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The spatial distributions of bacterial communities may be driven by multiple environmental
factors. Thus, understanding the relationships between bacterial distribution and
environmental factors is critical for understanding wetland stability and the functioning of
freshwater lakes. However, little research on the bacterial communities in deep sediment
layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from
a beach wetland of the Poyang Lake along both horizontal (distance to the water-land
junction) and vertical (sediment depth) gradients to assess the effects of sediment
properties on bacterial community structure and diversity. Our results showed that
bacterial diversity increased along the horizontal gradient and decreased along the vertical
gradient. The heterogeneous sediment properties along gradients substantially affected
the dominant bacterial groups at the phylum and species levels. For example, the NH+

4
concentration decreased with increasing depth, which was positively correlated with the
relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant
bacterial groups showed that the top layer had a different bacterial community structure
than the deeper layers. Principal component analysis revealed that both gradients, not
each gradient independently, contributed to the shift in the bacterial community structure.
A multiple linear regression model explained the changes in bacterial diversity and richness
along the depth and distance gradients. Overall, our results suggest that spatial gradients
associated with sediment properties shaped the bacterial communities in the Poyang Lake
beach wetland.
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INTRODUCTION
Wetland ecosystems are considered the most biologically diverse
ecosystems (Iasur-Kruh et al., 2009; Wang et al., 2012). A beach
wetland is a landform along the edge of a body of water and is
an interface between the land and water. Bacteria are ubiquitous
and play key roles in ecosystem functioning, including cycling of
the majority of biologically active elements (Woese, 1990; Woese
et al., 1990; Gucht et al., 2007; Newton et al., 2011). However,
systematic exploration of geographic bacterial patterns through
the simultaneous consideration of contemporary environmen-
tal variations and stereoscopic spatial distribution (distance and
depth) is largely lacking, resulting in a poor understanding
of how environmental factors shape bacterial communities in
beach wetlands of lake ecosystems (Yannarell and Triplett, 2005;
Córdova-Kreylos et al., 2006; Zhou et al., 2008).

Recent studies demonstrate that bacterial communities in lake
wetland ecosystems are strongly correlated with a multitude of
environmental factors over horizontal gradients ranging from

hundreds of kilometers to centimeters (Terrados et al., 1999;
Yannarell and Triplett, 2004; Crump et al., 2007). Several studies
suggest that bacterial distributions may be spatially predictable
rather than random (Ettema and Wardle, 2002). Differences in
environmental factors along sediment horizontal gradients largely
determine bacterial composition and diversity, such as water
content (Drenovsky et al., 2004; Badin et al., 2011), C and N
availability (Cookson et al., 2008; Moseman-Valtierra et al., 2010;
Mackelprang et al., 2011; Lin et al., 2012), temperature (Hall
et al., 2008; Redmond and Valentine, 2011), pH (Lindström et al.,
2005), and sediment structure characteristics (Liu et al., 2011).
Despite the importance of sediment bacteria in biogeochemical
cycling, the bacterial communities in the deeper layers are not
well studied (Haglund et al., 2003; Luna et al., 2004); the bac-
terial communities of the sediment surface layers have been far
better studied than those of the deeper layers (Liao et al., 2009;
Schauer et al., 2010). Expanding our knowledge of bacterial diver-
sity and distribution from the surface to deeper sediment layers
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will improve our understanding of biodiversity and functioning
of beach sediment.

In this study, we evaluated the spatial distribution of bacte-
rial communities along gradients of both sediment depth and
distance to the water-land junction in the Poyang Lake wetland
(Figure 1) (Jiangxi Province, mid-China), the largest freshwater
lake in China. The aim of this study was to determine whether
main bacterial communities are regularly distributed along ver-
tical and horizontal gradients and what environmental factors
affect the spatial distributions of bacterial communities. The spa-
tial distribution of the bacterial communities was determined by
constructing clone libraries of 16S rRNA and analyzing the associ-
ations between the different communities. We hypothesized that
different geochemical parameters along vertical and horizontal
gradients affect specific bacterial groups in beach sediments.

METHODS
STUDY LOCATION AND SAMPLING
Poyang Lake is located in the northern part of the Jiangxi Province
and at the southern bank of the middle reaches of the Yangtze
River (29◦07′N, 115◦59′E) (Figure 1A) (Liu et al., 2011). The lake
covers 3283 km2 during the rainy season. The mean annual tem-
perature and precipitation are 17◦C and 1636 mm, respectively.
The Poyang Lake wetland has a high fluctuation of seasonal water
levels between the flood and dry seasons (Xu et al., 2014). In the
dry season, the surface area of the lake shrinks to less than one-
tenth of the area in the flood season. We sampled beach sediments
between the dry and flood seasons, because this stage could cap-
ture the major characteristics of beach wetland and obtain great
differences in geochemical parameters (e.g., water content) along
the spatial gradients. In July 2011, sediment samples were col-
lected from a range of beach wetland locations along gradients
of depth and distance to the water-land junction on the shore of

Bang Lake, which is an isolated sub-lake located in the core area
of Poyang Lake. We chose this lake for avoiding disturbances from
agricultural and grazing activities. We sampled 5 sediment loca-
tions (A, B, C, D and E), located 0, 125, 250, 375, and 500 m from
the water-land junction, respectively. Three 25 × 25 m quadrats
(plots) that were 100 m apart were established in each location.
From each replicate plot, 10 sediment cores were collected using
side opening steel tubes (length 1.2 m, diameter 2.5 cm). Next,
the samples were pooled and sieved (mesh size < 2 mm) to
remove stones and plant materials. At each location, we sam-
pled 6 depth strata per transect: 0–5, 5–10, 10–20, 20–30, 30–60,
and 60–100 cm (Figure 1B). Samples for sediment chemical anal-
ysis were stored at 4◦C, and samples for clone library analysis
were stored at −20◦C. All samples were processed within 4 h of
collection. Detailed descriptions of the sampling coordinates, sed-
iment chemical properties, sediment depth, and distance to the
water-land junction are listed in Table S1.

SEDIMENT PHYSICOCHEMICAL ANALYSES
To understand physiochemical effects from the spatial distances,
water content (WC), sediment bulk density (SBD), sediment
organic carbon (SOC), and inorganic nitrogen (NH+

4 , NO−
3 )

were determined. These sediment physicochemical variables were
shown to have low co-correlations with each other because the
average correlation coefficient r value is 0.27 and only 4 of 15
correlations between these variables are significant (P < 0.05)
(Table S2). WC was determined by weighing a sediment sam-
ple before and after drying at 105◦C for 24–48 h to a constant
weight. SBD was determined by oven-drying sediment cores of
a fixed volume (Cui et al., 2012). Sediment pH was measured
on sediment slurry at a 2.5:1 water: sediment ratio using a glass
electrode (Meng et al., 2012). SOC was measured with a TOC ana-
lyzer (Analytikjena HT1300, Germany) after removing sediment

FIGURE 1 | Maps of sampling stations. (A) The sampling sites in the Bang
Lake of the Poyang Lake wetland. (B) Core sediment samples were collected
from a range of beach wetland locations along gradients of depth and
distance to the water-land junction. We sampled 5 sediment locations (A, B,

C, D and E), which were 0, 125, 250, 375, and 500 m from the water-land
junction, respectively. Three 25 × 25 m quadrats (plots) that were 100 m apart
were established in each location. From each replicate plot, 10 sediment
cores (diameter 2.5 cm) were collected and pooled.
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carbonates using 1 M HCl. Inorganic nitrogen (NH+
4 , NO−

3 )
was extracted and measured using 2 M KCl and a discrete auto
analyzer (Smartchem 200, Westco, France).

DNA EXTRACTION, CLONE LIBRARY CONSTRUCTION AND
SEQUENCING
The total genomic DNA of sediment samples was extracted from
0.5 g (fresh weight) of the sediment sample with the Fast DNA
Spin kit for sediments (Qbiogene, Irvine, CA) according to the
manufacturer’s instructions. After extraction, the DNA samples
were immediately frozen at −80◦C for further analysis.

The template DNA isolated from the subsamples of each loca-
tion was pooled so that each subsample was equally represented.
The pooled DNA (20 ng for each sample) was analyzed using PCR
(predenaturation step of 5 min at 95◦C followed by 30 cycles of
1 min at 94◦C, 30 s at 53◦C and 2 min at 72◦C, followed by a final
elongation step of 72◦C for 15 min), with the bacteria-specific
primers 27F (5′-AGA GTT TGA TCM TGG CTC AG-3′) and
1492R (5′-TAC GGY TAC CTT GTT ACG ACT T-3′) (Lane, 1991;
Meng et al., 2012). The PCR products were purified using the
QIAquick PCR Purification Kit (Qiagen, Germany) and quanti-
fied using Nano Drop ND-3000 (Nano-Drop Technologies). The
PCR products were subsequently cloned into the pMD18-T vec-
tor system (TaKaRa, Japan) and transformed into Escherichia coli
Top 10. A total of 2520 recombinant clones were individually
chosen from the 30 clone libraries, and partial 16S rRNA gene
sequences were determined using a BigDye Terminator V3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA) and an
ABI3730 PRISM Genetic Analyzer (Applied Biosystems).

SEQUENCE PROCESSING AND OPERATIONAL TAXONOMIC UNIT (OTU)
CLUSTERING
A total of 2380 sequences from 30 clone libraries (each clone
library had 73 to 86 sequences) were retained and deposited into
the GenBank database under the accession numbers (KJ013600–
KJ015979).

The Ribosomal Database Project (RDP; http://rdp.cme.msu.

edu/) classifier was used to assign 16S rRNA gene sequences
(Maidak et al., 2001). The sequences were screened and sorted
for chimeras within Mothur using the chimera.uchime com-
mand (http://www.mothur.org/wiki/MainPage). The OTU clus-
tering was performed by setting a 0.03 distance limit (equivalent
to 97% similarity) using the Mothur program (Schloss et al.,
2009).

STATISTICAL METHODS FOR COMMUNITY ANALYSES
Canonical Correspondence Analysis (CCA) and Principal
Component Analysis (PCA) were used to identify the most
important abiotic factors to the bacterial community com-
position. This analysis was performed using a Multivariate
Statistical Package (MVSP) (Kovach Computing, Anglesey,
United Kingdom). The relationships between the relative abun-
dance of bacterial species and the taxonomic diversity for groups
with shared physico-chemical features were tested with linear
regression analyses using SigmaStat 3.5/SigmaPlot 10.0 (SysStat
Software Inc., CA).

RESULTS
SEDIMENT PHYSICO-CHEMICAL CHARACTERISTICS
A total of 30 samples were collected from 5 different locations
along a distance gradient, and samples from each of the 6 different
depths were collected at each location. The major geographi-
cal and physiochemical characteristics of the lake sediments are
summarized in Table S1. Across the sampling sites, the WC var-
ied from 32.2 to 23.2%, and the SOC varied from 25.09 to
6.03 g·kg−1. The WC and SOC were highly correlated with the
geographic distance to the water-land junction, with both WC
(P < 0.001) and SOC (P < 0.05) decreasing as the distance to
the water-land junction increased. The SBD varied from 0.27 to
0.62 g·cm−3, and the NH+

4 concentration ranged from 14.92 to
107.86 mg·kg−1. Both the SBD and NH+

4 were significantly cor-
related with geographic depth (all P < 0.001). The SBD increased
with increasing depth, and NH+

4 concentration decreased with
increasing depth (Table S2). No significant spatial differences
were observed in the sediment pH, which varied from 6.4 to 7.9.

DISTRIBUTION OF TAXA AND PHYLOTYPES
The clone libraries were built with careful consideration of
sequence quality to ensure significant clone coverage. Across all
sediment samples, we obtained a total of 2380 sequences, with
480–510 sequences per location (mean = 500) (Table S3). We
successfully classified 79.7% of the obtained sequences.

The dominant phyla (relative abundance >5%) across all
locations were Proteobacteria (32.61%), Actinobacteria (14.82%),
Acidobacteria (10.38%), Chloroflexi (9.78%), and Firmicutes
(5.89%). These phyla accounted for more than 73.48%
of the collected bacterial sequences (Figure 2). Spirochaetes,
Nitrospira, Armatimonadetes, WS3, Chlorobi, Planctomycetes,
Cyanobacteria/Chloroplast, Bacteroidetes, TM7, Verrucomicrobia,
and Gemmatimonadetes were present in most of the sedi-
ment samples with low relative abundance (<5%) (Figure 2,
Table S4). The RDP database revealed the recovery of 21 phyla
from lake epilimnia, with 5 of the phyla frequently com-
monly recovered (Proteobacteria, particularly Betaproteobacteria,
with 4300 and 2600 sequences, respectively; Actinobacteria with
3000 sequences; Bacteroidetes with 1900 sequences; Cyanobacteria
with 800 sequences; and Verrucomicrobia with 300 sequences)
(Newton et al., 2011). However, both the phyla Cyanobacteria and
Bacteroidetes were present in low relative abundance in Poyang
Lake sediment.

The different taxonomic levels of the bacteria were shown
to heterogeneously distribute along horizontal and vertical gra-
dients. The decrease in bacterial relative abundance as distance
from the water-land junctions increased was particularly sharp
for Firmicutes, Deltaproteobacteria, and Gammaproteobacteria
(Figure 2). However, the Alphaproteobacteria, Chloroflexi, and
Acidobacteria relative abundance increased along the distance
gradient (Figure 2). Alphaproteobacteria and Deltaproteobacteria
were more abundant at depths less than 30 cm (Table S4).

The heterogeneous distribution along horizontal and vertical
gradients was observed more clearly when the bacterial commu-
nities were classified at the genus level. Acidobacteria_Gp6,
Acidobacteria_Gp2, Acidobacteria_Gp1, Arthrobacter,
Pseudolabrys, Thermosporothrix, and Ktedonobacter were detected
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FIGURE 2 | Relative abundances of the dominant bacterial phyla in

the sampling locations. Relative abundances were calculated by the
proportional frequencies of the DNA sequences that could be classified
at the phylum level. (A) A, B, C, D, and E were five sediment locations,

located 0, 125, 250, 375, and 500 m from the water-land junction,
respectively. (B) At each location (A, B, C, D, and E), there were 6
depth strata sampled per transect: 0–5, 5–10, 10–20, 20–30, 30–60, and
60–100 cm.

in nearly all the samples (Figure 3). Othergenera were found
in a portion of the samples. Specifically, Acidobacteria_Gp3,
TM7_genera_incertae_sedis and Singulisphaera were mainly
distributed in surface sediments, whereas Nitrospira was
mainly distributed in submerged sediments. Methylocystis,
TM7_genera_incertae_sedis, and Acinetobacter were abun-
dant in the water-land junctions, whereas Rhodoplanes,
Acidobacteria_Gp7, and Armatimonadetes_gp4 were mainly
distributed far from the water-land junctions (Figure 3).

RELATIONSHIP BETWEEN BACTERIAL COMMUNITY STRUCTURE AND
SEDIMENT VARIABLES
Canonical correspondence analyses (CCA) were performed to
examine the relationship between bacterial community structure
and geochemistry. The results indicated that sediment chemical
properties and geographical characteristics have different effects

on sediment bacteria (Figure 4, Tables S5–S7). Axis 1 and axis
2 were interpreted as the distance to the water-land junction
gradient and depth, respectively. The small angles between the
WC, SOC and NO−

3 vectors along the distance to the water-
land junction indicated strong correlations among these variables.
Similarly, the small angles between the pH, SBD and NH+

4
vectors along the depth indicated strong correlations between
these variables. The WC, SOC, and NO−

3 showed strong pos-
itive correlations with axis 1 and positive correlations with
axis 2. The SBD and pH showed strong negative correlations
with axis 2 and positive correlations with axis 1. NH+

4 showed
a strong negative correlation with both the first and second
axes. Among the sediment chemical properties, the WC, SBD,
NH+

4 , and SOC were the most important factors in determin-
ing the bacterial community structure (Figure 4A). In addi-
tion, Planctomycetes, Alphaproteobacteria, Verrucomicrobia, and
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FIGURE 3 | Relative abundance distribution of the dominant operational

taxonomic units (OTUs) (97% similarity). A, B, C, D, and E represent the
five sediment locations, which were 0, 125, 250, 375, and 500 m from the
water-land junction, respectively. Numbers 1, 2, 3, 4, 5, and 6 represent the
six depth strata sampled per transect: 0–5, 5–10, 10–20, 20–30, 30–60, and

60–100 cm. The relative abundances of each OTU were normalized to have a
mean of 0 and a standard deviation of 100%. The percent abundances of
dominant genera in each location are indicated by shading: percentages close
to 13 are indicated in black, and those close to 0 are in gray. The actual
percentages of a, b, and c are 24, 14, and 19%, respectively.

Nitrospira were significantly associated with NH+
4 , SBD, and

depth. Furthermore, Betaproteobacteria, Gammaproteobacteria,
Acidobacteria, and Firmicute were highly associated with the WC,
SOC, and distance to the water-land junction (Figure 4B).

We also preformed linear regression analyses to eluci-
date the relationships between bacterial relative abundances
and sediment variables. The relative abundances of dominant
bacterial phyla (Proteobacteria, Alphaproteobacteria, Nitrospira,
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FIGURE 4 | Canonical correspondence analysis (CCA) showing the

relationship between the sampling locations and sediment variables (A),

and the relationship between the relative abundances of the dominant

bacterial phyla and sediment variables (B). The direction of an arrow
indicates the steepest increase in the variable, and the length indicates the
strength relative to the other variables. The filled circle in (A) represents the
sampling locations. A, B, C, D, and E were five sediment locations, which were
0, 125, 250, 375, and 500 m from the water-land junction, respectively. At each

location, there were six depth strata sampled per transect: 0–5, 5–10, 10–20,
20–30, 30–60, and 60–100 cm, which were indicated by numbers 1, 2, 3, 4, 5,
and 6, respectively. The filled circle in (B) represents the diversity of the
bacteria. Bacterial group abbreviations are Pro, Proteobacteria; Al,
Alphaproteobacteria; Beta, Betaproteobacteria; Gama, Gammaproteobacteria;
Del, Deltaproteobacteria; Act, Actinobacteria; Ac, Acidobacteria; Cl, Chloroflexi;
Fi, Firmicutes; Ni, Nitrospira; Pl, Planctomycetes; TM7; Ve, Verrucomicrobia.
WC, water content; SBD, sediment bulk density; SOC, soil organic carbon.

Betaproteobacteria, Acidobacteria, and Firmicute) were signifi-
cantly correlated with the sampling depth and the distance to the
water-land junction (all P < 0.005) (Figure S1, Table S2). The
sediment chemical properties (WC, SBD, and NH+

4 ) were also sig-
nificantly correlated with the distributions of these bacteria across
sediment depth and sediment distance to the water-land junc-
tion (Figure S2, Table S2). These results were consistent with our
above-mentioned CCA observations: sediment chemical prop-
erties were divided into two different “factors” determined by
sediment depth and distance to the water-land junction (Table S2,
Figures 3, 5).

CHANGES IN BACTERIAL DIVERSITY ALONG THE DEPTH AND
DISTANCE
Gradients
Furthermore, PCA was performed to test whether there was a dif-
ference between the depth and distance by clustering the samples
according to depth regardless of site and clustering the samples
according to site (regardless of depth) (Figure 5 and Table S8).
The PCA biplot clearly revealed that the bacterial communities
were shaped by both depth and distance. It was notable that Axis
1 changed more dramatically within the sites of A, B and C than
in the sites of C, D and E (Figure 5).

DISCUSSION
Sediment characteristics of the Poyang Lake varied in space. Our
samples were collected between the dry and flood seasons and
therefore do not take into account the seasonal variability of the
system. Nevertheless, although the results only provide a “snap-
shot” of how spatial gradients shaped the bacterial communities,
they suggest that multiple environmental factors along spatial
gradients can strongly mediate beach bacterial communities in a
subtropical freshwater wetland region of China.

The clone library analysis used here was able to target the
dominant bacteria. However, the averaged 80 clones per sample
could lead to miss some groups of important bacteria, resulting

FIGURE 5 | Principal Component Analyses (PCA) of the bacterial

communities, with symbols coded by depths or sites. A, B, C, D, and E
were the five sediment locations, which were 0, 125, 250, 375, and 500 m
from the water-land junction, respectively. At each location, there were six
depth strata sampled per transect: 0–5, 5–10, 10–20, 20–30, 30–60, and
60–100 cm, which were indicated by numbers 1, 2, 3, 4, 5, and 6, respectively.

in underestimation of bacterial diversity. Our study suggests that
Proteobacteria, Acidobacteria, and Actinobacteria were dominant
prokaryotes. These bacteria have been documented as numer-
ically important components in a geographically wide range
of freshwater lake habitats, including lakes in North America
(Newton et al., 2011), Europe (Glockner et al., 2000), Africa
(Humbert et al., 2009), Asia (Wu et al., 2006), and Antarctica
(Pearce et al., 2003). But our results suggest that bacterial
community composition and diversity were driven by sediment
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properties (e.g., the WC and SOC), which differed over the
depth and distance to the water-land junction spatial gradients.
By analyzing the spatial distribution of bacterial communities
across a small spatial scale (500 m), our results also indicated
that sediment chemical properties were divided into two dif-
ferent “factors.” Spatial gradients in association with varying
sediment properties drove bacterial community composition. In
addition, our results suggest that different geochemical param-
eters along vertical and horizontal gradients can affect specific
bacterial groups in sediments.

In this study, the WC and nutrient availability (e.g., SOC) sig-
nificantly increased with increasing distance to the water-land
junction. Sediment moisture along the distance to water-land
junction exerted a selective pressure on the bacterial commu-
nity. Sediments with a high of WC harbor the less Acidobacteria
and Chloroflexi, and more Betaproteobacteria and Firmicuteacross
locations (Figure 4, Figure S2). Nutrient availability along dis-
tance gradient is another important factor that influences the
bacterial community (Logue and Lindström, 2008). The rela-
tive abundance of Actinobacteria decreased as increased SOC
(Figure 4). Increased nutrient concentrations could select against
the freshwater lake Actinobacteria (Haukka et al., 2006). Organic
C in sediment primarily originates from living organisms, such
as phytoplankton, plant tissue, and fish (Donohue and Garcia
Molinos, 2009). In addition, our results indicated that SOC
showed correlations with the abundance of Betaproteobacteria
(Figure 4). Several studies also suggested that Betaproteobacteria
growth is closely associated with the sediment nutrients
(Chen and Chiu, 2000; Lin et al., 2010). The freshwater lake
Betaproteobacteria is fast growing and nutrient loving (Newton
et al., 2011), which was highly associated with SOC (Figure 4,
Figure S1).

The majority of the Alphaproteobacteria belonged to
Rhizobiales, which were more abundant in the surface layer
sediment samples with low SBD (Figure 3). The SBD varied as
the water content of the sediment changed due to deposition
and subsequent compaction. SBD generally increases with
depth and time as pore water is expelled from the sediment and
transported to the surface (Boroujeni et al., 2009). In addition,
the Rhizobiales are controller at the hub of the ecosystem N
cycle, and often facilitate atmospheric N fixation by plants (Im
et al., 2006; Yarwood et al., 2009). NH+

4 is mainly produced by
aerobic degradation of organic-bound N, which is abundant
in upper sediment (Peter et al., 1998). It was not surprising to
observe that NH+

4 along the depth gradient showed significant
correlations with the abundance of Alphaproteobacteria. Taken
together, bacterial community composition and diversity were
driven by sediment properties, which were differed in the spatial
scales (the depth and distance to the water-land junction). O2 is
another important regulator of bacterial community structure
composition and functioning. For example, O2 availability
influences oxidation–reduction reactions in different types of
wetland soils (D’angelo and Reddy, 1999). However, we failed to
measure O2 availability because of the damage of O2 electrode in
the field.

Overall, the sediment physiochemical characteristics had a sig-
nificant effect on the diversity of beach bacterial communities

along spatial gradients in the subtropical freshwater wetland at
Poyang Lake. This study would improve our understanding of
bacterial diversity in wetland ecosystems.
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