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Membrane bioreactor (MBR) is an advanced wastewater treatment technology,
which has been established for more than 3 decades. In MBRs, membrane
separation allows not only rejecting microorganisms/greater-sized molecules
but decoupling hydraulic retention time (HRT) and solid retention time (SRT).
Low-pressure driven, porous membranes have been widely used in MBRs, but
their performances are mainly limited for wastewater reuse applications.
Recently, many attempts have been made to combine desalination
technologies to advance hybrid MBR processes for wastewater reclamation.
Nanofiltration (NF) and reverse osmosis (RO) have been applied with the MBRs
to improve effluent quality, and their advantages and challenges have been well
reported in terms of rejection efficiency, operational energy, fouling control and
recovery of retentate stream. Alternatively, the direct introduction of non-
pressurized desalination technologies such as forward osmosis (FO) and
membrane distillation (MD) into MBR processes for wastewater reclamation or
probably formicrobial activity have been considered substantially due to their low
energy consumption and excellent rejection efficiency of solid materials.
However, several technical limitations still need to be resolved to
commercialize hybrid FO- or MD-MBR processes. This paper reviews recent
advances of MBR technology integrated with desalination technologies for
wastewater reclamation and suggests perspectives to optimize membrane-
based hybrid MBR process.
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1 Introduction

Membrane bioreactor (MBR) is a well-developed membrane-based wastewater
process by combining biodegradation and separation to remove organic/inorganic
contaminants from wastewater (Xue et al., 2010). The MBR has great advantages in
terms of separating hydraulic retention time (HRT) and solid retention time (SRT) while
producing excellent effluent (permeate) quality for discharge (Skouteris et al., 2012; Smith
et al., 2012). Needs to incorporate reuse of wastewater effluents by consequences of
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population growth, rapid urbanization and water shortage are
growing rapidly for sustainable wastewater management
planning (Van de Walle et al., 2023). However, due to strict
wastewater reuse standards, the MBR permeate may not meet
such requirements, thus requiring additional treatments (Tibi
et al., 2019; Kwon et al., 2021).

Value of reclaimed water can be enhanced further by
developing membrane based hybrid MBR processes (Liu et al.,
2010; Krzeminski et al., 2012). Desalination technologies such as
reverse osmosis (RO), nanofiltration (NF), forward osmosis (FO)
and membrane distillation (MD) have been established mostly in
seawater desalination (Aliyu et al., 2018; Ray et al., 2018; Qasim
et al., 2019; Wafi et al., 2019). Here, membrane-based hybrid MBR
is classified into conventional MBR integrated with desalination
membrane such as NF or RO as post-treatment and a novel hybrid
MBR where NF, FO or MD membrane is introduced directly into
bioreactor. However, there are many attempts how to combine
and tailor desalination technologies with MBRs to provide
synergistic impacts for wastewater reuse purposes. Membrane-
based hybrid MBR processes offer great benefits because they can
produce superior water quality criteria at small footprint and
excellent rejection efficiency (Rodríguez-Hernández et al., 2014;
Tang et al., 2022). Additionally, combining the MBRs with
desalination membranes can intensify the MBR centered
process for wastewater reclamation (Krzeminski et al., 2012;
Wang et al., 2015b; Burman and Sinha, 2020; Zhu et al., 2022).
Nevertheless, the effluent produced by MBR still contains variety
of pollutants mostly caused by microbial activities, inorganic
species and non-biodegradable fractions (Stoquart et al., 2012;
Yan et al., 2018). Therefore, additional treatments for fit-for-
purpose should be required to reuse secondary effluent for various
reuse purposes. For indirect potable reuse, the existence of
refractory (or non-biodegradable) natural organic matter
(NOM) which would not be rejected effectively by MF or
ultrafiltration (UF) in the MBR needs post-treatment or direct
usage of the membranes having much high rejection capability in
bioreactor. Organics of potential concern, particularly for indirect
potable reuse applications, include pesticides, pharmaceutically-
active chemicals and endocrine-disrupting chemicals. For
anaerobic MBR (AnMBR), anaerobic effluent (permeate)
contains high load of nutrients such as nitrogen and dissolved
methane. Depending upon qualities in MBR permeate,
desalination technologies are reliable options and thus needs to
be tailored to improve not only effluent qualities but also
microbial activities (Pearce, 2008; Falizi et al., 2018; Liu
et al., 2023).

The MBR requires additional treatment although there is
currently no agreement on the best among the current options;
NF, RO, FO and MD technology. Mostly, the MBR uses MF or UF
membranes for removal of particles, macromolecules and larger
microbes. However, there are existences of non-biodegradable
organics, effluent organic matter or colloidal fraction consisting
of microbial by-products. Macromolecules associated with
microbial product such as extracellular polymeric substance
(EPS), soluble microbial product (SMP) or NOM, low-
molecular weight organic chemicals and inorganic chemicals
present in the MBR should also be multiple barriers to indirect
potable reuse.

2 Conventional MBR combined with
NF/RO membrane system

2.1 Overview

Generally, MBRs displayed excellent removal efficiency for
organics and nutrients via biodegradation and membrane
rejection, but showed limited rejection of smaller-sized, dissolved
substances (such as humic-like substances, low molecule weight
organics, heavy metals, micropollutants, etc.) that readily pass
through the porous membranes (Judd, 2010). Towards achieving
wastewater reclamation, further membrane separation processes,
such as NF or RO, have been employed to further purify the MBR
permeate. Many research studies listed in Table 1 have proven that
the MBR + NF/RO hybrid processes could achieve high efficiency
and stable performance, which allows them as the most promising
technologies for wastewater reclamation.

Compared to RO processes, the NF processes are capable to
provide a higher permeate flux or higher recovery ratio with lower
operating pressure and cost (Sert et al., 2016). The NF membrane
may be suitable to remove low salinity wastewater where high ion
selectivity is not required, inducing monovalent-divalent ion
selectivity (Nativ et al., 2021). The NF membranes can provide
very high removal of macromolecules that include those associated
with EPS, SMP and NOM. However, the RO membrane can remove
all inorganic chemicals and low-molecular weight organic chemicals
that would pass through the NF membrane. Thus, the MF/UF-MBR
+NF process is considered as an alternative approach for wastewater
reclamation that can compromise between permeability and
selectivity. As indicated in Table 1, the MF/UF-MBR + NF
process has been successfully applied to treat municipal
wastewater (Jacob et al., 2010; Chon et al., 2011; Chon et al.,
2013; Kappel et al., 2014; Chon et al., 2015; Woo et al., 2016;
Arola et al., 2017; Hacıfazlıoğlu et al., 2019; Arola et al., 2021;
Yacouba et al., 2021) and various types of industrial wastewater
(Wintgens et al., 2002; Dialynas and Diamadopoulos, 2009; Andrade
et al., 2014; Wang et al., 2015a; Hosseini et al., 2016; Li et al., 2016;
Reis et al., 2017; Sert et al., 2017; Lan et al., 2018; Moser et al., 2018;
Cinperi et al., 2019; Li et al., 2020a; Reis et al., 2020). In most of the
studies, the treated water quality could meet the standards of
reclaimed water quality for different uses, such as for urban uses,
for industrial uses, for groundwater recharge, and for farmland
irrigation (WHO, 2006).

Towards further improving the treated water quality (e.g.,
producing ultrapure water as fresh water source), a combination
of MBR and RO was adopted, which could exhibit superior organic
removals compared to MBR + NF systems. The total nitrogen (TN)
in the permeates of MBR + RO and MBR + NF were different,
possibly due to different rejection efficiencies of nitrogen species, for
example, 71.7% for NF90% and 86.2% for BW30 membrane by both
NF and RO membranes (Cinperi et al., 2019; Hacıfazlıoğlu et al.,
2019). It was also reported that the MBR + RO rejected TN about
10% higher than MBR + NF (Cinperi et al., 2019). Also, there was
only 3% higher in TN removal efficiency by MBR + RO than MBR +
NF process operated at same transmembrane pressure (TMP)
(Hacıfazlıoğlu et al., 2019). Thus, the conventional biological
processes such as anaerobic and/or anoxic reactors are generally
implemented with an aerobic MBR for elimination of both organics
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TABLE 1 Summary of pressure-driven MBR + NF/RO for wastewater reclamation.

Wastewater MBR NF/RO
process

Permeate
quality

References

Configuration Membrane Permeate
quality

Municipal
wastewater

Aerobic MBR Submerged MF
(PVDF, 0.2 μm)

NF (220-250 Da,
recovery ratio
at 84%)

COD: <1.8 mg/L Arola et al. (2017)

Municipal
wastewater

Aerobic MBR Submerged MF
(PVDF, 0.2 μm)

COD: 22 mg/L; TP:
4.4 mg/L; TN:
23 mg/L

Two-stage NF (220-
250 Da, recovery
ratio at 83% and
98% for first- and
second-stage,
respectively)

COD: 2.6 mg/L; TP:
0.7 mg/L; TN: 22 mg/L

Arola et al. (2021)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (PVDF,
0.1 μm)

DOC: 6.01 mg/L NF (350 and
210 Da)

DOC: 0.4-0.7 mg/L Chon et al. (2015)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (PVDF,
0.1 μm)

DOC: 6.07 mg/L; TN:
32.99 mg/L

NF (350 and
210 Da)

DOC: 0.4-0.7 mg/L; TN:
9.7-31.1 mg/L

Chon et al. (2013)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (PVDF,
0.1 μm)

DOC: 8.16 mg/L; TN:
48.06 mg/L

NF (210 Da) DOC: 2.8 mg/L; TN:
11.4 mg/L

Chon et al. (2011)

Municipal
wastewater

Aerobic MBR Submerged hollow
fiber MF (PVDF,
0.1 μm)

NF (~150 Da) or
RO (recovery ratio
at 50%)

MBR + NF: TOC:
1.46 mg/L; TN: 1.44 mg/
L MBR + RO: TOC:
0.91 mg/L; TN:
1.25 mg/L

Hacıfazlıoğlu et al.
(2019)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre UF (PVDF,
200 kDa)

TOC: 6.0-8.0 mg/L NF (~150 Da) or
RO (recovery ratio
at 10%-70%)

MBR + NF: TOC: 0.54-
0.72 mg/L; MBR + RO:
TOC: 0.24-0.3 mg/L

Jacob et al. (2010)

Municipal
wastewater

Aerobic MBR Submerged flat sheet
MF (PVDF, 0.4 μm)

TOC: 17 mg/L NF (recovery ratio
at 85%)

TOC: 0.5 mg/L Kappel et al. (2014)

Municipal
wastewater
(Synthetic)

Aerobic MBR (with and
without PAC)

Submerged flat sheet
MF (PVDF, 0.08 μm)

MBR: COD:
158.83 mg/L; TN:
24.50 mg/L PAC-
MBR: COD:
133.49 mg/L; TN:
24.47 mg/L

NF (300-400 Da,
recovery ratio
at 82.5%)

MBR + NF: COD:
15 mg/L; TN: 2.68 mg/L
PAC-MBR + NF: COD:
9.88 mg/L; TN:
1.89 mg/L

Woo et al. (2016)

Municipal
wastewater

Aerobic MBR Submerged flat sheet
MF (PE, 0.2 μm)

Ozonation + NF
(~150 Da, recovery
ratio at 80%)

- Yacouba et al.
(2021)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (0.04 μm)

DOC: 2.12-10.21 mg/
L; TN: 47-83 mg/L

RO (recovery ratio
at 50%)

DOC: 1.04–4.1 mg/L;
TN: 17-21 mg/L

Dialynas and
Diamadopoulos
(2009)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (0.05 μm)

DOC: 3.6-5.9 mg/L RO (recovery ratio
at 62%-70%)

DOC: 0.1–0.39 mg/L Farias et al. (2014)

Municipal
wastewater

Aerobic MBR Submerged hollow
fibre MF (PVDF,
0.1 μm)

RO - Li et al. (2020b)

Municipal
wastewater

Aerobic MBR Submerged flat sheet
MF (PVDF, 0.04 μm)

COD: 21 mg/L;
Ammonium-N: <0.5-
24.0 mg/L; Nitrate-N:
17-48 mg/L

RO (recovery ratio
at 40%)

COD: <4 mg/L;
Ammonium-N: 0.5-
1.1 mg/L; Nitrate-N:
2.2-3.8 mg/L

Malamis et al.
(2012)

Municipal
wastewater
(Synthetic)

Aerobic MBR Submerged flat sheet
MF (PVDF, 0.08 μm)

RO - Wu et al. (2013)

Municipal
wastewater

Aerobic moving bed
biofilm MBR

External hollow fibre
NF (200-300 Da)

RO (recovery ratio
at 0% and 90%)

- Tay et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Summary of pressure-driven MBR + NF/RO for wastewater reclamation.

Wastewater MBR NF/RO
process

Permeate
quality

References

Configuration Membrane Permeate
quality

Municipal
wastewater

Aerobic moving bed
biofilm MBR

External hollow fibre
NF (200-300 Da)

RO (recovery ratio
at 90%)

- Tay et al. (2020)

Municipal
wastewater
(Synthetic)

Aerobic moving bed
biofilm MBR

Submerged tubular
MF (Ceramic,
0.02 μm)

COD: 7.2-7.4 mg/L;
TN: 19.6-25.94 mg/L

RO COD: 0.24-0.44 mg/L
TN: 0.98-1.15 mg/L

Wang et al. (2019)

Municipal
wastewater
(Synthetic)

Aerobic moving bed
biofilm MBR

Submerged tubular
MF (Ceramic, 0.2 μm)

TOC: 3.1 mg/L;
Nitrate-N: 1.83 mg/L

RO TOC: 0.093 mg/L;
Ammonium-N: N.D.
Nitrate-N: 0.110 mg/L

Sun et al. (2021)

Municipal
wastewater
(Synthetic)

Anaerobic MBR Submerged hollow
fibre MF (PVDF,
0.02 μm)

TOC: 3.60 mg/L;
Ammonium-N:
41.9 mg/L

RO + ion exchange MBR + RO: TOC:
0.13 mg/L; Ammonium-
N: 2.1 mg/L; MBR + RO
+ ion exchange: TOC:
0.13 mg/L; Ammonium-
N: <1 mg/L

Gu et al. (2019)

Municipal
wastewater

Anaerobic fluidized-
bed MBR

Submerged hollow
fibre MF (PVDF,
0.1 μm)

Zeolite column
+ RO

- Li et al. (2020b)

Antibiotic processing
wastewater

Aerobic MBR Submerged flat sheet
MF (PVDF, 0.1 μm)

TOC: 126.24 mg/L NF (150-300 Da,
recovery ratio at
40%-90%)

TOC: 2 mg/L Li et al. (2016)

Antibiotic processing
wastewater

Aerobic MBR Submerged flat sheet
MF (PVDF, 0.1 μm)

TOC: 79 mg/L;
Ammonium-N:
9.4 mg/L

NF (~150 Da,
recovery ratio
at 92%)

TOC: 5.52 mg/L;
Ammonium-N:
0.68 mg/L

Wang et al. (2015a)

Dairy wastewater Aerobic MBR Submerged hollow
fibre MF (PEI,0.5 μm)

COD: 57.3 mg/L; TS:
1.647 mg/L

NF (~150 Da,
recovery ratio
at 45%)

COD: 4 mg/L; TS:
233 mg/L

Andrade et al.
(2014)

Fruit processing
wastewater

Aerobic MBR Submerged flat sheet
UF (PES)

RO Pesticides >95.4% de Almeida Lopes
et al. (2020)

Hospital wastewater Aerobic MBR Submerged hollow
fibre MF (PS, 0.2 μm)

NF (250 Da,
recovery ratio
at 80%)

- Lan et al. (2017)

Hospital wastewater Aerobic MBR Submerged hollow
fibre MF (PS, 0.2 μm)

TOC: 8.40-31.40 mg/L NF (250 Da,
recovery ratio
at 80%)

TOC: 0.5-15.5 mg/L Lan et al. (2018)

Industrial wastewater - - COD: 21.5 mg/L;
TN: 45.5

RO (recovery ratio
at 68.6%) or NF +
RO (recovery ratio
at 67.7% and 69.1%
respectively)

MBR + RO: COD: 5 mg/
L; TN: 3.8 mg/L MBR +
NF + RO: COD: 5 mg/L;
TN: 2.8 mg/L

Parlar et al. (2019)

Industrial wastewater - - NF (~200 Da,
recovery ratio at
35%-52.5%) or RO
(recovery ratio at
35%-44.5%)

MBR + NF: TOC:
2.15 mg/L; Ammonium-
N: 0.14 mg/L; Nitrate-N:
6.21 mg/L MBR + RO:
TOC: 1.95 mg/L;
Ammonium-N:
0.10 mg/L; Nitrate-N:
3.56 mg/L

Sert et al. (2016)

Leachate wastewater Aerobic MBR Submerged hollow
fibre MF (PEI, 0.5 μm)

COD: 1,445-3374 mg/
L; TN: 888-1,508 mg/L

NF (200-400 Da,
recovery ratio
at 60%)

COD: 77-457 mg/L; TN:
230-699 mg/L

Reis et al. (2017)

Leachate wastewater Aerobic MBR Submerged hollow
fibre MF (PEI,
0.45 μm)

COD: 3374 mg/L; TN:
1750 mg/L

NF (200-400 Da) COD: 457 mg/L; TN:
699 mg/L

Reis et al. (2020)

(Continued on following page)
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and nutrients (nitrogen and phosphorus) before the MBR permeate
is fed into the RO system (Li et al., 2020b). Alternatively, a biofilm
MBR is adopted for simultaneous removals of organic and nitrogen
and its permeate is further purified by a ROmembrane, which shows
several advantages such as low energy consumption, small footprint,
and limited sludge production (Wang et al., 2019). Whether the RO
membranes would experience more fouling potential than the NF
membranes in the MBR + NF/RO systems are still under debate.
Some research work highlighted that the RO membrane displayed
excellent rejection of both cations and anions, which could be
responsible for more inorganic fouling of RO membranes
(Hacıfazlıoğlu et al., 2019). While other studies pointed out the
low molecular weight organic molecules in the MBR permeate could
potentially contribute to internal pore blocking of NF membranes,
which led to more serious NF membrane fouling, especially at lower
water recovery ratios and for more tight NF membranes (Jacob
et al., 2010).

Effluent quality from theMBR is critical in biofouling on NF/RO
membranes (Al-Amoudi and Lovitt, 2007; Jiang et al., 2017; Matin
et al., 2021). Nevertheless, studies to make direct comparison of
fouling behaviors between NF and RO membrane are still very
limited. Effect of surface roughness on biofouling was more
pronounced than operational conditions for both NF and RO
membrane (Alturki et al., 2010). Given its relatively high
rejection efficiency, biofouling would be formed more
preferentially by RO than NF membrane from MBR permeate
(Kimura et al., 2009). Moreover, when RO and NF membranes
were exposed to the same biofouling condition with Pseudomonas
aeruginosa, final cell concentration on RO membrane was lower
than NF membrane in the presence of pharmaceutically active
compounds (Yang et al., 2018).

Nevertheless, improving the quality of MBR permeate (i.e., RO
feed water) is crucial in alleviating RO membrane fouling. A feasible

approach via integrating a bioreactor with an external porous NF
membrane (i.e., NF-MBR) has been attempted as pretreatment of
wastewater for the RO process (Tay et al., 2018; Tay et al., 2020).
Apparently, compared to MF/UF-MBR, the NF-MBR produced the
permeate with lower organic/inorganic substances, accordingly, the
subsequent RO membrane receiving the NF-MBR permeate
displayed better performance. Importantly, under the comparable
energy consumption scenario, the NF-MBR-RO system could
achieve a water recovery ratio up to 90%, higher than that of the
MF/UF-MBR-RO system (recovery ratio of 75%).

In this decade, AnMBRs have received great attention due to
their high-quality effluent, limited sludge production, and energy
production (i.e., methane) (Wu and Kim, 2020). A combination of
anaerobic MBR with RO process have been explored to produce
high-grade reclaimed water for both non-potable and potable use
(Gu et al., 2019; Li et al., 2020b). As stand-alone AnMBRs are
ineffective for removing nutrients (e.g., ammonium and phosphate)
and RO membranes have limited ammonium rejection efficiency,
integration of an additional polishing process with AnMBR + RO for
ammonium removal is suggested. For example, an ion exchange
process was supplemented to purify AnMBR + RO permeate (Gu
et al., 2019); a zeolite adsorption process was employed to treat an
AnMBR permeate water before its feeding to a RO process (Li
et al., 2020b).

2.2 The factors that influencing MBR + NF/
RO performance

2.2.1 Effect of NF/RO membrane property
Although NF/RO membranes show great rejection of organics/

inorganics derived from the MBR permeate due to their dense
membrane natures, the MBR + NF/RO permeate quality could be

TABLE 1 (Continued) Summary of pressure-driven MBR + NF/RO for wastewater reclamation.

Wastewater MBR NF/RO
process

Permeate
quality

References

Configuration Membrane Permeate
quality

Leachate wastewater Aerobic MBR External UF Activated carbon
+ NF

Nonylphenol and
bisphenol: 70%-100%

Wintgens et al.
(2002)

Petroleum refinery
wastewater

Aerobic MBR Submerged hollow
fibre MF (PVDF,
0.04 μm)

TOC: 12.70 mg/L;
Ammonium-N:
1.6 mg/L; Nitrate-N:
169 mg/L

NF (100 Da) or
UV/H2O2 +NF
(100 Da)

MBR + NF: TOC:
0.58 mg/L Ammonium-
N: 0.4 mg/L; Nitrate-N:
6.52 mg/L MBR + UV/
H2O2 +NF: TOC:
0.96 mg/L; Ammonium-
N: 0.3 mg/L; Nitrate-N:
5.82 mg/L

Moser et al. (2018)

Textile wastewater Aerobic MBR Submerged hollow
fibre MF (0.02 μm)

COD: 132.8 mg/L; TN:
34.2 mg/L

NF (220-250 Da)
or RO

MBR + NF: COD: 3-
5 mg/L; TN: 17.7-
18.4 mg/L MBR + RO:
COD: <1 mg/L; TN:
14.4-16.5 mg/L

Cinperi et al. (2019)

Textile wastewater Aerobic MBR Submerged flat sheet
UF (PVDF, ≤100 Da)

NF (200-400 Da,
recovery ratio at
39%-90%)

COD: 13.94 mg/L;
Ammonium-N:
3.54 mg/L; Nitrate-N:
75.79 mg/L

Li et al. (2020a)

COD, chemical oxygen demand; PE, polyethylene; PEI, polyetherimide; PS, polysulfone; PVDF, polyvinylidene fluoride; TOC, total organic carbon; TN, total nitrogen.
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impacted by the NF/RO membrane property (such as pore size of
NFmembrane, surface charge, hydrophobicity, etc.). It has been well
illustrated that size-exclusion performed a crucial role in rejection of
organic substances by NF membranes, i.e., with decreasing NF
membrane pore size, more organic substances (such as humic-
like substances) could be retained by NF membranes, improving
MBR + NF permeate quality (Chon et al., 2013; Chon et al., 2015).
While, in terms of micropollutants, size exclusion, hydrophobic/
hydrophilic interactions, and electrostatic interactions performed
major roles in rejection of micropollutants in NF/RO processes, and
the dominance of these mechanisms is associated with
characteristics of NF/RO membranes and micropollutants. For
example, the molecular weight cut-off of NF membranes
governed the removal efficiencies of N-nitrosamines, heavy
metals, and metalloids compared to adsorption and formation of
membrane fouling on the NF membranes (Chon et al., 2013; Chon
et al., 2015). In a study on MBR + NF for leachate wastewater
treatment (Wintgens et al., 2002), it was found that the
hydrophobicity of the NF membrane could influence the
retention of nonylphenol (NP), but did not determine the
retention of bisphenol A. With solution-diffusion transport of NP
through NF membrane, the transport of NP is constant through the
membrane while the water flux increases in more hydrophilic
conditions, so that the NP retention increases (Wintgens et al.,
2004). In contrast, the MBR + RO displayed excellent mitigation of
organics (Jacob et al., 2010; Hacıfazlıoğlu et al., 2019),
micropollutants, such as pesticides (de Almeida Lopes et al.,
2020), heavy metals (Dialynas and Diamadopoulos, 2009). It
should be realized that in certain conditions, the micropollutant
removal ratios in the MBR + RO still slightly lower than that in the
MBR + activated carbon system (e.g., >95.4% of 2,4-D, atrazine,
carbendazim, and diuron removal in MBR + RO vs >98.6% in MBR
+ activated carbon), implying the importance of RO membrane
property in micropollutant mitigation (de Almeida Lopes
et al., 2020).

Furthermore, the NF/RO membrane characteristics also
influence NF/RO fouling potential. Compared to the NF
membrane with relatively larger pore size, the NF membrane
with fine pore size had more significant flux decline when they
received the same MBR permeate (Jacob et al., 2010; Chon et al.,
2013). Similarly, the permeability decline of the RO membrane
decreased more significantly than the NF membrane, especially at a
higher recovery ratio (Jacob et al., 2010; Hacıfazlıoğlu et al., 2019).
However, at a lower recovery ratio, the flux decline of the RO
membrane was slower than that of the NF membrane because the
low molecular weight molecules in the MBR permeate could cause
serious pore blocking of the NF membrane (Jacob et al., 2010).

2.2.2 Effect of recovery ratio and brine
recirculation ratio

In the MBR + NF/RO processes, water recovery ratio of NF/RO
process is an important parameter in determining productivity of
reclaimed water. Increasing recovery ratio in the NF/RO process
benefits improving water production, but more hydraulic driving
force is needed due to increased osmotic pressure and fouling (cause
by gel layer or adsorption) (Andrade et al., 2014; Arola et al., 2021).
As a result, increased driving force could facilitate the retained
molecules passing through the NF/RO membranes. In particular,

such effects could be accelerated when the recovery ratio is above
certain threshold level which is about 45% (Andrade et al., 2014).
Towards superior NF/RO permeate quality, the NF recovery ratio at
50%-85% and RO recovery ratio at 50%-75% were generally adopted
in the reported studies (Table 1). Thus, high volume of NF/RO
concentrate with diluted nature is produced. Further post-treatment
of NF/RO brines that contain great amounts of nutrients, refractory
organic compounds, and inorganic salts is necessary as an efficient
membrane concentrate management strategy. To increase water
recovery ratio in the MBR + NF system, one solution was to employ
the second-stage rotational NF process with high turbulent force by
rotating blade on membrane surface to concentrate the first-stage
NF brine, which allowed simultaneously improving water
production, allowing 300 times NF brine volume reduction, and
recovering phosphorus to 86% via spontaneous crystallization of
calcium phosphate (Arola et al., 2021).

In the real operation of MBR + NF, the NF concentrate is
generally recycled back to the preceding MBR in order to enhance
wastewater recycling efficiency and reduced the discharge of NF
brine wastewater. While, the recirculation of RO concentrate to the
MBR is not practical due to their relatively higher salinity, which
generally requires post-treatment before discharge. It is noted that
recirculating NF brine back to the bioreactor caused the
accumulation of organics, nitrogen, phosphorus and divalent ions
in the MBRs, which could potentially affect the system performance
and pollutant mitigation (Kappel et al., 2014; Wang et al., 2015a).

First, increasing NF brine recirculation ratio could lead to a
decreased of biomass amount, which was attributed to the negative
effects of accumulated toxic and refractory organics/inorganics
(especially causing increased salinity) on the sludge production in
the MBR. Nevertheless, no significant change of microbial
community in the MBR was noticed with the recycling of the NF
concentrate. Meanwhile, once the microbial community adopted to
such operation conditions, the sludge was able to maintain at a
relatively constant level (Kappel et al., 2014; Wang et al., 2015a; Li
et al., 2020a).

Second, recirculating NF brine back to the MBR may influence
the permeate quality of both MBR and MBR + NF. In several
documented studies, it was observed that the presence of the
recirculation of NF retentate could cause decreasing removal
ratios of organics and ammonia in the MBR. Generally, the
predominant organics in the MBR permeate are proteins,
polysaccharides, and humic-like substances, which can be almost
completely rejected by NF membranes (Li et al., 2016). Accordingly,
the organic contents in the MBR + NF permeate was negligibly
impacted by the NF brine recirculation ratio, showing steady
performance of NF membranes. However, it was noticed that
recirculating NF brine back to the MBR significantly aggregated
the accumulation of nitrate in both the MBR and NF units, leading
to more nitrate present in the MBR + NF permeate (Wang et al.,
2015a; Li et al., 2016; Li et al., 2020a). Furthermore, recirculating NF
retentate increases concentration-polarization layer on membrane
due to the concentration of organics in MBR effluent, and this can
reduce rejection efficiency by NF membrane. In terms of inorganics,
especially monovalent ions that are not readily completely rejected
by the NF membranes, their levels in the MBR + NF permeate could
significantly increase with elevating the recirculation ratio of the NF
retentate back to the MBR (Kappel et al., 2014; Li et al., 2016).
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Third, the presence of NF brine recirculation back to the MBR
aggregated both MBR and NF membrane fouling. Several studies
have highlighted that divalent ions and SMPs brought by NF
concentrate are the dominant factors causing the severe
membrane fouling in MBRs. In addition, the organic fouling and
inorganic scaling on the NF membrane appeared to increase due to
relatively high levels of organics/inorganics in the MBR permeate
(Kappel et al., 2014; Li et al., 2016; Li et al., 2020a). However, the
dominant NF membrane fouling mechanisms in the reported MBR
+ NF systems were dissimilar, possibly relating to the different
operation conditions and wastewater properties. For example, in the
MBR + NF system for municipal wastewater reclamation, the
predominance of NF membrane fouling was inorganic scaling,
which could be alleviated by regulating the pH level of NF feed
water (Kappel et al., 2014). While, in another study focusing on
MBR + NF for antibiotic processing wastewater treatment, the
soluble organic substances (especially fulvic acid-like and humic
acid-like compounds) accumulated on the NF membrane
determined the NF fouling potential (Li et al., 2016). Under these
scenarios, more frequent membrane cleaning was therefore adopted
in order to maintain constant permeate productivity, which led to
increased operation cost and capital cost (due to shortening NF
membrane lifespan). However, the high recovery of reclaimed water
brought considerable potential economic benefits, thus, the
applicability and feasibility of various MBR + NF operation
configurations should be optimized with regards to both
operation performance and overall economic benefits (Li
et al., 2020a).

2.2.3 Effect of MBR operation conditions
It has been well illustrated that (1) variable feed wastewater

characteristics and operation conditions in the MBRs could
influence on the membrane performance and permeate quality of
MBRs (such as organics, nutrients, inorganics) (Wu and Fane, 2012;
Meng et al., 2017; Wu and Kim, 2020); (2) The feed water quality of
MBRs is a critical factor in determining organic fouling, scaling and
biofouling of NF/RO membranes (Al-Amoudi and Lovitt, 2007;
Jiang et al., 2017; Matin et al., 2021). Not surprisingly, the MBR
operation conditions could have potential impact on the overall
MBR + NF/RO performance.

As expected, several studies have revealed that a higher level
of organic substances in the MBR permeate reduced NF/RO
performance. For example, Reis et al. (2017) pointed out that a
yeast-based MBR treating landfill leachate wastewater could
benefit producing the permeate with less organics compared
to a conventional MBR. As a result, the permeate of the yeast-
based MBR + NF was superior than the conventional MBR + NF.
Woo et al. (2016) found that the presence of activated carbon
(1 g/L) in the MBR could produce the permeate with less
organics, allowing the subsequent NF membrane operated at
a higher flux compared to that without powdered activated
carbon (PAC). Meanwhile, better permeate quality was
achieved in the PAC-MBR + NF.

Despite of this fact, the MBRs generally show excellent organic
removals from wastewater and produced superior permeate
quality. However, the detailed organic compositions (such as
hydrophobicity, aromaticity, biopolymer fraction, or
carboxylate/acid/base nature of the organics) in the MBR

permeate could be strongly dependent upon the feed wastewater
conditions and operation conditions of MBRs, which potentially
influence the subsequent NF/RO performance (Wu et al., 2013;
Farias et al., 2014).

For example, Farias et al. (2014) found that increasing the
SRT from 2 to 20 days facilitated alleviating membrane fouling
and enhanced organic removal in the MF-MBRs, but increased
fouling potential of the subsequent RO membranes. While, Wu
et al. (2013) noticed that the MF-MBR operated at a high F/M
ratio (0.50 g/g day−1, i.e., SRT at 7 days) had a more serious MF
membrane fouling and produced the MBR permeate with greater
amounts of organic substances, accordingly, causing a higher RO
fouling rate compared to the low F/M ratio (0.17 g/g day−1,
i.e., SRT at 45 days). In a recent study on NF-MBR + RO
process (Tay et al., 2020), the NF-MBR at a longer SRT
(60 days) had greater accumulation of divalent salts in the
bioreactors compared to that at a shorter SRT (30 days),
leading to more severe inorganic fouling on the NF
membrane. As both NF-MBRs displayed similar microbial
viability and biodegradation efficiency in terms of organic
carbon and ammonia, comparable permeate qualities were
achieved in both NF-MBRs. However, a higher RO fouling
rate was observed when the RO membrane was fed with the
permeate produced by NF-MBR at a higher SRT, implying the
effect of organic composites (such as assimilable organic carbon)
in the NF-MBR permeate on the RO performance. Notably, the
conclusions relating to the influence of SRT on the consequent
NF/RO performance were not always in a consistent pattern in
these reported studies, possibly due to dissimilar wastewater and
membrane nature, reactor configuration, and operating
philosophy. Nevertheless, operational parameters of HRT and
SRT should influence membrane fouling because they should be
involved critically for substrate utilization and cell growth.

Additionally, the dissolved oxygen (DO) level in the MBRs has
also been reported to impact the subsequent NF/RO membrane
performance. It was found that decreasing the DO level in a moving
bed biofilmMBR from 4.0, to 2.5, and to 1.0 mg/L, the fouling rate of
the ROmembrane fed with theMBR permeate increased from 0.015,
to 0.023, and to 0.055 bar/d (Wang et al., 2019). The biopolymers in
the MBR permeate was further identified to be correspondent with
the RO fouling potential, i.e., theMBR at a higher DO level produced
the permeate with less amounts of biopolymers. Similarly, although
the aerobic MBR and AnMBR-zeolite column produced the
permeate with comparable organic and nitrogen concentrations,
the performance of the RO membrane fed with the aerobic MBR
permeate was better than that with the AnMBR-zeolite column
effluent. It appears that the divalent ions released from the zeolite
column could interact with phosphate to accelerate inorganic
colloidal fouling on the RO membranes (Li et al., 2020b).

Such observations highlighted that (1) besides organic amounts,
the organic/inorganic compositions in the MBR permeate could
have a significant influence on the performance of following NF/RO
processes, which should be given more attention in future research;
(2) during optimization of MBR + NF/RO for wastewater
reclamation, the combined effects of the operation conditions of
MBRs on both MBR and NF/RO performance need be carefully
evaluated in terms of membrane fouling control and
economic benefits.
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2.2.4 Effect of feed pretreatment on NF/RO
As discussed above, the MBR permeate quality could influence

NF/RO membrane performance. Thus, an additional physical/
chemical process is suggested to be employed for post-treatment
of the MBR permeate before it is fed to NF/RO systems, aiming to
remove the substances that could be potential foulants of NF/RO
membranes. For example, in the MBR + RO system, installation of
cartridge filters (~5 μm) in the RO feed line and recycled RO
concentrate line significantly mitigated RO fouling from 1.65 to
0.30 bar/day, which was majorly attributed to reduced accumulation
of organic substances on the RO membranes by reducing its dry
weight to 128.6 from 282 mg/m2. day (Wu et al., 2013). In addition, a
NF process was suggested to treat MBR permeate before it was fed
into the RO process in a study on industrial wastewater treatment.
The results confirmed that with NF pretreatment of MBR permeate
(significantly rejecting organics and divalent ions), the RO
membrane could be operated at a relatively higher flux, 97 and
86 L/m2. hr (LMH) for NF and MBR, respectively. Meanwhile, MBR
+ NF + RO could produce the superior permeate quality than the
MBR + RO compared to single MBR in terms of total dissolved
(17.1 vs 29.6 mg/L as total dissolved solids (TDS)) and TN (2.8 vs
3.8 mg/L) (Parlar et al., 2019).

Furthermore, in a hybrid MBR + NF process in treating
municipal wastewater, additional ozonation of MBR permeate
before its feeding into the NF process could alleviate 40% of NF
membrane fouling. This was attributed to the oxidation of the
protein-like, fulvic and humic-like substances in the MBR
permeate via decomposing their carbon-carbon double bonds
and aromatic rings, which formed more hydrophilic nature
compounds with less propensity to induce irreversible fouling
(Yacouba et al., 2021). Alternatively, employing UV/H2O2 to
treat MBR permeate benefited for mineralization of organics in
the MBR permeate. Accordingly, when the MBR-UV/H2O2

effluent was fed into the NF process, less NF membrane
fouling and superior NF permeate quality were observed
compared to that fed with the MBR permeate. Importantly,
the integration of H2O2/UV with the MBR-NF process saved
20% of capital and operation cost respectively due to reduced NF
membrane cleaning frequency and prolonging NF membrane
lifespan (Moser et al., 2018).

Nevertheless, long-term addition of oxidant inMBR permeate as
pretreatment may reduce membrane performances depending upon
ozone dose and membrane materials. In the MBR-ozonation hybrid
process, the target ozone dose needed to be maintained below
5.0 mg/L to prevent membrane damage (Sun et al., 2018). When
the polyethersulfone (PES)-based membrane such as NP10 and
polyamide (PA)-based membrane such as NF90and
NF270 membrane were exposed to 10 mg/L of dissolved ozone at
pH 7 for 1 h, there was no significant degradation observed with
NP10 membrane while PA-based NF membranes were damaged
severely (Ouali et al., 2021).

In case of the MBR coupled with UV/H2O2 process, the
limitation of the H2O2 concentration recirculated to the MBR
step was reported as 3–7 mg/L to prevent not only microbial
activity but also membrane damage (Laera et al., 2012). As PA-
TFC composite NF membrane was exposed to 4 mg/L of H2O2

during 24 h, the rejection of micropollutants were reduced slightly
due to membrane damage (Lin et al., 2021).

3 Hybrid MBR systems

3.1 Hybrid NF-MBR

Generally, porous membranes such as MF or UF, are employed
in MBRs to retain active biomass effectively. To obtain high
permeate quality for wastewater reclamation, feasibility of NF
membrane is also explored by directly combining NF membrane
with bioreactor. Since physicochemical separation employed by the
NF membrane is dominated by both size exclusion and solution-
diffusion mechanisms, various contaminants such as colloidal and
organic compounds can be rejected effectively (Choi et al., 2002).
However, monovalent ions or nanoscale- organics present in
wastewater are difficult to be retained by NF membrane,
accordingly, they may not be accumulated easily in bioreactors.
This enables the NF-MBR to be operated under relatively lower
suction pressures (than RO membranes), while preventing the
inhibition against microbial growth and activity (Choi et al.,
2002). Additionally, the NF membrane in the MBR process did
not provide any adverse impact on biological conversion of NH4-N
(Cao et al., 2022).

However, NF-MBRs suffer low permeability nature, e.g.,
~0.01 to 0.04 LMH of permeate flux was reported in the
submerged NF-MBR with commercial NF membrane (Cao et al.,
2022). To enhance membrane permeability, novel NF membranes
with tailored properties have been adopted in the NF-MBR. For
example, the loosely structured hollow-fiber membrane was applied
in the NF-MBR, allowing to be operated at ~2 LMH with more than
95% COD removal efficiency (Cao et al., 2022). In a moving bed
biofilm reactor with a side-streamed NF membrane module (using
layer-by-layer polyethersulfone NF membrane) under ~22 h of
HRT, about 10 LMH of set-point flux was achieved (Tay et al.,
2018). The newNFmembrane with high permeability and selectivity
should be developed for MBR. With the side-stream membrane
configuration, generation of the concentrate stream from the NF
membrane that returns into bioreactor is not avoidable, requiring
additional treatment unit such as chemical oxidation or
electrodialysis to mitigate the concentrate load and protect
microbial activity (Kappel et al., 2014). Research works need to
be directed into the NF-MBR to maintain desired cell concentration
in MBR without wash-out and potential inhibitory effect caused by
transportation of monovalent ions or nano-scaled organic
compounds on microbial activity.

3.2 Hybrid FO-MBR

Despite the advances in NF or RO that promise to increase MBR
permeate quality, it consumes high operational energy. In recent
years, combining a FO membrane process with a bioreactor, termed
as FO-MBR or osmotic MBR has been emerging as a result of
recognition of FO to provide excellent permeate (effluent) qualities
and reduction in operational cost over traditional high-pressure
driven membrane processes (Holloway et al., 2015; Wang et al.,
2016; Pathak et al., 2021; Moktadir et al., 2023). The FO filtration
uses a semipermeable membrane and is driven by natural osmotic
pressure generated by draw solution to produce permeate from feed
solutions (Ndiaye et al., 2021). Since the FO filtration relies on the
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osmotic pressure caused by concentration gradient through
membrane materials, an energy demand required for TMP to
operate the system is very low. As filtration progresses with time,
however, the draw solution becomes diluted, so that both feed and
bulk solution in the MBR should be concentrated subsequently. The
waste product concentrated by FO membrane is easy to be disposed
or reused downstream as useful energy and resource source. Since
the wastewater is transported from a feed side toward draw solution,
it can be recovered for the production of high quality of permeate
given that draw solution regeneration step is integrated, for example,
a double-barrier membrane (Holloway et al., 2014; Lutchmiah et al.,
2014; Im et al., 2020). Nevertheless, the purity of the permeate
depends on the rejection features of FO membranes and the
separation effectiveness of permeate water from draw solution
strongly. Depending upon the characteristics of the effluent
stream and the effectiveness of the entire treatment train, the
extracted permeate can also be reused for various purposes such
as cooling, rinsing or even irrigation and drinking water. In
particular, this unique characteristics in FO membrane process is
also beneficial for Zero Liquid Discharge (ZLD) waste disposal
system because it leaves much less water to be removed by
evaporators, so that energy demand can be further reduced
significantly. Here, the product water extracted by a FO
membrane can be reused for other purposes such as process
water for industrial manufactures (Im et al., 2018). The FO-MBR
shows acceptable permeate flux and superior removal efficiency of
organic contaminants as well as other emerging contaminants
without applying external pressure (Zhu and Li, 2013; Jang et al.,
2018; Sivodia and Sinha, 2023). Therefore, the FO-MBR should have
a great potential to replace the conventional MBR processes for
wastewater reclamation conditioning that sources suitable for draw
solution, i.e., seawater can be obtained easily nearby the MBR plants
(Arnaldos et al., 2023).

For the FO-MBR process, there are two functions designated by
FO membranes such as wastewater concentration and water
recovery or extraction (Wu et al., 2021). The wastewater
concentrated by the FO process should be particularly helpful in
anaerobic MBR systems because it can retain anaerobes completely
in anaerobic bioreactor (Chen et al., 2014; Anjum et al., 2021).
Additionally, the FO membrane process has been employed for the
treatment of AnMBR effluents containing high nutrient loadings
such as ammonia nitrogen as they are applied as post-treatment
(Kwon et al., 2020). Although biodegradation and/or
biotransformation is the main mechanism for trace organic
contaminants removal by both aerobic MBR (AeMBR) and
AnMBR, the removal of some specific materials can be different
since the microbial community differs between the two (Liu et al.,
2020). While there is no significant difference in permeate qualities
produced by desalination technologies with AnMBR, some portion
of methane produced can be dissolved in permeate particularly
AnMBR treats domestic sewage. In terms of water extraction, the FO
membranes can be applied to separate the water fromMBR effluents
or directly from bioreactor. Nevertheless, the regeneration step for
the recovery of draw solution should be required, and this will be the
bottleneck to be overcome for FO-MBR processes (Qiu et al., 2016;
Song et al., 2020).

The selection of draw solution acts as an important role in FO-
MBR processes because it can determine not only permeate flux but

also water quality as well as microbial activities. Especially, the
reverse salt transport may increase the amount of salt in bulk
suspension of MBRs, which would provide adverse effects on
microbial community and bacterial growth (Nawaz et al., 2013;
Nawaz et al., 2016). Subsequently, the salt concentration in the MBR
increased by the FO membrane varies depending upon the growth
rate of biomass, particle size distribution and sludge filterability
(Nguyen et al., 2015; Adnan et al., 2019). Therefore, more studies are
needed to understand effect of draw solution concentrated by FO
membrane in bioreactor performance, such as microbial activities.
Also, proper selection of draw solution should be suggested to
confirm operational energy.

Like other membrane processes, the membrane fouling
observed with FO membrane is a necessary phenomenon
because biofouling can be formed particularly on the surface of
FO membrane (Qin et al., 2010; Bao et al., 2019). In fact, the FO
membrane can be fouled more easily than other types of high
pressure-driven membrane due to relatively lower crossflow
velocity on membrane surface. Furthermore, the fouling rate on
FO membrane can be severe as it is combined with bioreactor
because both organic/inorganic loadings increase gradually by FO
filtration (Parida and Ng, 2013; Aftab et al., 2017). High organic
loading can increase microbial by-products such as EPS while
reducing sludge dewaterability (Aftab et al., 2015). A recent study
(Olives et al., 2023) on granular sludge based AnMBR proved that
fouling occurred less frequently than MF. It was also confirmed
that the change in salinity within the MBR caused the draw
solution’s reverse salt flux. The use of FO resulted in complete
and very high purity in effluent, but the presence of MF was
necessary for the removal of salts. A method combining thermal
osmotic backwashing and air scouring and osmotic backwashing
were evaluated as non-chemical methods to remove biological
contamination of FO-MBR (Satterfield et al., 2021). Considering
energy efficiency, optimization of backwashing period and
frequency was found to be the most economically efficient way
to remove FO-MBR fouling.

3.3 Hybrid MD-MBR

MD is the thermally driven hybrid membrane process. The
MD process could concentrate the non-volatile impurities in the
feed solution and transport volatile matters to the permeate
solution though the hydrophobic pores of membranes. The
schematic diagram of the MD process for wastewater treatment
is presented in Figure 1. Due to the relatively lower fouling
potential than that of pressurized-driven membrane process, the
MD process is combined with a bioreactor has been applied as
main or side streams for various wastewater treatment and water
reuse (Julian et al., 2022; Kharraz et al., 2022), treatment of
industrial wastewaters (petrochemical (Santos et al., 2020), flue
gas (Li et al., 2021), desulfurization (Zheng et al., 2022), coking
(Guo et al., 2022), textile (Elcik et al., 2021), seawater brine (Kim
et al., 2019) and radioactive (Jia et al., 2021)) as well as resource
recovery (Julian et al., 2022; Kharraz et al., 2022). In the MD-MBR,
the MD process could be used as final barrier in the water
treatment process because it allows the transports for the
volatile matters such as water. However, feed solution
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containing volatile impurities such as nitrogen (ammonia)
sometimes required a pH control to regulate ammonia
transport through membrane (Tun et al., 2016; Lee et al., 2021b).

As mentioned, the main purpose of MBR process is to separate
biomass and improve permeate quality by controlling HRT and
SRT independently. When the MD process is combined with MBR
in municipal wastewater treatment, the deionized water could be
produced by municipal wastewater (Tun et al., 2016; Song et al.,
2018; Lee et al., 2021a; Simoni et al., 2021; Dow et al., 2022). Like
pressure-driven membrane process, the MD membrane
experiences severe fouling caused by particulates (Choudhury
et al., 2019), organic compounds (Guo et al., 2019; Elcik et al.,
2021; Jeong et al., 2021), inorganic compounds (Kim et al., 2019;
Kim et al., 2022), and microorganisms (Zheng et al., 2022).
Additionally, the fouling rate can be accelerated by the
membrane wetting (Choudhury et al., 2019; Kim et al., 2019;
Madalosso et al., 2022) during long-term operation of MD
membrane. To improve the membrane permeability of MD
membrane or antifouling capability, the modified MD
membrane materials have been adopted (Günay et al., 2023).
The performance of MD membrane could be enhanced by
fabricating the membranes with proper membrane pore size
and thickness to prevent membrane wetting or heat loss across
the membrane (Tibi et al., 2020; Julian et al., 2022; Kharraz et al.,
2022). It is reported that higher hydrophobicity and porosity of the
MD membrane results in higher rejection with organic and
inorganic species (Tibi et al., 2020; Julian et al., 2022; Kharraz
et al., 2022). The PVDF, polypropylene (PP), and
polytetrafluoroethylene (PTFE) polymers have been used to

fabricate a flat-sheet or hollow fiber type MD membranes,
which have been used in various MD module configurations
such as direct contact membrane distillation (DCMD), air-gap
membrane distillation (AGMD), solar driven membrane
distillation (SGMD), and vacuum membrane distillation (VMD)
(Tibi et al., 2020; Julian et al., 2022; Kharraz et al., 2022).
Specifically, the aramid layer was suggested to be coated on the
PVDF membrane to enhance chemical resistances (e.g., harsh
pH conditions) (Ji et al., 2021). Moreover, the MD membrane
can be modified for anti-wetting (Madalosso et al., 2022), self-
cleaning efficiency (Yan et al., 2022), and photothermal property
(Lee et al., 2022) to achieve its high sustainability for hybrid MD-
MBR processes. Nevertheless, the techno-economic analysis
should be conducted for hybrid MD-MBRs to accelerate
commercialization. Operational energy required for MD
processes may be still high due to maintaining required
temperature driving force, but if the renewable energy or waste
heat is available from anaerobic bioreactor, for example, the energy
demand to operate the MD-MBRs can decrease significantly. As
reported in a recent study of pilot-scale MD-MBR (treating 10 m3/
day wastewater) using single-solar power panel without and with
the heat pump, the costs were expected to be 56.5 and 87.3 $/m3

produced water respectively, considering the gain output ratio
(GOR) of 0.5–0.8 (Choi et al., 2022). It has been well documented,
for the multi-staged MD system, the water production cost was
from 6.1 to 7.4 $/m3 with reduction of GOR from 4.6 to 4.4 as the
number of stages increased from 8 to 16 (Dudchenko et al., 2021).
Both evaporation efficiencies (48%-69%) and the GOR (2.0-3.4) of
the multi-stage MD system could be increased with increasing

FIGURE 1
Schematic diagram of the membrane distillation process during the wastewater treatment.
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wind speed (8-11 m/s). Moreover, waste heat can be produced by
the wind turbine, which is available for energy source to operate
MD system (Memon et al., 2022). As a result, it is worthwhile to
develop MD-MBR processes to simultaneously capture renewable
energy and perform wastewater reclamation.

4 Conclusion

This review describes the state-of-art of the MBR integrated
with desalination technologies to improve effluent quality and
membrane performance as well as optimize it for wastewater reuse
applications. Applications of RO, NF, FO and MD to improve
MBR based process for wastewater reclamation were reviewed
critically. Although NF/RO can provide high permeate quality, this
should be impacted by membrane materials strongly. Increasing
the ratio of water recovery in NF/RO process enhances
productivity of reclaimed water. However, membrane fouling is
necessary phenomena and thus it needs to be controlled.
Recirculating NF/RO residual to bioreactor may provide adverse
effect on both MBR permeability and NF or RO permeability, so
that recovery ratio needs to be optimized. Both HRT and SRT are
important operational parameters to determine both MBR
performance and desalination performance. Nevertheless, the
effectiveness to desalination membrane varies strongly
depending upon wastewater characteristics, membrane materials
and reactor configurations. The FO membrane has a great
potential because it can reduce energy demand in hybrid MBR
process significantly. However, increasing salt content in bulk
solution of MBR due to dilution of draw solution may reduce
microbial activity. The use of MD membrane has great potential to
enhance the value of reclaimed water in hybrid MBR because it can
use any potential waste heat source available. Nevertheless, the
long-term performance of MD membrane in bioreactor needs to
be evaluated.
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