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Metal-based additivemanufacturing offers potential to disrupt themanufacturing
process across multiple industries. However, the vast majority of modern alloys
are incompatible with the complex thermal histories of additive manufacturing.
For example, the high gamma prime forming nickel-based superalloys are of
considerable commercial interest owing to their properties; however, their
gamma prime content renders them non-weldable and prone to cracking
during additive manufacturing. Computational materials modeling and big
data analytics is becoming an increasingly valuable tool for developing new
alloys for additive manufacturing. This work reports the use of such tools toward
the design of a high gamma prime superalloy with reduced cracking susceptibility
while maintaining similar hardness to CM247. Experimental fabrication and
characterization of the candidate alloys is performed. Results show the
candidate alloys have improved printability, up to 41x reduction in crack
density (mm/mm2) compared with CM247, and good agreement with the
modeled predictions.
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1 Introduction

The development of computational materials design using the CALPHAD
(CALculation of PHAse Diagrams) method has become a common tool used by
material scientists and engineers in the design and development of new alloys (Kattner,
1997). Utilizing the CALPHAD method has the possibility of generating large amounts of
data, an aspect that is often not fully utilized toward materials design. This becomes
especially apparent when considering complex alloy systems such as Ni-based superalloys.
Most modern Ni-based superalloys can contain 10–15 elements and slight compositional
changes in any of these elements can drastically affect the performance of the alloy.
Naturally, the next progression of computational materials design is linking big data
processing with the CALPHAD method to generate large-scale data and extract useful
information for alloying decisions. Big data processing allows for the managing, storage,
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and analysis of large data sets, which can be paired with screening
and visualization tools to sort through the complexmaterials data set
and guide decision making. The CALPHAD and big data approach
has been successfully proven in the design and development of new
nanocrystalline, amorphous, and thermal spray coating alloys
(Cheney and Kusinski, 2012; Cheney, 2018; Yi Wang et al., 2019;
Liu, 2020). In many cases, this approach allows for the “clean sheet”
design of an alloy (Jena et al., 2021; Bandyopadhyay et al., 2022;
Dreano et al., 2022) in contrast to the more typical local
optimization of a known alloy (Martin et al., 2017; Park et al., 2022).

Additive manufacturing (AM), including direct energy
deposition (DED) and laser powder bed fusion (LPBF), have
continued to gain momentum as a viable manufacturing
process for industrial, automotive, and aerospace components
(Blakey-Milner et al., 2021). To take full advantage of the benefits
of advanced manufacturing processes, it is necessary to pair the
process with materials specifically designed for additive
manufacturing. Such advantages over conventional casting or
forging techniques include the ability to produce complex
geometries, increased component design freedoms, near-net-
shape components, minimal post processing steps, and low
material waste (Kruth et al., 1998). Many Fe-based, Ni-based,
Ti-based, and Al-based alloys are applied in commercial
manufacturing, primarily utilizing LPBF (Santos et al., 2006;
Elsayed et al., 2019; Qian and Gu, 2022). LPBF and DED are
processes in which powder is solidified by a laser layer-by-layer to
form a three-dimensional component based on a CAD model
(Dass and Moridi, 2019; Leary et al., 2021; Svetlizky et al., 2021;
Yadroitsev et al., 2021; Yadroitsev and Yadroitsava, 2021). During
AM, the component is subjected to high heating and cooling rates
resulting in the build-up of residual stresses. These residual
stresses can then lead to crack formation in the component
and generally can be characterized as solidification cracking or
strain-age cracking. Solidification cracking or hot cracking occurs
during solidification of the alloy (Zhang and Singer, 2002). As the
metal solidifies, high heating and cooling rates associated with AM
causes tensile stresses to act on the solidifying layer. If enough
liquid is present, these stresses can cause shrinkage cracks to form
in the liquid region of the solidifying microstructure. The high-
performance nickel-based superalloys with high gamma prime
concentrations (i.e., generally greater than 40% phase fraction),
are also susceptible to strain-age cracking. As examples, many of
the non-weldable Ni-based superalloys such as CM247, Rene80,
and IN713C are difficult to print crack free. Generally, the AM
crack susceptibility of these non-weldable alloys is attributed to
the high gamma prime content (Divya et al., 2016; Boswell et al.,
2019; Zhou et al., 2020; Alhuzaim et al., 2021). The high gamma
prime content is essential for the high temperature strength,
oxidation and creep resistance associated with gamma prime
superalloys.

The high complexity of Ni-based superalloys and the unique
process history of AM poses a unique and difficult challenge which is
well suited for a big data computational alloy development
approach. This study demonstrates the application of CALPHAD
coupled with data mining toward clean sheet development of a
nickel-based superalloy with microstructure and properties similar
to existing high-performance aerospace alloys (e.g., CM247, Rene80,
and IN713) but with improved printability (i.e., reduced cracking

susceptibility). The selected candidate alloys are benchmarked
against CM247 during DED-based additive manufacturing. The
candidate alloy feedstocks are prepared by blending elemental
and alloy powders to achieve the target composition. A portion
of this report is dedicated to demonstrating the challenges (e.g., un-
melted powder) and their remediation with this approach to AM
feedstock production during materials design. In addition to
measuring the as-printed crack density, hardness is also evaluated
and compared with CM247 samples printed under the same
conditions.

2 Materials and methods

2.1 Data calculation

To support the thermodynamics-driven framework, the
CALPHAD calculations, data mining, and visualizations were
built on the Scoperta Rapid Alloy Design (RAD) platform
(Vecchio and Cheney, 2019). Thermodynamic models from
Thermo-Calc’s TCNI8 database (Andersson et al., 2002) are used
to generate data for discrete alloy compositions. The
thermodynamic data generated is a prediction of a discrete
alloy’s microstructure (e.g., phase fractions), which can be linked
to expected performance characteristics. As the number of discrete
compositions becomes increasingly large, the ability to effectively
evaluate each individual composition change becomes impossible.
This is where big data processing becomes a key aspect of the
RAD process.

The data calculation step involves defining the alloying
elements, compositional ranges for each element, and step sizes.
The following elements were considered in the development of a
printable high gamma prime superalloy with Ni as the balance: Al,
Co, Cr, Fe, Hf, Mo, Nb, Re, Ta, Ti, W, and Zr. In general, the
elements Al, Nb, Ta, and Ti were considered for gamma prime
formation, Al and Cr for oxidation resistance, and Co, Cr, Fe, andW
for solid solution strengthening. Table 1 details the elements
modeled, the minimum and maximum allowed, and the step size
for each. All chemistry information is presented in wt%
throughout this work.

TABLE 1 Data calculation input for high gamma prime superalloy
development (wt%).

Element Min Max Step

Al 4.5 6.5 1.0

Co 9.0 11.0 1.0

Cr 6.0 11.0 1.0

Mo 0.0 6.0 1.0

Nb 0.0 3.0 1.0

Ta 3.0 4.0 1.0

Ti 0.0 3.0 1.0

W 4.0 10.0 2.0

Ni Balance
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In the data calculation (Table 1), each element is independently
varied, and every possible combination, based in the calculation
input with Ni as the balance element, will be calculated. For example,
if we consider Al, alloys will be calculated with 4.5, 5.5, and 6.5 wt%
Al. In this calculation there are 48,384 unique alloys. This highlights
the importance of integrating big data processing with
computational materials simulations. Having the ability to
calculate large, complex compositional spaces increases design
freedoms, allowing the material scientist to evaluate the effect of
minor chemistry changes and consider possible solutions beyond
conventional alloys developed via purely experimental methods.

2.2 Data analysis

The next step in the RAD process is data mining key pieces of
information from the thermodynamic calculations and
composition-based criteria (e.g., solidus temperature and density,
respectively). The goal is to extract information from the raw data
that accurately predicts the alloy’s microstructure and performance.
In the RAD process, the mined data are referred to as criteria.
Generally, these criteria will be unique to an alloy family and
processing condition. As an example, the criteria used to develop
a Ni-based alloy for AMwill differ from those used to develop an Fe-
based alloy for thermal spray.

The primary criteria developed and used in designing a printable
high gamma prime superalloy are detailed below. Considering
cracking as the primary challenge to overcome when developing
an alloy for AM, the first few criteria are related to predicting an
alloy’s crack susceptibility.

A hot cracking index criteria (HCI) as defined by Clyne and
Davies (1981), Clyne et al. (1982) is used to evaluate an alloy’s
susceptibility to hot cracking. The HCI uses the Scheil-Gulliver
calculation results for each unique composition (Gulliver, 1913) and
specifically looks at solidification behavior of the alloy. The HCI is
calculated using the following equation:

HCI � T90 − T99

T40 − T90

Where T99 is the temperature at which 99% solid phase is present
during solidification, T90 is the temperature at which 90% solid
phase is present during solidification, and T40 is the temperature at
which 40% solid phase is present during solidification. These three
temperatures are extracted from the calculated data to calculate the
HCI as shown in Figure 1A. Lower HCI values correspond to alloys
with higher hot cracking resistance. It is therefore desirable to
consider alloys with relatively low HCI values.

In addition to the HCI, the mushy zone of the alloy can be
extracted to predict hot crack susceptibility. The mushy zone is
defined as the temperature delta between the liquidus temperature

FIGURE 1
Calculated thermodynamic data of (A) Scheil calculated phase diagram showing the T99, T90, and T40 temperatures used to calculate theHCI criteria.
(B) Equilibrium phase diagram showing the liquidus and solidus temperatures used to calculate mushy zone, (C) gamma prime and TCP phase formation
temperatures, (D) gamma prime formation temperature delta, and (E) gamma prime phase fraction at 1,200 K.

TABLE 2 DED printing parameters.

Laser
power (W)

Ar flow
(L/min)

Powder feed rate
(g/min)

Scan
overlap (%)

Perimeter
speed (%)

Infill
(mm/min)

Surface energy
(J/mm2)

250 10 1.1 50 50 1,000 30
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and solidus temperature. Like the HCI, lower mushy zone criteria
values indicate more resistance to hot cracking. The mushy zone,
demonstrated in Figure 1B, is determined from both equilibrium
and Scheil calculations by mining the liquidus and solidus
temperature of each alloy calculated.

The strain-age cracking susceptibility can be evaluated by
determining the temperature at which gamma prime is predicted
to form. Alloys with lower gamma prime formation temperatures
will generally be more resistant to strain-age cracking. Figure 1C

shows how the gamma prime formation temperature is mined from
the data calculation.

Like gamma prime formation, topologically close-packed (TCP)
phases are also well known to cause embrittlement in Ni-based
superalloys and are generally undesirable. To minimize crack
susceptibility, it is desirable to select compositions with low TCP
formation temperatures as the TCP phases will be less likely to form
during the printing process. Figure 1C show an example of how the TCP
phase formation temperature ismined from the phase evolution diagram.

FIGURE 2
Data plots of (A) 48,384 alloys showingmushy zone vs. TCP formation temperature. The area highlighted in green represent alloysmaximizing crack
resistance. The alloy expected to have the highest crack resistance is indicated by the red arrow. CM247 is also annotated before being eliminated for
failing tomeet the first screening criteria. (B) Plot of mushy zone vs. TCP formation temperature after sorting step (4,827 alloys remain). (C)Data plot after
first sorting step showing SSS of gamma vs. gamma prime fraction. Green highlighted area represents alloys maximizing strength. (D) Data plot of
565 alloys after second sorting step showing gamma prime formation temperature vs. oxidation resistance. Area highlighted in green shows alloys
of interest.
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A third criteria used in the prediction of strain-age cracking is
the temperature delta between the formation temperature of gamma
prime and solidus temperature (Figure 1D). This criteria is another
method used to understand how likely gamma prime is to form
during solidification and subsequent reheating of each build layer.
Larger temperature deltas are desirable and suggest gamma prime
formation will be suppressed.

Crack resistance is an important aspect of designing a material
for AM. However, we also need to consider the other important
properties required from a Ni-bases superalloy like strength and
oxidation resistance. Gamma prime precipitation is the primary
mechanism providing high temperature strength and stability to
gamma prime superalloys. High temperature aging heat treatments
in the range of about 800°C–1,200°C (1,073–1,473 K) are commonly
used to precipitate the gamma prime phase (Huang and Koo, 2004;
Boswell et al., 2019; Alhuzaim et al., 2021). It is important the alloy
form enough gamma prime to achieve the desired mechanical
properties. From equilibrium calculations, the phase fraction of
gamma prime at 1,200 K is utilized as a predictor of the amount
of gamma prime that will form experimentally after aging
(Figure 1E). Generally, the target herein is to match the phase
fraction of gamma prime predicted to form in current high gamma
prime superalloys (~50–70%).

A second, more general, method for predicting strength of an
alloy is evaluating the effect of solid solution strengthening (SSS). In
Ni-based superalloys SSS affects the gamma phase, which can be

TABLE 3 Chemical Composition in wt% of Candidate Alloys Selected from
the RAD Modeling.

Alloy Al C Co Cr Mo Nb Ni Ta Ti W

X3 5.5 0.03 9.2 8.2 6.0 Bal. 3.1 0.7 9.5

X4 5.5 0.03 9.2 8.2 0.5 2.2 Bal. 3.1 4.0

X5 5.5 0.03 9.2 10.2 0.5 Bal. 3.1 0.7 7.5

X6 6.5 0.03 11.0 6.0 Bal. 3.1 8.0

X7 6.5 0.03 10.0 8.0 Bal. 4.0 6.0

TABLE 4 Calculated criteria results for the RAD selected alloys.

Alloy HCI Mushy
zone
scheil
(K)

Mushy zone
equilibrium

(K)

γ’
formation
Temp. (K)

TCP
formation
Temp. (K)

γ’
formation
Temp. Δ (K)

γ’ at
1200 K

SSS of γ
at

1200 K

Oxidation
resistance
(kJ/mol)

CM247LC 2.74 460 136 1,538 1,163 −15 0.62 0.53 1,126

X3 0.50 120 43 1,493 1,609 104 0.65 0.52 1,169

X4 1.76 152 31 1,435 950 217 0.40 0.54 1,184

X5 1.24 162 39 1,450 1,179 178 0.52 0.51 1,125

X6 0.95 118 31 1,481 912 178 0.65 0.52 1,183

X7 0.88 125 31 1,493 1,000 155 0.61 0.51 1,157

FIGURE 3
Example of the 10 mm cubes built onto the 625 nickel build plate.
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considered as the matrix phase of the alloy. For this criteria, only
substitutional solid solutions strengthening is considered. From the
calculation results, the composition of the gamma phase is extracted
at 1,200 K and used to compute a SSS coefficient (σ) using a
theoretical model based on elemental atomic sizes and fractions.
The higher the SSS coefficient, the stronger the alloy is expected to
be. The following equation is used to calculate the SSS coefficient
of gamma:

σ � ∑
i

Xi
Ri − Rbal| |
Rbal

Where Xi is the atomic fraction of the ith element in gamma, Ri is the
atomic radius of the ith element, and Rbal is the atomic radius of the
balance element in gamma, in this case Ni.

The final criteria addresses oxidation resistance, another
important property of Ni-based superalloys. The oxidation
resistance criteria is based on the Wagner model (Sato et al.,
2011), which proposes the rate of oxidation is proportional to the
valence state and formation energy of oxide phases. The study
conducted by Sato et al. concluded oxidation resistance
calculations using the composition of gamma matrix provided
better accuracy than considering the mean composition of the
alloy. It is also assumed the gamma prime phase is inherently
oxidation resistant, thus it is important to maximize the
oxidation resistance of the matrix phase. Therefore, the oxidation
resistance criteria is calculated using the gamma phase composition
extracted at 1,200 K. Higher oxidation resistance values predict
alloys with higher oxidation resistances. The oxidation resistance
criteria is calculated using the following equation:

Kp � Valefft ΔGf

Where Valefft is the valence of the oxide phase, assumed to be
alumina. Alumina is assumed to be the predominant oxide phase

formed in the compositional space of interest due to the low
formation energy of alumina relative to the other oxides that are
possible to form. Therefor to simplify the calculation, only alumina
is considered. This can be estimated by:

Valefft ~ ∑
i
Zi − ZAl( )Xi

WhereXi is the atomic composition in the oxide phase, Zi is the valence
of cations i in the oxide phase, and ΔGf is the formation energy of
alumina at 1,200 K that is calculated from the equilibrium model.

2.3 Data visualization

Plotting tools in the RAD platform allow for easy visualization of
the mined data and selection of alloys which meet the design criteria.
The RAD platform also allows for filtering of the mined data and is
used to exclude alloys which are unlikely to meet the design criteria.
Through an iterative process of setting limits on specific criteria and
re-plotting the data, the large data set is refined to a smaller number
of alloys that are expected to meet all design criteria.

2.4 Additive manufacturing

After the first round of the often iterative RAD process is
completed and candidate alloys are selected using the design
criteria, the next step is to fabricate physical samples of the alloys
to characterize. To understand if any of the new RAD selected alloys
show improved printability, CM247LC was included in the
experimental evaluation work as a benchmark material.
CM247LC is considered a high gamma prime superalloy and is
known to be difficult to print crack free. Inert gas atomized −45 +
15 µm CM247LC powder [Carpenter Additive (United States) LLC]

TABLE 5 Optimized powder blends and blended powder compositions of candidate alloys.

Powder blend recipe (wt%)

Alloy Ni-20Al Ni-52Ti Ni-45W C-276 Co Cr Mo Nb Ni Ta

X3 39.90 1.34 18.73 22.80 9.18 4.60 2.35 1.10

X4 39.98 8.84 9.20 8.20 0.50 2.20 29.98 1.10

X5 39.90 1.34 16.57 9.20 10.20 0.50 21.19 1.10

X6 45.00 17.68 11.00 6.00 19.22 1.10

X7 45.00 13.27 10.00 8.00 21.73 2.00

Blended powder composition (wt%)

Alloy Al Co Cr Mo Nb Ni Ta Ti W

X3 8.00 9.20 8.20 6.00 Bal. 1.10 0.70 9.50

X4 8.00 9.20 8.20 0.50 2.20 Bal. 1.10 4.00

X5 8.00 9.20 10.20 0.50 Bal. 1.10 0.70 8.00

X6 9.00 11.00 6.00 Bal. 1.10 8.00

X7 9.00 10.00 8.00 Bal. 2.00 6.00
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was used to fabricate the CM247LC samples
(Supplementary Table S1).

Blends of elemental powders and prealloyed powders were used
to create the feedstock for printing the 5 RAD selected alloys, as

demonstrated by Vecchio et al. (2021) as part of a high-throughput
method for screening bulk alloys. This facilitates a rapid and cost-
effective method for evaluating new compositions when compared
to gas atomization possibly requiring a spheroidization step to

FIGURE 4
SEM cross sectionmicrographs of the as-built DED samples comparing the five candidate alloys to standard CM247LC. Cracks are observed in all six
samples with X3 showing the least number of cracks.
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produce spherical feedstock for each candidate composition. Several
different prealloyed powder feedstocks and pure elemental powders
were used to create the powder blends. Feedstock powders included
pure Co, Cr, Mo, Nb, Ni, and Ta (Advanced Engineering Materials
Limited). Prealloyed feedstocks included Ni-20Al, Ni-52Ti, Ni-45W,
and alloy C-276 [Oerlikon Metco (United States) Inc.]. The
elemental and prealloyed powders used were spherical, with a
size range of −75 + 45 μm, and blended using a Turbula T2F
mixer. The powders were printed on a customized L221 powder-fed

direct energy deposition machine (FormAlloy Technologies Inc.)
equipped with a 650 W AO-650 blue (450 nm) laser with a 1 mm
spot size (Nuburu). The AM chamber of the Formalloy L221 unit is
an inert argon environment with oxygen content maintained below
1 ppm. The laser and associated optics are mounted on a panel with
z-axis movement. The substrate is affixed to a water-cooled X-Y
positioning stage. Samples were printed onto a 0.125 inch thick
625 nickel build plate and built as 10 mm × 10 mm × 10 mm cubes.
The parameters used to print each sample are shown in Table 2.

FIGURE 5
Example optical micrograph of as-built alloy X7 used for crack measurements.

FIGURE 6
Crack measurement results for all six as-built DED samples.
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Alloy X3 was inert gas atomized into a powder with a particle
size range of −53 + 20 µm by OerlikonMetco (United States) Inc. for
LPBF testing. Composition of the gas atomized X3 powder was
confirmed to match the nominal composition of alloy X3 before and
after printing. The X3 powder was printed on an EOS M290 LPBF
printer by Oerlikon AM using a 165°C build plate preheat

temperature. A series of LPBF samples were printed each with
varying parameters: laser power 180–300 W, scanning speed
1,000–3,400 mm/s, hatch spacing 0.03–0.10 mm, and layer
thickness 0.02–0.04 mm (Supplementary Table S2). Energy
density varied from 43–217 J/mm3 and surface energy from
1.2–5.0 J/mm2.

FIGURE 7
Average microhardness measurement results for all six as-built DED samples.

FIGURE 8
Alloy X3 LPBF samples printed on EOS M290.
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2.5 Characterization

The built samples were cut from the build plate using a
ProtoMAX waterjet cutter (OMAX) and subsequently cut in half
using a Struers Minitom diamond saw for microstructural analysis
of the cross-section perpendicular to the build direction.
Metallographic preparation was performed using a Struers
CitoPress-30 mounting press and Tegramin-25 polisher. All
samples were polished to 0.05 µm colloidal silica. Microstructure
evaluation was performed using a Tescan Vega 3 SEM with an
Oxford INCAx-act EDS detector and Zeiss Axio Observer.D1m
optical microscope. Crack measurements were performed using
ImageJ software. Hardness measurements of the samples were
performed using a Mitutoyo MVK-H1 microhardness tester.

3 Results and discussion

3.1 RAD modeling

As a first step in the design of a high gamma prime superalloy for
AM the TCP formation temperature and mushy zone criteria are
considered. The plot shown in Figure 2A contains 48,384 discrete
alloys. Each data point in the plot represents a unique composition
(data points may be overlapping). Given the design criteria, alloys
with a low TCP formation temperature and low mushy zone are
desirable for maximizing crack resistance. The alloy predicted to
have the highest crack resistance according to these two criteria is
highlighted with an arrow in Figure 2A. Setting limits on these two
primary criteria, shown as a green shaded box in (A), will eliminate
alloy candidates which do not meet these two criteria (Figure 2B). As
mentioned, the data visualization step is an iterative process in
whichmultiple design criteria must be considered to down select to a
small subset of optimized alloys. In Figure 2C, the plot containing
the remaining 4,827 alloys and now displays the SSS coefficient of
gamma vs. the gamma prime phase fraction at 1,200 K. To optimize
strength of the alloy, maximizing the SSS coefficient and

forming ≥50% gamma prime phase ≤70% is desirable. Applying
these filters reduces the number of remaining alloys to 565.
Continuing the data visualization process, the remaining alloys
are plotted to show gamma prime formation temperature vs.
oxidation resistance (Figure 2D). As per the design goals, gamma
prime formation temperature should be minimized, and oxidation
resistance maximized. The alloys of interest are shown in the green
shaded box. From these candidates, 5 compositions are selected for
further experimental characterization. Table 3 show the
compositions for the respective alloys selected based on the
design criteria. Table 4 shows the calculated criteria results for
each selected alloy compared to CM247LC, a nonprintable high
gamma prime superalloy.

3.2 Powder blend DED

A series of experiments were conducted to optimize the powder
blends used as feedstock to print the RAD selected candidate alloys.
The goal was to optimize the powder blends to achieve the target
composition for each DED printed sample. Examples of the DED-
printed samples printed under equivalent conditions are shown in
Figure 3. EDS was used to measure the chemical composition of each
build in the as-built condition to compare to the target composition
and provide insight into adjustments to the blended feedstock to
reach the target compositions. Supplementary Table S3 shows the
EDS results versus the target composition for the initial builds only
employing elemental additive powders.

The initial powder blending experiments showed the lighter
elements, Al, and Ti, could not reliably be added into the blends in
their elemental form. The relatively low density of Al and Ti made it
difficult to control the composition of the blended powder, likely due
at least in part to segregation. It is hypothesized that some of the low
melting temperature Al is vaporized during the printing process
(Matthews et al., 2017). EDS measurements in trial builds
(Supplementary Table S3) show the Al content in the as-built
DED samples were approximately 2.5 wt% lower compared to

FIGURE 9
LPBF results for alloy X3 (A) surface energy vs. crack density and (B) surface energy vs. as-built hardness.
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the starting Al content in the blended powder. Thus, the
composition of Al in the next iteration of blended powders had
to be set 2.5 wt% higher than the target composition of the alloy to
achieve the correct Al content in the DED sample. A similar issue
was observed when using elemental Ta and W powders in that they
settled to the bottom of the powder feeder and were too
concentrated in the builds. The Mo, Ta, and W powders having
significantly higher melting temperatures compared to the other
feedstock powders was also found to result in partially melted
particles being present in the builds (Supplementary Figure S1).
To mitigate these issues, Al, Ti, and W were added in the form of Ni
binary alloys. The densities and melting temperatures of the Ni
binary alloy powders more closely match the other feedstock
powders and allowed for more homogenous powder blends.
Using alloy C-276 proved to be a better solution for
incorporating Mo into X3, which contains 12 times the amount
of Mo compared to the other Mo containing alloys in this work.
Table 5 shows the optimized powder blend recipes and subsequent
blended powder compositions for each candidate alloy.
Supplementary Table S4 shows the measured EDS compositions
of the as-printed DED samples using the optimized powder blends
compared to their respective target composition. Unfortunately, no
suitable (i.e., spherical, of an appropriate cut, and without significant
undesirable elements) Ta alloy powder was available, requiring the
use of elemental Ta powder. The elemental Ta was found to
segregate to the bottom of the powder blends. This would cause
the DED builds to be approximately 2.0 wt% richer in Ta when the
amount of Ta in the powder blends was set at the target values. To
mitigate this issue, the Ta target in the powder blends was reduced
by 2.0 wt%. This adjustment helped achieve the target Ta in the X3,
X5, and X7 prints. However, in the case of X4 and X6, Ta was now
lower than the target (Supplementary Table S4). Using the
optimized powder blends, the target compositions of all five RAD
candidate alloys were achieved in the DED printed samples except
for Ta being ~2.0 wt% low in X4 and X6.

3.3 Crack measurements

Optical and SEMmicrographs of the as-built cross sections were
used to evaluate cracking behavior of the candidate alloys compared
to standard CM247LC. Figure 4 shows SEM images of the entire
DED build cross section of each as-built sample. All six DED
samples contain cracks however, alloy X3 shows a significantly
lower number of cracks compared to the other samples. A series
of optical micrographs were also captured to cover the total cross-
sectional area of each sample. Figure 5 shows an example
micrograph with arrows highlighting the cracks.

To evaluate the crack resistance of each alloy, the length of each
crack and total micrograph area are measured for each optical
micrograph (Figure 6). Crack density is then calculated using the
summation of all crack lengths and micrograph areas for each
sample. Crack measurements show alloy X3 contains the lowest
crack density compared to the other five samples. Alloys X4, X5, X6,
and X7 show similar cracking behavior, containing a crack density of
approximately 1.31–1.46 mm/mm2. All five RAD candidate alloys
contain less than half as many cracks compared to the standard
CM247LC (4.96 mm/mm2). The reduction in crack density of the

five RAD selected compositions compared to standard CM247LC
supports the RADmodeling and data analytics used to predict crack
resistance of AM alloys. The RAD calculations for the five alloys
show at least a 1.5X reduction in HCI, at least a 2.5X reduction in
Scheil mushy zone, and at least a 3X reduction in Equilibriummushy
zone versus CM247LC. The RADmodeling suggests alloy X3 will be
one of the most crack resistant materials considering it shows the
lowest HCI (0.5) and second lowest Scheil mushy zone (120 K)
values, a 5.5X reduction in HCI and 3.8X reduction in Scheil mushy
zone compared to CM247LC. The modeling results are influenced
only by chemical composition’s impact on thermodynamics. In the
case of alloy X3, the RAD predictions are directly related to the
increased Mo content.

Microhardness testing was conducted on the as-built DED
samples (Figure 7). Alloy X3 shows the highest hardness in the
as-built condition of all six samples. CM247LC, alloy X4, and
X5 have similar hardness levels, with alloys X6 and X7 being
the softest.

3.4 LPBF gas atomized alloy X3

Alloy X3 was selected for powder bed AM trials owing to the
superior performance of X3 compared to CM247LC, and even the other
RAD designed alloys. A gas atomized powder of X3 was utilized for all
LPBF additive manufacturing. Alloy X3 samples printed on LPBF were
evaluated using the samemethods used for the DED samples. Examples
of the LPBF-samples are show in Figure 8. A 165°C substrate preheat
was used and parameters were varied for each sample to evaluate their
influence on crack density and hardness (Supplementary Table S2).
Results for the LPBF study of alloy X3 are shown in Figure 9. The results
indicate crack density and hardness in the as-built condition are
influenced by printing parameters. Increasing surface energy tends
to reduce crack density and increase as-built hardness. Surface energies
of ≥2.6 J/mm2 resulted in the lowest crack density values (≤0.04 mm/
mm2). Higher surface energies impart more heat into the sample,
lowering the temperature gradient between applied layers. Lowering
the temperature gradient between layers reduces the cooling rate and
helps to reduce the buildup of internal stresses, resulting in lower crack
susceptibility. In addition, the higher temperatures likely cause an aging
affect, leading to more gamma prime precipitation, resulting in a higher
hardness as surface energy increases. The effect of surface energy on
hardness can be observed when comparing the hardness of the X3DED
sample (519 HV0.3) to the X3 LPBF samples (421–490 HV0.3). The
increased hardness of the DED sample compared to the LPBF samples
is a result of a higher surface energy parameter, 30 J/mm2 for our DED
parameters vs. 1.2–5.0 J/mm2 for LPBF. Some of the lowest crack
density results achieved for X3 in LPBF were between 0.02 and
0.03 mm/mm2. Hu et al. reports 1.33 mm/mm2 as the lowest crack
density measurements achieved for standard CM247LC using LPBF
(Hu et al., 2024). These results indicate alloy X3 is 66X more crack
resistant than standard CM247LC when printed with LPBF.

4 Conclusion

This work demonstrates the application of computational
modeling using CALPHAD and big data mining in the clean
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sheet development of a nickel-based superalloy with improved
printability for AM. Using the established design criteria and
data visualization, 5 candidate alloys were selected from the
48,384 discrete alloys modeled. Experimental validation of the
5 candidate alloys using DED posed some challenges which
eventually were overcome by optimizing the powder feedstocks
and powder blend recipes used to print the new compositions.
Improved printability was confirmed through microstructure
evaluation of the as-built DED samples. When compared to
CM247LC, the 5 candidate alloys show improved crack
resistance. Alloy X3 showed the best printability of all alloys
testing, having a 41x reduction in crack density compared to
CM247LC. LPBF testing of alloy X3 shows good agreement with
the DED results and further confirms the improved crack resistance
compared to CM247LC. Ongoing evaluation of alloy X3 compared
with standard CM247LC using LPBF, heat treatment response, and
mechanical property testing is planned. This work focused on Ni-
based alloys, but the alloy development approach used herein is
applicable to any alloy system so long as sufficient thermodynamic
data is available for CALPHAD modeling.
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