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Introduction

Membranes for energy

Membranes have always been at the heart of discussions on energy storage and

conversion devices such as batteries and fuel cells (Park et al., 2016; Lu et al., 2017; Jiao

et al., 2021). This is because they provide the functionality to isolate the cathode and

anode as well as to conduct charge-carriers to complete the internal circuit (Guiver,

2022). The membranes must cater to the needs of high chemical and mechanical

stability, high selectivity and conductivity, and low cost (Lee et al., 2014; Xiong et al.,

2021; Li et al., 2022), since they play a decisive role in a device’s performance and

reliability.

Membranes for energy storage and conversion devices can be divided into two types

according to the ion transport mechanism: ion exchange membranes (IEMs) based on an

ion-exchange mechanism and porous membranes (PMs) based on an ion-sieving

mechanism (Yuan et al., 2018; Xiong et al., 2021). The performance of IEMs is

dependent on the ion exchange groups fixed to the polymer backbone, which can be

classified as an anion-exchange membrane (AEM) holding the OH− or Cl− counter anion,

cation-exchange membrane (CEM), and featuring the anion group, which is capable of

delivering the cations (i.e., anionic groups holding K+, Na+ or H+ counter-cation) and

amphoteric ion-exchange membrane (AIEM), whose surface net charge closely depends

on the external solution.

Depending on requirements, the application of ion exchange membranes in energy

storage and conversion devices is flexible and not restricted by their ion-exchange groups. For

instance, the acidic vanadium flow battery can use an AEM to achieve a high coulombic

efficiency, which benefits from the charge repulsion effect between positively charged

vanadium ions and positively charged anion-exchange groups (Chen et al., 2013; Mai

et al., 2013). CEM can have widespread applications in batteries or fuel cells that also

involve an alkaline media (An et al., 2012; Lin et al., 2015; De Porcellinis et al., 2018). Different

from ion exchange membranes, PMs, which are widely applied in batteries and flow batteries

in particular (Yuan et al., 2016b; Costa et al., 2019; Tan et al., 2020), separate the active

materials or fuels from charge carriers via pore size exclusion. Free of ion exchange groups,

PMs normally feature the advantages of high stability, diverse structure, low cost, and easy

fabrication process. With emphasis focused on promoting the performance of batteries, in
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recent decades we have witnessed the development of PMs, with

significant advances accelerating the application of batteries for

energy storage.

Currently, batteries can be divided into static cells (i.e., metal

(lithium, sodium, potassium, zinc, aluminum, magnesium)-based

batteries, lead-based batteries) and non-static cells (flow batteries).

Among these batteries, static batteries and lithium-based and lead-

based batteries are widely employed as a portable power supply in

electronic devices and electric vehicles because of their high energy

density advantage. Their large-scale applications in grid-scale

storage still involve challenges, i.e., avoiding the membrane from

being pierced by metal dendrite resulting from uneven deposition of

metal during charging or overcharging of the battery (or avoiding

short circuit and fire explosion that result from thermal runaway of

the battery), efficient cascade utilization and green-recycling of the

batteries. Compared to lithium-based batteries, flow batteries, which

can be divided into inorganic-based flow batteries, all organic-based

flow batteries (Janoschka et al., 2015; Huang et al., 2021), and

inorganic/organic-based flow batteries (Lin et al., 2015; Zhang et al.,

2019; Feng et al., 2021), are safer, andmore flexible and adaptable for

grid scale storage. Critically different from static batteries, the power

(kW~100MW) and energy capacity (kWh~100MWh) of a flow

battery can be designed flexibly. In September 2022, the world’s

largest 100MW/400MWh flow battery plant reached the final stage

of grid-connected debugging and is expected to be formally put into

use in October 2022 (https://english.cas.cn/newsroom/research_

news/chem/202205/t20220531_306054.shtml). Coupled with

renewable energies such as solar and wind power, flow battery

technology is expected to contribute to achieving carbon neutrality.

Nevertheless, one major challenge for the widespread application of

flow battery technology is the lack of high-performance and low-cost

membranes. Although promising alternative membranes have been

developed in recent decades, the bottleneck issues have not yet been

resolved, i.e., breaking the “trade-off” of a membrane between ionic

conductivity and selectivity via the controlling of ion movement in

the battery, achieving a membrane with high stability, ease of

processability and scalability.

Challenges for ion exchange membrane

Ion exchange membranes have found wide applications in

various fields, e.g., chlor-alkali industry, water electrolysis (Li

et al., 2021), fuel cells (Mustain et al., 2020), and flow batteries,

where the low-cost, high-efficiency, and high-stability for these

membranes are vital to realizing the successful deployment of the

above technologies. Among numerous ion exchange membranes,

the benchmark Nafion® membranes are the most widely used ion

exchange membranes because of their ability to maintain excellent

stability in critical conditions and easy availability. Nevertheless,

these membranes suffer from high cost ($ 500–700 m−2), low ionic

conductivity in neutral-or alkaline-based solutions (Hu et al., 2018),

and high permeability for fuels or redox couples such as methyl

alcohol and vanadium ions. Additionally, the by-products

perfluoroalkyl and polyfluoroalkyl substances (PFAS) associated

with the production of Nafion pose long-term threats to human

health (Yuan et al., 2022). We urgently need innovative high-

performance and low-cost membranes to replace benchmark

Nafion membranes to address energy needs.

As promising alternatives to benchmark Nafion membranes,

hydrocarbon-based ion exchange membranes based on poly (2,6-

dimethyl phenylene oxide) (PPO), polyvinyl alcohol (PVA),

polyethylene, polysulfone (PSF) or poly (ether ketone) polymer

materials have been increasingly receiving attention in the past

30 years on account of their low cost, easy modification, and

tunable properties, and demonstrate in fuel cells and batteries

(Couture et al., 2011; Merle et al., 2011; Pan et al., 2013; De

Porcellinis et al., 2018). However, one of the major bottlenecks for

these membranes is their low stability (chemical degradation

results in poor mechanical stability) in batteries (Chen and

Hickner, 2013; Yuan et al., 2014) and fuel cells (Couture et al.,

2011; Merle et al., 2011; Pan et al., 2013; De Porcellinis et al., 2018),

which has been proven by the degradation of both polymer

backbone and ion exchange groups. Based on the degradation

mechanisms of hydrocarbon-based ion exchange membranes,

tremendous efforts have concentrated on designing novel

polymer materials to enable highly stable IEMs. For instance,

strategies for polymer functionalization, polycondensation (Noh

et al., 2019) or cationic structures design (Tao et al., 2021) require a

highly stable membrane; nevertheless, their long-term stability in

practical operating conditions has not yet been verified. Although

there has been progress in developing innovative polymer

materials with high stability [such as poly (aryl piperidinium)-

based and poly (arylene piperidine)-based anion exchange

membranes (Chen et al., 2021; Pan et al., 2021)], transformative

alternativemembranes as efficient as Nafion for energy storage and

conversion devices are urgently needed. Another scientific

challenge remains to be addressed, i.e., obtaining an ion

exchange membrane that can satisfy the need for energy

storage and conversion devices, including high ionic

conductivity, outstanding selectivity, ease of processability, and

high environmental sustainability. Normally, the ion exchange

capacity is one of themost important parameters for evaluating the

capacity of an IEM to transport charge carriers. A high IEC value

can enable a high ionic conductivity, whereas a high IEC value can

also lead to a high swelling of the membrane, which could in turn

decrease the selectivity and mechanical stability of the membrane.

Thus, how to control the IEC of IEM to achieve a balanced ionic

conductivity and selectivity (as well as swelling) remains the

challenge for the practical application of IEMs.

Challenges for porous membranes

Current research has demonstrated that the introduction of

ion exchange groups triggers the degradation of IEMs. PMs
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overcome the stability restriction caused by ion exchange groups

from IEMs and inspire the development of high-performance and

cost-effective membranes for energy storage and conversion

devices (Tan et al., 2020). Commercial PMs, such as the

Celgard (microporous polyolefin membranes), Daramic (porous

polypropylene (PP) membranes) and cellulose-based dialysis

membranes have been widely applied in power batteries (such

as lithium sulfur battery and lithium (sodium)-based batteries),

flow batteries, and electrolyzers. Challenges for these membranes,

e.g., the relatively low thermal stability of Celgard and low

selectivity toward polysulfide of Celgard, and the relatively low

selectivity of Daramic toward redox couples in a flow battery, still

need to be overcome. In addition to commercial PMs, other kinds

of PMs such as porous polybenzimidazole (PBI) membranes

(Yuan et al., 2016a), porous polyether imide (PEI) membranes

(Shi et al., 2015), porous poly (ether sulfone) (PES) membranes

(Junoh et al., 2021) are also used, which are mainly applied in

batteries and fuel cells at the laboratory scale. The application of

these laboratory-scale porous membranes in energy storage and

conversion devices is a relatively new domain, which may inspire

the development of new membranes to enable high device

performance. Most porous membranes are prepared by phase

separation, where a dense and thick skin layer could be formed.

Normally, a denser and thicker skin layer is favored to endow the

porous membrane with a high ion selectivity, whereas the ion

conductivity of the membrane would be decreased (Dai et al.,

2020). Thus, how to break the trade-off between ion conductivity

and ion selectivity has been identified as one of the primary

challenges that need to be figured out for their practical

application. Additionally, the transport mechanism of charge

carriers through a porous membrane is not as unambiguous as

that in an ion exchange membrane since the structure of the

porous membrane is diverse and complex. This is not favored in

the design and development of high-performance porous

membranes. Although vehicular mechanism and Grotthuss

mechanisms can be found and simultaneously exist in porous

membranes (Hu et al., 2021), the quantitative contribution of these

two mechanisms to the ion conductivity of a porous membrane

remains a critical challenge. Different from the fabrication process

of IEMs that can be roll-to-roll or melt extrusion manufactured,

the phase inversion method used to prepare porous membranes

normally requires relatively sophisticated processing, especially in

the process of pilot-scale production. Furthermore, how to

guarantee the uniformity of porous membranes in this process

is also confronted by challenges.

Concluding remarks

In the past 30 years, significant progress has been achieved in

developing the membranes applied in energy storage and

conversion devices such as fuel cells, batteries, and

electrolyzers. Innovative membranes have significantly

enhanced the performance of these devices, e.g., the

development of membranes from the perspective of materials

synthesis and structure design, increasing the current density

from 50 mA cm−2–300 mA cm−2 for vanadium flow battery.

Nevertheless, scientific challenges remain to be addressed and

further applications explored, i.e., obtaining a membrane that

meets the requirements of high ionic conductivity, high

selectivity, high stability including high chemical and

mechanical stability, inexpensive polymer materials, and ease

of manufacture, as well as developing environmentally friendly

approaches. The scientific understanding of the degradation

mechanism of the membrane, the transport behavior of

charge carriers in the membrane, and the relationship

between membrane structure and performance mean that we

need to develop membranes that meet these demands, which

requires new perspectives on polymer materials as well as

membrane design and their utilization in energy storage and

conversion devices. In this section on “Energy” of the journal

Frontiers in Membrane Science and Technology, high-quality

original research articles and review articles are preferred and

welcomed. They are expected to contribute to membrane

development in this field and further bridge the gap between

laboratory-scale development of membranes and industrial-scale

manufacturing.
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