

R, monthly proportion of latent TB infections undergoing reactivation; P, proportion of

new infections progressing directly to active TB; L, proportion with latent TB infection at

baseline; N, monthly proportion acquiring new infection with Mycobacterium tuberculosis.

Iterative nonlinear regression analysis was used to identify model parameters that fit the

published time-to-onset distributions. Values are the median and interquartile range. From

(Wallis, 2008).

use of time-to-onset data for 239 anti-TNF treated patients
(Winthrop et al., 2009). Unlike the case for tuberculosis, NTM
infections continued to increase over time for both infliximab
and etanercept, with no evidence that either agent depleted a pool
of latent infections. Large numbers of NTM can be found inmany
environmental samples, including fresh water, aerosols, biofilms,
and soils (Falkinham, 2002). As a result, repeated acquisition of
NTM infection can easily occur during ordinary daily activities,
leaving no evidence for reactivation of latent infection as a
pathogenic mechanism.

Key findings from this modeling exercise are, that when LTBI
is defined by its capacity to reactivate (as it was here): (1) the
proportion of LTBI cases at baseline was strikingly low; (2)
the proportion of tuberculosis cases arising from progression
of new infection was surprisingly high; and (3) infliximab
was markedly more efficient in reactivating LTBI than was
etanercept.

PREDICTING TUBERCULOSIS RELAPSE

The identification of new regimens capable of shortening
tuberculosis treatment without increasing the risk of recurrence
has been a high priority for tuberculosis research for many years.
However, the translation of the results of phase 2 trials into phase
3 trials has been a major challenge for the clinical development
of such regimens. Phase 2 trials typically assess sputum culture
conversion, whereas phase 3 trials assess relapse-free cure.
Accordingly, regimen developers are keen to understand the
quantitative link between these endpoints.

In 2013, a meta-regression analysis identified 2-month
sputum culture status and treatment duration as independent
predictors of recurrence, using data from 7793 patients treated
with 58 diverse regimens of various durations published from
1973 to 1997 (Wallis et al., 2013). The selected regimens
included all those in which 2-month culture results and relapses
were reported, with one exception: If an early biomarker is to

FIGURE 3 | Apparent effect of tumor necrosis factor blockade on latent tuberculosis infection (left) and total number of active tuberculosis cases

(right), based on hidden Markov modeling and Monte Carlo simulation. Colored shading indicate 95% confidence intervals. Latent TB infection is defined

functionally by its capacity to reactivate. The hatched area (right) indicates TB cases arising due to new infection, which occur equally for both agents. Adapted from

(Wallis, 2008), with permission.
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accurately predict clinical outcomes, treatment must continue as
planned after the biomarker is measured. Rifampin is routinely
administered for all of tuberculosis treatment, based on multiple
studies finding reduced benefit in regimens in which it was
prematurely discontinued (Jindani et al., 2004; Okwera et al.,
2006). Regimens in which patients received rifampin only during
the first 2 months were therefore excluded from the analysis,
as in these cases, the drug’s effects on culture conversion would
be dissociated from those on relapse. Regimens were considered
independently; a random intercept for study was included to
account for differences among trials. Statistical methods in the
analysis are summarized as follows.

Proportions were transformed using the logit function; those

reported as zero were assigned values of 0.005 (0.5%) to permit

logit transformation. The model included fixed effects for logit

month 2 culture positive rate and for natural logarithm of

treatment duration. The within-study variance of each study

arm was fixed using the asymptotic variance of the logit-

transformed recurrence proportion [1/Np(1-p)], where N was the

arm’s sample size and p was the recurrence proportion). The

between-study variance was estimated by restricted maximum

likelihood using the SAS MIXED procedure (Institute, 2008).

Regression parameters were estimated via weighted least squares

using the inverse of the sum of the within-study variances as

the weight. From the fitted model, we predicted recurrence

proportions at given proportions of month 2 culture positivity

and treatment duration. Two-tailed 80% confidence intervals (CI)

were calculated, as well as corresponding prediction intervals

(PI) for a hypothetical trial with 680 subjects per arm. The

upper limit of this interval thus identifies the recurrence rate

with only a 10% chance of being exceeded in a typical phase

3 trial (i.e., 90% power). The 10% value had been selected as

the highest risk of failure likely to be considered acceptable

by a pharma sponsor during the planning of such a trial. The

prediction error variance on the logit scale was SE2 + Vs +

1/Nnewq (1−q), where q was the model-predicted logit recurrence

proportion at a given level of month 2 culture positive rate and

treatment duration, SE was the standard error of q, Nnew was

the number of subjects per arm of the hypothetical trial, and

Vs was the estimated variance associated with the study. The

intervals were formed on the logit scale and back-transformed to

an ordinary scale. SAS code for the model is available on request

(Wallis et al., 2013).

The resulting model predicted that for a new 4-month regimen
to reduce to 10% the risk of a relapse rate>10% in a typical phase
3 trial (N = 680/arm), it would reduce to 1% the proportion of
culture positive after 2 months of treatment. The 1% target was
far lower than anticipated, and met considerable skepticism. At
that time, 5 phase 2 trials of 6 regimens containing gatifloxacin or
moxifloxacin had reported month-2 culture positive proportions
of 8–29% (Burman et al., 2006; Rustomjee et al., 2008; Conde
et al., 2009; Dorman et al., 2009; Wang et al., 2010). The 2013
model predicted that if administered for only 4 months, all
6 regimens would yield unsatisfactory recurrence rates (10.4–
19.4%; Wallis et al., 2013). In 2014, 3 independent phase 3 trials
(REMox, OFLOTUB, and RIFAQUIN) published results for four
unsuccessful fluoroquinolone-containing 4-month regimens
(Gillespie et al., 2014; Jindani et al., 2014; Merle et al., 2014).
The relapse rates of these regimens (12.5–17.8%) were highly
consistent with those predicted based on 30 year-old data (10.4–
19.4%). In 2015, the model was validated by analyzing the relapse
rates across all arms in the three recent studies according to
within-study month-2 culture data (Wallis et al., 2015). Predicted
and observed rates were highly correlated (R2 = 0.86, Figure 4A).
Updating the model to include data from all 66 regimens and
11181 patients (Table 2) had minimal effect on its predictions
(Figure 4B).

FIGURE 4 | Predicting tuberculosis recurrence based on month-2 culture. (A) Observed recurrence rates for REMox, RIFAQUIN, and OFLOTUB, in relation to

predicted rates based on data from studies published from 1973 to 1997. Axes in this figure indicate logit-transformed recurrence risk, with insets indicating

corresponding numeric proportions. Red symbols indicate 4 month regimens; blue symbols indicate 6 month regimens. (B) Predicted recurrence for regimens of 4

and 6 months duration. Solid lines indicate updated predictions including the 3 recent trials; the dotted lines, the original predictions. Shading indicates the confidence

interval for the revised predictions. The target month-2 positive rate for new 4-month regimens remained at 1%. Adapted from (Wallis et al., 2015), with permission.
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TABLE 2 | Parameter estimates of original and revised linear

meta-regression models.

Parameter Estimate SE (CV%) P

ORIGINAL MODEL

Intercept 2.1471 0.6092 (28.4%) 0.0018

Natural log treatment duration −2.2670 0.2958 (13.0%) < 0.0001

Logit month 2 culture positive rate 0.4756 0.1063 (22.4%) < 0.0001

REVISED MODEL

Intercept 2.5289 0.4931 (19.9%) < 0.0001

Natural log treatment duration −2.5018 0.2299 (9.3%) < 0.0001

Logit month 2 culture positive rate 0.4399 0.1004 (22.0%) < 0.0001

SE, standard error; CV, coefficient of variation. From (Wallis et al., 2015).

The 2015 publication described the accurate prediction of
outcomes in a fourth study of 4-month treatment of tuberculosis
in patients without cavitary disease at diagnosis and with negative
cultures after 2 months of treatment (Johnson et al., 2009). Two
additional small studies, of 12-month regimens for multi-drug
resistant tuberculosis are also of interest in that both reported
2-month culture status and neither found relapses during the
subsequent year. In the first, conducted in 100 patients in
Cameroon (Kuaban et al., 2015), 13% were culture positive at
month 2, yielding a predicted relapse rate of 1.1%. Poisson
analysis indicates in a sample of 100 with a “true” rate of 1.1%,
the most likely results are 0 events (33% likelihood) or 1 event
(36% likelihood). In the second, conducted in 65 patients in
Niger (Piubello et al., 2014), 6% were positive at month 2,
yielding a predicted relapse rate of 0.7%. In this case, Poisson
analysis indicates themost likely outcomewould be 0 events (63%
likelihood). Thus, themodel accurately predicted the outcomes of
both MDR-TB trials.

The finding that the model accurately predicts outcomes
of contemporary studies despite significant differences in
regimen composition, treatment duration, and geographic
region indicates the model is robust and generalizable,
thus meeting the criteria of Chau et al. as a “known valid”
biomarker (Chau et al., 2008). An abbreviated version

of the 2015 model appears as an online calculator at
http://www.rswallis.com/Pages/TBrelapsecalculator.aspx.

SUMMARY

These 3 diverse examples illustrate how mathematic models
can help advance our understanding of basic aspects of Mtb
biology as they affect drug and vaccine development. In each case,
analysis of modest data sets in what might be called “thought
experiments” provided a remarkably clear picture of what are
otherwise invisible stages of tuberculosis pathogenesis (latency
and reactivation). In the case of TNF blockers, this reflected the
particularly unique power of Markov modeling and Monte Carlo
simulations when used in combination to reveal hidden events
(Sonnenberg and Beck, 1993).

The third example, predicting the relapse risk of new
tuberculosis regimens, reflects specific advances in the science of

pharmacometrics over the past 2 decades. These were developed
in the pharmaceutical industry to help avoid failures in phase
3 trials by identifying the factors necessary for success. The
resulting techniques, including meta-dose-response modeling
and meta-regression analysis, can help predict whether the effect
observed on a biomarker in phase 2 will be sufficient to translate
to a clinical outcome in phase 3. The root cause of the 3
unsuccessful fluoroquinolone trials appears to lie in a failure
to ask this fundamental question. Mathematical models such as
those described here will be important tools to guide the design
of future tuberculosis clinical trials.
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