AUTHOR=Zhou Yuzhen , Dorchak Alexandria E., Ragsdale Stephen W. TITLE=In vivo activation of methyl-coenzyme M reductase by carbon monoxide JOURNAL=Frontiers in Microbiology VOLUME=Volume 4 - 2013 YEAR=2013 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2013.00069 DOI=10.3389/fmicb.2013.00069 ISSN=1664-302X ABSTRACT=
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the rate-limiting and final step in methane biosynthesis. Using coenzyme B as the two-electron donor, MCR reduces methyl-coenzyme M (CH3-SCoM) to methane and the mixed disulfide, CoBS-SCoM. MCR contains an essential redox-active nickel tetrahydrocorphinoid cofactor, Coenzyme F430, at its active site. The active form of the enzyme (MCRred1) contains Ni(I)-F430. Rapid and efficient conversion of MCR to MCRred1 is important for elucidating the enzymatic mechanism, yet this reduction is difficult because the Ni(I) state is subject to oxidative inactivation. Furthermore, no