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Microstructure—property relationships are key to effective design of structural

materials for advanced applications. Advances in computational methods

enabled modeling microstructure-sensitive properties using 3D models (e.g.,

finite elements) based on microstructure representative volumes. 3D

microstructure data required as input to these models are typically obtained

from either 3D characterization experiments or digital reconstruction based on

statistics from 2D microstructure images. In this work, we present machine

learning (ML) approaches to modeling effective properties of heterogeneous

materials directly from 2D microstructure sections. To this end, we consider

statistical learning models based on spatial correlations and convolutional

neural networks as two distinct ML strategies. In both strategies, models are

trained on a dataset of synthetically generated 3D microstructures and their

properties obtained from micromechanical 3D simulations. Upon training, the

models predict properties from 2D microstructure sections. The advantage of

the presented models is that they only need 2D sections, whose experimental

acquisition is more accessible compared to 3D characterization. Furthermore,

the present models do not require digital reconstruction of 3Dmicrostructures.
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1 Introduction

Multiphase alloys and metal-matrix composites constitute an important class of

structural materials (Wang and Hwang, 1998; Tasan et al., 2015; Latypov et al., 2016). The

presence of two or more phases allows unique combinations of properties inaccessible to

single-phase materials. Accelerated design of multiphase materials and their process

optimization could benefit from efficient computational tools that can accurately capture

the relationships between mulitphase microstructure and overall engineering properties.
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In this context, a number of modeling approaches and

strategies have been developed to date. Historically earliest,

the Voigt and Reuss models (Voight, 1928; Reuß, 1929)

estimated the overall or effective properties of composites

from the volume fractions of their constituents. These models

are based on the assumptions of either uniform stress or uniform

strain throughout the composite and serve as the lower and upper

bounds of the effective property of interest (e.g., stiffness or

strength). While straightforward, these bounds are often widely

separated, especially in high-contrast composites with a large

difference in the properties between the constituents (Latypov

et al., 2019a). Tighter bounds for effective elastic properties were

obtained by Hashin and Shtrikman for composites with

moderate elastic contrasts (Hashin and Shtrikman, 1963). Self-

consistent models also offer better estimates of effective

properties compared to bounds. Most of these approaches,

however, are based on volume fractions of the constituents,

which limits their use for microstructure-sensitive design of

composite materials and structural components (Fullwood

et al., 2010).

With the emergence of high-performance computing,

computational homogenization has become a viable and

powerful approach to calculating effective properties of

heterogeneous materials (Segurado et al., 2018). The finite

element (FE) methods (Gilormini and Germain, 1987; Ghosh

et al., 1995; Segurado and Llorca, 2002; Latypov et al., 2019a) and

fast Fourier solvers (Michel et al., 1999; Lebensohn, 2001;

Eisenlohr et al., 2013; Lucarini et al., 2021) both allow

calculating effective elastic and inelastic properties with the

direct account for three-dimensional (3D) microstructure. The

microstructure effects are explicitly incorporated by performing

calculations on 3D representative volume elements (RVEs) or

microstructure volume elements (MVEs) of the multiphase

microstructure of the material. The account for microstructure

is associated with a significant increase in the computational cost

compared to analytical calculations of bounds and faster

numerical self-consistent methods discussed above. The

computational cost of RVE-based methods is still prohibitively

high for routine use in multiscale modeling of commercial metal

forming processes.

Surrogate or reduced-order models have been proposed as a

strategy to address the trade-off between the computational cost

and incorporation of 3D microstructure effects. Materials

Knowledge Systems (MKS) is an example computational

approach of surrogate model development (Gupta et al., 2015;

Latypov and Kalidindi, 2017). In MKS, 3D microstructures are

quantified using the n-point spatial statistics with subsequent

establishment of quantitative microstructure–property

relationships in the form of polynomial functions fitted to

data from numerical (e.g., FE) simulations. Other forms of

microstructure—property relationships besides polynomial

functions are also seen in literature, including statistical

learning models [e.g., Gaussian process regression (Marshall

and Kalidindi, 2021)], or neural networks, including

convolutional neural networks, CNN (Cecen et al., 2018; Yang

et al., 2018; Ibragimova et al., 2022; Mann and Kalidindi, 2022)

and graph neural networks (Dai et al., 2021; Hestroffer et al.,

2023). Owing to the computational efficiency and account for 3D

microstructure, surrogate models offer a promising pathway

towards practical implementation and industrial adoption of

microstructure-sensitive multiscale models of full-scale metal

forming processes.

Both the computational homogenization methods and their

data-driven surrogates require three-dimensional (3D)

microstructure data in the form of an RVE as input for

property calculations. The RVE needs to have sufficiently high

resolution and sufficiently large size to capture both the 3D

morphology and spatial distribution of the microstructure

constituents (continuous phases, particles, or grains).

Advances in experimental characterization have made it

possible to obtain 3D microstructure datasets for a wide

variety of materials. Experimental 3D datasets are typically

obtained from serial sectioning (Groeber et al., 2006; Echlin

et al., 2012) or directly using non-desctructive 3D

characterization techniques (Pokharel et al., 2015; Shahani

et al., 2020). Most of the experimental techniques that yield

high-quality 3D microstrcuture data require access to high-cost

and unique experimental facilities. Consequently high-quality

3D experimental data are currently scarce in the materials

research community, especially in industry. An alternative to

3D characterization is digital generation of 3D microstructure

RVEs or MVEs based on 2D microstructure data (Bostanabad

et al., 2018). For example, Dream.3D is an open-source software

commonly used for 3D microstructure generation based on

statistical distributions of sizes, shapes, and volume fractions

of the microstructure constituents (Groeber and Jackson, 2014).

Dream.3D has been widely used for building RVEs as input for

microstructure-based simulations (Latypov and Kalidindi, 2017;

Diehl et al., 2017). Recently, new approaches have been emerging

for 3D RVE generation from 2Dmicrostructure data, including a

3D generation algorithm inspired by solid texture synthesis in

computer graphics (Turner and Kalidindi, 2016) or transfer

learning technique (Bostanabad, 2020).

In this work, we propose a machine learning framework that

relates the microstructure from 2D sections directly to effective 3D

properties of heterogeneous materials and specifically two-phase

composites. The framework is based on a hypothesis that 2D

microstructure data encapsulates sufficient statistical information

to capture the effective properties of heterogeneous media to a

satisfactory extent. We explore the application of this framework to

modeling effective mechanical properties of two-phase materials

using two approaches: 1) statistical learning with spatial correlations

as microstructure descriptors and 2) deep learning with CNNs as

microstructure feature extractors. Section 2 describes these two

approaches followed by their application on stiffness of two-

phase microstructures presented and discussed in Sections 3–5.
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2 New multisection modeling
framework

The key distinguishing feature of the computational

framework developed in this study is the extraction of

quantitative microstructure features from 2D orthogonal

microstructure sections, their aggregation and use for machine

learning models for effective properties. To this end, we develop

and critically compare two approaches. In the first approach,

which we refer to as the Multisection MKS approach, we use n-

point correlation functions and principal component analysis

(PCA) to engineer microstructure features from 2D orthogonal

sections. In the second, Multisection CNN approach, we train

CNNs as feature extractors for microstructure images. In both

cases, features extracted from individual 2D sections are

combined into a single feature vector for establishing

quantitative relationships between microstructures and

effective properties of interest.

2.1 Multisection MKS approach

As in the original developments of the MKS framework

(Latypov et al., 2019b), our Multisection MKS approach relies

on the n-point correlation functions as a rigorous statistical

description of heterogeneous microstructures. The theoretical

basis for the use of n-point statistics as microstructure

description in homogenization models is the classical

statistical continuum theories, where an effective property is

expressed as a volume-averaged quantity with corrections to

higher-order microstructure effects represented by n-point

correlation functions of increasing order with corresponding

influence coefficients (Brown, 1955; Kröner, 1977; Adams

et al., 1989; Torquato, 1997; Gupta et al., 2015). Most of the

prior MKS models were successfully developed based on two-

point (n = 2) correlation functions (Gupta et al., 2015; Latypov

and Kalidindi, 2017; Paulson et al., 2017; Latypov et al., 2019b)

together with PCA as a dimensionality reduction technique

utilized to facilitate regression-type model calibration. In our

framework, two-point correlation functions are computed

individually from 2D orthogonal sections and then combined

into a single vector prior to the application of PCA for

dimensionality reduction. PCA is a linear transformation of

multidimensional data to a new basis represented by

orthogonal vectors corresponding to sequentially decreasing

variance in the dataset (Abdi and Williams, 2010). When

PCA is applied to two-point statistics, principal component

basis vectors can be interpreted as patterns in two-point

correlation maps, in respect to which the spatial correlations

vary the most in a set of microstructures (Latypov and Kalidindi,

2017; Latypov et al., 2018). Once a new basis is established with

patterns as basis vectors, the weights of these patterns are

obtained as principal component scores for two-point

correlations of microstructures for which prediction of the

effective properties are sought. Prior MKS studies focused on

3D microstructures involved calculations of directionally-

resolved 3D two-point statistics so that PCA provided 3D

patterns in two-point statistics (Latypov and Kalidindi, 2017;

Paulson et al., 2017; Latypov et al., 2019b). In the present

computational framework, PCA yields sets of three 2D

patterns in two-point statistics that correspond to the three

orthogonal sections of the microstructures. Principal

component scores, which represent weights of these patterns,

are used as features describing microstructure for machine

learning of effective properties. Since PCA automatically ranks

patterns according to the variance in two-point statistics, usually

only a few first principal components are used for statistical

learning.

2.2 Multisection CNN approach

Deep learning has been shown promising for predicting

effective properties of heterogeneous microstructures. For

modeling relationships between 3D microstructures and

properties, 3D CNN architectures have been used (Cecen

et al., 2018). 3D CNNs serve as extractors of microstructure

features relevant for the property of interest. In the present

Multisection CNN approach, we use 2D CNNs for

microstructure feature extraction from three orthogonal 2D

sections. The features obtained from the individual sections

using separate CNNs are then combined into a single

microstructure feature vector for establishing a quantitative

linkage with the property of interest. Drawing inspiration

from multi-view CNN methods for classification of 3D objects

from 2D images taken at different angles (Savva et al., 2017), we

employ view pooling for feature aggregation from the 2D

sections. An example architecture of the Multisection CNN is

shown in Figure 1 with two 2D convolutional layers followed by

concatenation and average pooling of the features. A linear

regression layer concludes the architecture for relating features

from the Multisection CNN to a property of interest. While

aggregation of features from individual 2D sections of the

microstructure is key to our Multisection CNN approach, the

other parameters of the architecture (e.g., number of

convolutional layers) can be selected and tuned for each

specific problem and dataset at hand.

3 Methods

3.1 Case study: Elastic properties of two-
phase microstructures

We demonstrate and evaluate the new framework in a case

study of effective elastic properties in high-contrast two-phase
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microstructures. To this end, we leverage a dataset previously

published by Cecen et al. (2018). The dataset includes 5,900 two-

phase microstructures and their corresponding effective Young’s

modulus values obtained using FE simulations. Periodic 3D

MVEs of the microstructures measured 51 × 51 × 51 voxels

and had a volume fraction of the hard phase varied from 25% to

75%. The contrast of Young’s modulus between hard and soft

phases was 50, i.e., the hard phase was 50 times stiffer than the

soft phase. Figure 2 shows microstructures typical of the dataset.

Using this dataset, we trained two new Multisection models

(MKS and CNN) as well as a 3D MKS model used as a

benchmark for evaluation of the new Multisection models.

For all three models, the dataset of 5,900 MVEs and their

properties was split into a training subset (90%) and a testing

subset. The testing subset was held out during fitting of the MKS

models and training of the CNN model.

3.1.1 Multisection MKS
The application of the Multisection MKS approach in this

case study included computation of two-point correlation

functions on 2D microstructure sections and PCA of the two-

point statistics vectors aggregated from the three 2D sections. For

two-phase microstructures, a single two-point correlation

function is sufficient to fully describe the microstructure

(Fullwood et al., 2008) so that we only calculated

autocorrelation for the stiff phase using an efficient fast

Fourier transform-based algorithm (Cecen et al., 2016).

Figure 2 shows two-point correlation maps for 2D sections of

MVEs representative of the dataset. The three concatenated 2D

autocorrelations for each MVE results in a high dimensional

feature vector with 3 × 50 × 50 = 7,500 elements. To facilitate

machine learning, we reduced the dimensionality of the

combined autocorrelation vector using the PCA. The selected

principal component scores were then used as the final features

for building a statistical learning model. In this case study, we

included the first 13 principal components in a third-order

polynomial function because this combination of principal

components and polynomial order showed good performance

for modeling effective stiffness in high-contrast two-phase

microstructures (Cecen et al., 2018).

3.1.2 Multisection CNN
Our Multisection CNN model relies on CNNs for extracting

microstructure features from 2D sections. Our network

architecture includes three parallel branches that take 2D

image as input and then pass it through two 2D convolutional

layers followed by a rectified linear layer and average pooling

layer. The features produced by these three parallel channels are

then further averaged to generate a single 6,400-dimensional

vector of features representing three orthogonal sections of the

microsructure. We obtained this specific architecture by

experimentation with different network configurations and by

hyperparameter optimization. Bayesian optimization [on SigOpt

platform (Dewancker et al., 2016)] was used to identify the

optimal number of convolutional layers, the number of filters

in the convolutional layer(s), the kernel size of the convolutional

layer(s), the pooling size, batch size, learning rate, number of for

the final dense layer, the final pooling method (mean or max),

FIGURE 1
Network architecture proposed in the multisection CNN approach.
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optimizer (Adam or stochastic gradient descent). Figure 1 shows

the architecture obtained by hyperparameter optimization,

which includes two convolutional layers with 16 filters of 10 ×

10 kernel size in the first layer and 256 filters with 4 × 4 kernel size

in the second layer, followed by an average pooling layer of 8 × 8

size. We employed mean absolute error (MAE) as the loss

function during training with a learning rate of 10–4. Early

stopping was introduced and controlled by decrease of less

than 1% in the MAE on portion of the training data. The

learning curves for the model is shown in Figure 3. The

Multisection CNN models were trained and tuned on the

Ocelote cluster of the UArizona High Performance

Computing system with the following specifications: two Xeon

E5 14-core processors (28 CPUs total) with 2.3 GHz and 6 GB

RAM per CPU.

3.1.3 Benchmark 3D MKS
We additionally built a 3D MKS model which served as a

benchmark for critical evaluation of the new Multisection

FIGURE 2
Typical 3D MVEs of two-phase microstructures contained in the dataset used for training and testing the multisection MKS and CNNmodels in
the present study. Three orthogonal sections of the MVEs and the corresponding two-point autocorrelation maps of the stiff phase are also shown.

FIGURE 3
Learning curves corresponding to training of the Multisection
CNN model adopted in this study in terms of mean absolute
percentage error for training and validation sets.
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models. We developed the benchmark 3D MKS model using a

procedure similar to the Multisection MKS model. The key

difference of the 3D MKS model from the Multisection MKS

was that we calculated full 3D two-point correlation functions for

entire volumes of the 3D MVEs. In this case, we obtained the

microstructure features for machine learning by PCA of 3D two-

point correlations vectors. For the benchmark 3D MKS model,

we also fitted a third-order polynomial including 13 principal

components of the 3D two-point correlations.

4 Results

The key results of the case study with the two new

models—Multisection MKS and Multisection CNN—are

shown in the form of parity plots in Figures 4B,C. The

performance of the two models is compared to the

benchmark 3D MKS model (Figure 4A). The parity plot

depicts predictions of the developed machine learning

models against the ground-truth FE simulation results.

Each point represents a prediction and ground truth result

for one MVE; a perfect agreement would be seen as points

lying on the parity line. All the models produce a reasonable

agreement between the trained machine learning models and

the FE simulations. Indeed, the predictions of all three models

show a reasonable homoscedastic distribution along the parity

line. The Multisection MKS model predictions are

characterized by a wider scatter compared to the 3D MKS

model, which is the “price” of relying on 2D microstructure

information rather than full 3D data. The Multisection CNN

model also shows a wider scatter compared to the benchmark

model but to a smaller extent than the Multisection MKS

model. The quantitative comparison of the MAE normalized

by ground truth values supports these observations: the

Multisection MKS model has the highest MAE of 26.6% vs.

13.1% of the benchmark 3DMKS model, while the MAE of the

Multisection CNN is 19.2% (all for the testing set).

5 Discussion

The results of the case study presented above show the

feasibility of machine learning models that relate effective

properties of two-phase microstructures directly to 2D

microstructure sections. The value of the developed

Multisection models arises from the prevalence of 2D

microstructure data in the materials community, especially in

industry, compared to scarce 3D data. The transition from full

3D microstructure data to 2D sections used for the MKS model

development comes at the price of about 13% loss in accuracy.

The trade-off between the completeness of the microstructure

information and the accuracy can be addressed by more

advanced models such as CNNs: we report only a 6% increase

inMAE with the Multisection CNN compared to the MKSmodel

based on full 3D microstructure information. This sacrifice in

accuracy can be reasonable in many use case scenarios given the

significant savings in time, labor, and resources needed to collect

2D section data compared to 3D characterization. An additional

advantage of the best performing Multisection CNN is

manifested in the computational cost of training: it takes only

about 12 min to train orMultisection CNNwith CPUs (hardware

specified in Section 3.1.2), while previous studies reported hours

of training for 3D CNNs on the same dataset of high-contrast

composites (Cecen et al., 2018). The Multisection CNN model

developed here is thus a light-weight data-driven model which

strikes a balance between minimal requirements in terms of

FIGURE 4
Parity plots showing the fitting results (for training set, dark grey) and the prediction results (for testing set, blue) for (A) benchmark 3D MKS
model based on 3D microstructures; (B) Multisection MKS and (C) Multisection CNN models based on three 2D microstructure sections. Mean
absolute errors (MAE) for the testing set normalized by ground trugh values are also shown.
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microstructure input (2D sections), decent accuracy, and modest

computational resources and time needed for training.

The Multisection models presented here show a viable

strategy of modeling effective properties of heterogeneous

materials without the need of experimental 3D microstructure

data or an extra computational step of reconstructing 3D

micrsotructures from 2D data. The models trained on 2D

microstructure sections from 3D synthetic microstructures

used in the simulations can be leveraged for predicting

properties of materials based on experimental microstructure

images. While we demonstrated the predictive capabilities of the

Multisection framework on effective elastic properties, it can be

readily extended to effective inelastic properties of multiphase

materials (Latypov and Kalidindi, 2017) as well as elastic and

inelastic properties of polycrystalline materials (Paulson et al.,

2017). Indeed, CNNs can be configured to take crystal

orientations as input [e.g., (Pandey and Pokharel, 2021)],

while calculation of two-point correlations for polycrystalline

MVEs within the MKS framework is also available using

generalized spherical harmonics (Paulson et al., 2017) as the

microstructure description basis. Finally, in this study, we trained

a relatively simple architecture from scratch to test the concept,

however, use and fine-tuning of existing state-of-the-art models

(such as ResNet) as the base CNN architecture for each 2D

section can futher improve the results and accuracy of the

Multisection CNN approach.

6 Summary

We presented a new Multisection machine learning

framework for predicting effective properties of

heterogeneous materials. The framework is based on the

hypothesis that the microstructure data from 2D sections

suffice for establishing a quantitative relationship between

the microstructure and the effective property of interest. We

tested the hypothesis in a case study of predicting effective

stiffness in high-contrast two-phase composite

microstructures. To this end, we tested two computational

approaches: Mutisection MKS and Multisection CNN. Both

approaches rely on aggregating microstructure features

extracted from three 2D sections. In the case of

Multisection MKS, we obtain microstructure features by

principal component analysis of two-point correlation

functions calculated for 2D sections. In the case of

Multisection CNN, we utilize CNN filters as feature

extractors with subsequent pooling of features from

individual 2D sections. We show that both the Multisection

MKS and Multisection CNN models show reasonable

accuracy with 13% and 6% increase in the mean average

error compared to the previously published MKS model

relying on full 3D microstructure data. Our results confirm

the hypothesis and demonstrate the Multisection CNN

approach as an optimal model for predicting effective

properties of heterogeneous media without the need to

collect or reconstruct 3D microstructure volumes. The

Multisection CNN is therefore a powerful addition to the

computational materials science toolkit for modeling

microstructure—property relationships.
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