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The pathophysiology and clinical manifestations of pulmonary embolism are 
complex, heterogeneous, and the disease burden is severe, and its prediction and 
diagnosis are of major challenges. Artificial intelligence (AI) is a field of computer 
science that involves the development of programs and complex data analysis 
designed to replicate human cognitive processes. In recent years, with the 
continuous development of medical information technology, the application of 
AI in the diagnosis and treatment of diseases has made rapid progress, especially 
in the field of pulmonary embolism, which is mainly based on imaging. In this 
review, we summarize the current application prospects and directions of AI in 
early prediction, screening, diagnosis, and prognosis of PE, and discuss the main 
challenges and future of AI in pulmonary embolism (PE), in order to provide a 
theoretical basis for the application of AI in the risk assessment and standardized 
management of PE.
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1 Introduction

Acute PE is the third leading cause of cardiovascular death worldwide (1), presenting with 
mild clinical symptoms or atypical features, and current diagnosis relies primarily on CT 
imaging, with computed tomography pulmonary angiography (CTPA) considered the 
diagnostic benchmark (2). However, interpreting CTPA results requires experienced medical 
expertise and avoiding missed and misdiagnosed due to subjective bias. Studies have shown 
that CTPA has a missed diagnosis rate of 14% and an overdiagnosis rate of 10% (3). Due to 
the insidious onset and diverse etiologies of PE, the detection rate is less than 5% (4), and the 
short-term mortality rate of untreated PE is as high as 30% (5, 6). Improving the survival rate 
of PE patients depends on early and accurate prediction, as well as active PE management. 
Therefore, early prediction, identification, and diagnosis of PE play a key role in patient 
outcomes (7, 8).

AI excels in medical image analysis as a subtype of information technology that uses 
algorithms to analyze (receive, process, and interpret) medical information and perform 
complex mathematical calculations (9). Machine learning (ML) is an emerging branch of 
artificial intelligence, whose core competitiveness lies in the ability to efficiently extract and 
analyze rich clinical features from massive case record databases, and accurately identify 
statistically significant patterns. Deep learning (DL), a subtype of ML that analyzes large 
amounts of data to improve the accuracy of creating concepts and accurately predicting 
pathologies (10), s currently one of the most widely used algorithms for medical purposes. ML 
has great potential in the medical field, including early prediction, rapid diagnosis, and risk 
assessment (11, 12).
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AI plays an important role in thromboembolic diseases, 
especially in the early prediction and diagnosis of the disease (13). 
Early intervention with anticoagulants or other prophylaxis can 
reduce the incidence of PE and reduce patient mortality. A number 
of ML-based models have recently been developed to assess the risk 
of death from clinical disease, thereby enhancing clinical diagnosis 
and patient prognosis (14). Developing and validating ML models 
that accurately predict the risk of PE patients can help clinicians 
make informed decisions and improve patient survival. In this 
article, we  summarize the current application of AI and ML in 
pulmonary embolism to elucidate the impact of AI in the 
medical field.

2 Basic concepts of AI and ML

AI, as a branch of computer science, explores and studies the 
nature of intelligent behavior and creates intelligent machines that 
respond in a similar way to human intelligence. These intelligent 
behaviors, including but not limited to learning, reasoning, problem 
solving, knowledge representation, planning, natural language 
processing, perception, pattern recognition, and creation, have 
become an umbrella term for technologies that mimic human “natural 
intelligence” or cognitive functions. ML is a subfield of AI that enables 
computers to derive knowledge and experience from data and use this 
knowledge and experience to make pattern recognition, prediction, 
and decision-making through the learning of computer systems and 
automated reasoning. In contrast to traditional statistical methods, 
which provide insights from observed inter-population differences 
based on collected clinical features, ML excels at revealing complex 
relationships between various features, thereby facilitating precise 
classification (15–17). Deep learning, on the other hand, is a subset of 
ML that represents an advanced approach to processing data using 
artificial neural networks with brain-like structures, with little or no 
artificial feature engineering, and is better at processing complex, 
high-dimensional data.

ML, the core discipline of AI, connects statistics and computer 
science to create predictive models capable of analyzing new data 
using large data sets (18), which stands out among several medical 
specialties and is the pathway to smart medicine (19, 20). Considering 
that clinicians need to evaluate large amounts of patient information 
to further guide clinical decision-making (21), it can be a daunting 
task for anyone. ML can create algorithms with comparable 
performance to human physicians (22), and when applied to medical 
images, algorithms are used to analyze and extract information from 
images generated by diagnostic imaging equipment, train algorithms 
to recognize patterns, identify relevant features, and perform specific 
tasks, such as diagnosing diseases, detecting abnormalities, or 
classifying medical conditions, and integrating and understanding 
relevant clinical data at scale, providing fast and accurate analytical 
tools to support medical professionals to assess risk, aid in diagnosis, 
It is excellent in judging prognosis and guiding personalized 
treatment, and is able to detect patterns or features that are not 
immediately visible to the naked eye, and is excellent in the processing 
of complex and large amounts of medical data (23, 24). ML has shown 
considerable potential in medical research and disease prediction (10, 
25). For pulmonary embolism, ML models can help clinicians identify 
high-risk patients in the early stages of PE, enabling early intervention.

3 Application of AI in PE

3.1 Predictions

3.1.1 PE
With the advent of AI as a predictive tool, some studies have 

applied AI to the prediction and screening of PE. The ML model 
performs better than the traditional risk scoring in PE risk 
stratification, and the new diagnostic model based on ML analysis 
can help overcome the limitations of the traditional score, improve 
the risk prediction performance, and accelerate the diagnosis of PE 
(26). A recent retrospective study analyzed the clinical data 
characteristics of 1,480 patients with suspected PE who were 
hospitalized in West China Hospital of Sichuan University from May 
2015 to April 2020, used different MLs to make a PE prediction 
model, and evaluated their performance using the area under the 
receiver operating characteristic curve (AUC), and verified their 
predictive ability using SHapley Additive Interpretation (SHAP) 
values. The results showed an AUC of 0.776 (95% CI 0.774–0.778), 
suggesting that AI-based ML-based PE prediction models can help 
optimize early diagnosis and timely treatment strategies, thereby 
improving the prognosis of PE patients. At the same time, it provides 
literature support for the use of SHAP values to explain the 
contribution of ML in PE prediction. The convergence of 
engineering and medicine has shown excellent performance in 
predicting PE risk stratification (27). CTPA is the mainstay of 
clinical diagnosis of PE, but it is time-consuming, expensive, and in 
some cases unavailable, especially in primary care settings, and its 
simultaneous application may have adverse effects, particularly in 
patients with a history of kidney disease or allergies (28, 29). AI uses 
routinely collected patient healthcare data to derive the disease 
prognosis of patients with suspected PE, which can provide a 
reliable basis for patients’ care decisions. One study designed and 
evaluated a ML modeling approach called the PE Outcome 
Prediction Model (PERFORM) to predict PE imaging outcomes 
based on patient electronic medical record (EMR) data, including 
variables such as demographics, vital signs (absolute and change 
from baseline), diagnosis, medications, and laboratory test results, 
to provide patients with further CT imaging with a patient-specific 
risk score, improve detection rates, and reduce unnecessary CT 
examinations (30). To validate the performance of ML in predicting 
the risk of PE in high-risk inpatients with PE, Shen et  al. 
retrospectively analyzed approximately 2 million adult hospitalized 
cases in the United States from 2011 to 2017, using demographics, 
vital signs, and laboratory tests of adult inpatients from 12 
institutions to train the XGBoost model (31), and patient 
populations from 32 healthcare facilities performed external 
validation of the model, as measured by the area under the receiver 
operating characteristic curve (AUROC) Evaluating model 
performance, using backward elimination regression to determine 
the correlation between external validation set features and AUROC, 
the results showed that the external test AUROC ranged from 0.79 
to 0.93 with a mean of 0.88, and the backward elimination regression 
determined a negative correlation between the percentage of PE 
positive visits and AUROC (β = −0.015, p < 0.001), indicating that 
this PE prediction model performed well in different external 
patient populations, demonstrating its potential as a clinical decision 
support tool (32).
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3.1.2 Other diseases combined with PE
PE itself may lead to pulmonary hypertension, cardiac 

insufficiency, respiratory failure and other serious consequences, and 
these pathological processes may be  further exacerbated when 
complicated by other diseases, and the disease is often more complex, 
making diagnosis and treatment more difficult, and the prognosis is 
often poor, and delayed or missed diagnosis can be life-threatening. 
Therefore, the development of AI models to predict the risk of PE in 
other diseases and predict the risk of PE in other diseases plays an 
important role in improving the survival rate of patients and 
improving the quality of clinical decision-making.

Heart failure is a risk factor for predicting and stratifying mortality 
and risk stratification for PE, and short-term mortality is high in 
patients with PE (PE) and heart failure (33, 34). There is a need to 
predict the short-term mortality risk of patients with PE in heart 
failure in clinical practice, reduce death and disability through early 
detection and prevention, and improve patient outcomes. Liu et al. 
enrolled 472 patients with PE and heart failure, developed 6 ML 
models after feature selection, and externally validated patients in the 
eICU Cooperative Research Database (eICU-CRD) (35) by area under 
the curve (AUC), calibration curve, decision curve analysis (DCA), 
net weight classification improvement (NRI), and comprehensive 
discrimination improvement (IDI) to evaluate predictive performance, 
The Support Vector Machine model was found to perform the best 
prediction, with an AUC of 0.835, a higher degree of calibration, a 
wider risk threshold for clinical benefit (from 0 to 90%), and better 
than traditional mortality risk assessment systems such as the PE 
Severity Index and the Simplified PE Severity Index (34, 36, 37). Atrial 
fibrillation is one of the important factors contributing to the increase 
in morbidity and mortality worldwide, and its abnormal flow pattern 
can lead to the formation of blood clots in the atrium, which can break 
off and spread through the bloodstream, leading to arterial occlusion 
in various organs, such as PE (38). In order to predict the occurrence 
of composite thromboembolic events in elderly patients with atrial 
fibrillation, REN et al. collected data from 6,079 elderly inpatients 
admitted to the General Hospital of the Chinese People’s Liberation 
Army from January 2010 to June 2022, and randomly divided them 
into a training dataset (n = 4,225) and a validation dataset (n = 1,824) 
in a ratio of 7:3, and trained on the training dataset using four ML 
models (logistic regression, decision tree, random forest, XGBoost). 
The results showed that the random forest model showed good clinical 
validity, outperforming other models (ACC: 0.9144, SEN: 0.7725, SPE: 
0.9489, AUC: 0.927, 95% CI: 0.9105–0.9443), showing the best 
predictive performance (39). Sun et  al. conducted a retrospective 
observational study on data from 930 patients, developed five ML 
prediction models using data from the development cohort, selected 
the best model through five-fold cross-validation, and validated using 
an external validation cohort to assess the risk of PE in tuberculosis 
patients, and the results showed that the random forest model 
outperformed the other models with an AUC of 0.839 (95% CI 0.780–
0.899) and maintained the highest average performance (AUC: 
0.906 ± 0.041), indicating that random forests have significant 
advantages in predicting the risk of PE in TB patients compared to 
various ML models used to predict PE in TB patients, and 
demonstrating the application of AI in healthcare (40). Patients with 
autoimmune inflammatory rheumatic diseases have a high mortality 
rate after PE (41), and accurate stage prediction and risk assessment 
can improve survival. Hu et al. conducted a retrospective, multicenter 

study designed clinical data from 7,254 patients in Tongji Hospital 
from 2014 to 2022 to train an ML model using univariate logistic 
regression and minimal absolute contraction and selection operators 
to select clinical features, and the results showed that the ML-based 
model can accurately and conveniently predict the occurrence of PE 
in patients with autoimmune inflammatory rheumatism who are 
clinically suspected of PE (42). This study significantly improves the 
efficiency of predicting specific pathophysiological conditions, 
provides substantial help for doctors to finalize the diagnosis, and 
realizes the early and accurate diagnosis and risk prediction of PE in 
other diseases in clinical practice. It is of great significance in the field 
of prevention and treatment of PE to develop AI models that predict 
the risk of PE in other diseases and improve the early warning ability 
of patients with PE risk of other diseases.

3.2 Screening and diagnosis

PE is a serious medical emergency that requires prompt 
recognition and intervention, and early initiation of anticoagulation 
may improve outcomes for suspected PE (43). However, due to 
nonspecific symptoms associated with PE, less than 10% of patients 
evaluated are ultimately diagnosed with PE (44, 45). Missed diagnoses 
and misdiagnoses lead to delays in treatment and exacerbate disease 
progression (46–48). Therefore, the development and validation of 
natural language processing models to identify low-risk PE in real 
time and facilitate safe outpatient management is critical to reduce 
mortality from PE (49–51). In asymptomatic patients, radiologists 
may overlook most incidental PEs. The AI model can quickly analyze 
a large amount of imaging data, maintain sensitivity and specificity 
when interpreting suboptimal CTPA examinations, significantly 
enhance the detection of occasional PE, and significantly shorten the 
diagnosis time, which is crucial for patients with acute PE who need 
timely diagnosis and intervention, helping to shorten the time from 
symptom onset to diagnosis, and buying valuable treatment time for 
patients. AI algorithms have shown significantly higher sensitivity in 
detecting PE in routine scans compared to initial reports from 
radiologists, and the application of AI has significantly reduced the 
rate of missed diagnosis of incidental PE by radiologists (52). For 
example, one study showed that the implementation of AI algorithms 
significantly reduced the missed diagnosis rate from 50 to 7.1% 
compared to the absence of AI assistance, resulting in improved 
diagnostic accuracy (53). Langius-Wiffen et  al. retrospectively 
analyzed the data of serial CTPA scans of 3,316 patients referred for 
suspected PE between February 24, 2018 and December 31, 2020, 
using a CE-marked and FDA-approved AI algorithm (54), and 
compared the output of the AI with the report of the attending 
radiologist, and the results showed that the sensitivity of the AI 
algorithm in detecting PE was significantly higher compared to the 
radiology report (96.8% vs. 91.6%，p < 0.001). The specificity of AI 
was also significantly higher (99.9% vs. 99.7%, p = 0.035), and the 
implementation of AI-assisted reporting could reduce the number of 
missed (55). The development of AI methods with good diagnostic 
capabilities for PE can improve the performance and reproducibility 
of radiological diagnostics (56–58).

Ventilated/perfused single-photon emission computed 
tomography (V/Q-SPECT) is one of the most widely used imaging 
techniques for the diagnosis of PE, according to the 2019 guidelines 
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for the diagnosis and management of PE developed in collaboration 
with the European Respiratory Society, however, V/Q-SPECT is 
invasive, expensive, and not as widely available as other imaging 
modalities such as CT, especially in resource-limited hospital settings 
(59). Li et  al. selected potential perfusion-related features for 
integration into the model and found that the spatial distribution of 
features and the visualization of model output showed a high degree 
of agreement with lung function imaging, validating the feasibility of 
using quantitative texture analysis and data-driven ML pipelines to 
generate voxel-level lung perfusion surrogates between different 
institutions, providing a radiation-free, widely available alternative for 
functional lung imaging for the management of pulmonary vascular 
disease, and facilitating noninvasive screening of PE (60). AI-assisted 
workflows prioritize episodic PE with routine CT scans, and cancer 
patients have demonstrated high diagnostic accuracy (61). Wiklund 
et al. retrospectively analyzed the impact of AI algorithms on the 
detection rate of incidental PE in cancer-related patients, and showed 
that the reported prevalence of incidental PE was significantly higher 
and significantly shortened the reporting turnaround time and 
treatment time of patients with cancer-related incidental PE for a 
period of time after the implementation of AI (62).

Compared with larger embolism, small and easily overlooked PE 
has the characteristics of insidious symptoms, difficult diagnosis, and 
the need for active prevention and screening, which makes the 
detection of small PE often lead to misdiagnosis and missed diagnosis, 
therefore, in clinical work, doctors should maintain a high degree of 
vigilance, conduct detailed medical history and physical examination 
of patients suspected of PE, and timely diagnosis and treatment, and 
solve the detection problem of small PE is very important to improve 
the overall diagnostic results. In order to improve the identification 
and diagnosis of small and easily overlooked PE, Wu et al. collected 
the data of 142 CTPA examinations conducted at Tianjin Medical 
University General Hospital from January 2017 to October 2018 for a 
retrospective study, and developed a deep learning model SPE-YOLO, 
which showed 90.70% sensitivity and 86.45% accuracy in the data of 
the external validation set, showing strong diagnostic ability in 
identifying small PE, It provides clinicians with more accurate and 
efficient diagnostic tools (63). Yehuda et al. collected demographic, 
comorbidity, and drug data from 2,568 patients with PE and 52,598 
control patients to build an accurate and informative ML model that 
would facilitate the early diagnosis of PE during patient hospitalization 
(64). Deep learning can improve detection performance and help 
clinicians complete diagnostic tasks (65–69).

3.3 Prognosis

The development and application of AI models is an important 
part of promoting the intelligent transformation of the medical 
industry, which will help improve the prognosis and quality of life of 
patients with PE. By analyzing the patient’s clinical data, imaging 
features, laboratory test results and other information, AI can predict 
the future development trend of the patient’s disease and the risk of 
possible complications, which can help clinicians formulate coping 
strategies in advance, guide subsequent treatment, and improve 
patient prognosis. ML models have been shown to accurately predict 
the 30-day mortality rate in critically ill PE patients, which can 
be  further used to reduce the burden of ICU admissions, reduce 

mortality, and improve the quality of life of critically ill PE patients 
(70). Lian et al. conducted a retrospective analysis of the clinical data 
of 312 patients diagnosed with PE using CTPA in the Taicang 
Affiliated Hospital of Soochow University from 2016 to 2024 to 
evaluate the sensitivity, accuracy, specificity and AUC of four ML 
models (XGBoost, Random Forest, Logistic Regression and SVM) in 
predicting the prognosis of PE, and the results showed that the 
XGBoost model showed good performance, The accuracy was 0.882, 
the F1 score was 0.889, the precision was 0.917, the sensitivity was 
0.863, the specificity was 0.905, and the AUC was 0.873. Future studies 
could combine these data to enhance the understanding of PE risk 
factors and improve predictive models for better clinical outcomes 
(71). Sadegh-Zadeh et al. utilized different oversampling techniques 
to improve the performance of various ML models, for early mortality 
prediction, and the results showed that the randomly oversampled RF 
model demonstrated superior performance across the 5 models 
evaluated, achieving higher accuracy and precision in predicting death 
grades, The study also highlighted the potential of ML to improve the 
accuracy of mortality prediction in patients with acute PE and provide 
a theoretical basis for clinical decision-making (72).

Anticoagulation is the mainstay of treatment for patients with PE 
(73). However, in clinical practice, some patients with PE may need to 
discontinue the drug early for a variety of reasons, including active 
bleeding, urgent need for surgery, contraindications to anticoagulation, 
etc. Identifying the likelihood of an increased risk of adverse outcomes 
before discontinuing anticoagulation can help improve patient 
outcomes. Mora et  al. used data from the RIETE (74) registry to 
compare the prognostic capabilities of five ML models, including 
decision trees, K-nearest neighbors, support vector machines, 
ensembles, and neural networks (NN), to evaluate model performance 
by evaluating the model performance by measuring the test data for 
each model and the confusion matrix measure of the calibration plot to 
assess patients at increased risk of a compound of fatal PE or recurrent 
venous thromboembolism 30 days after discontinuation of the drug. 
The results showed that the ML-NN method was able to reliably predict 
fatal PE, sudden death, or recurrent VTE after premature cessation of 
anticoagulation, with an area under the ROC curve of 96 percent, an 
improvement of approximately 0.20 over traditional logistic regression, 
far exceeding the performance of traditional logistic regression models 
(75). Muñoz et al. extracted unstructured data from electronic health 
records of 9 hospitals in Spain between 2014 and 2018 using natural 
language processing (NLP) and ML-based EHRead@ techniques, 
performed clinical feature selection, and trained different predictive 
models to assess the risk of VTE recurrence within 6 months in cancer 
patients who received anticoagulation therapy at the time of initial VTE 
diagnosis. The findings can help clinicians identify high-risk patients 
and improve their clinical management (76).

4 Challenges and future of AI in PE

The development and implementation of AI in various clinical 
efforts across the medical field requires the inclusion of more clinical 
data in multiple centers and the minimization of possible bias due to 
unbalanced training, poor architecture design or selection, and uneven 
application of models, which can not only improve the reliability and 
accuracy of predictive models, but also avoid the influence of regional 
or technical factors and demographic characteristics on the model (77, 
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78). According to the FDA, despite tens of thousands of articles related 
to AI and computer-aided diagnosis (CAD) published over the past 
20 years, as of July 30, 2023, only 692 market-liquidated AI medical 
algorithms are available in the United States (79). When clinical data is 
only partially available and laboratory test results are still unavailable, 
the diagnosis needs to be  made immediately after the patient’s 
emergency department presentation. In a study conducted by Cheik 
et al., software utilizing AI for image interpretation demonstrated the 
ability to identify 219 suspected PEs, of which 176 were confirmed to 
be  true PE. The AI system had the highest sensitivity and negative 
predictive value (NPV) of 92.6 and 98.6%, respectively, outpacing 
radiologists who achieved 90% sensitivity and 98.1% NPV. Meanwhile, 
radiologists performed well in specificity and positive predictive value, 
with a specificity of 99.1% and a positive predictive value of 95%, 
compared to a specificity of 95.8% and a positive predictive value of 
80.4% for AI. These results highlight the potential of AI to enhance PE 
detection, while also revealing the excellent performance of radiologists 
in reducing false positives (80). In order to address the challenge of bias 
in algorithm development brought about by population differences 
within the healthcare system, a bias-free symptom prediction 
framework was proposed using the state-of-the-art PE detection 
backbone and large-scale clinical language model, which achieved a 
higher survival correlation than the clinical assessment index, reduced 
the inequity of medical implementation leading to PE prognosis and 
other diseases, and improved the fairness and accuracy of medical AI 
systems (81). At the same time, the integration of ML into clinical 
practice introduces key ethical considerations, including issues of 
liability for medical errors, healthcare professionals’ understanding of 
how these algorithms generate predictions, and concerns about ethics, 
safety, and patient data control (82, 83).

AI has played an important role in the prediction, diagnosis, and 
prognosis assessment of PE, and with the popularization of PE 
prediction models, attempts have been made to construct optimal PE 
prediction models based on cause classification to maximize the 
clinical outcomes of PE patients (84, 85). Future research should 
continue to evaluate the feasibility and cost-effectiveness of clinically 
relevant AI tools, requiring further research and interdisciplinary 
collaboration to engage a variety of stakeholders in AI development 
and deepen insights into potential biases and ethical considerations. 
Select, support, and fund more highly focused AI projects that address 
challenges encountered during development and implementation, and 
further explore the impact of AI on patient outcomes.

5 Conclusion

In the medical field, AI has many applications, followed by 
significant advances in a relatively short period of time (86). ML is 
one of the fastest and most convenient methods to detect diseases 
through AI techniques (87, 88). The synergy between ML and 
medicine has transformed disease prevention and treatment (89). 
Given the sheer volume and complexity of clinical data generated 
today, diagnostic algorithms based solely on physician clinical 
experience or traditional statistical methods often fail to deliver 
superior performance. ML, as part of artificial intelligence, has strong 
learning capabilities and predictive performance, the ability to process 
large cubes, identify patterns and correlations that may not 
be  apparent using traditional statistical methods, and objectively 

analyze large amounts of data to predict clinical outcomes, which can 
improve diagnostic accuracy and predict complex medical conditions 
(90, 91). PE (PE) is a major health problem, ranking third among 
cardiovascular diseases (92). By analyzing medical image data, 
AI-based applications can effectively extract important features from 
images, enhance their utility in medical image analysis, identify 
potential missed PE, improve the accuracy and efficiency of PE 
diagnosis, and improve patient outcomes through timely intervention 
(93–96). Therefore, this article summarizes the application 
performance of AI in the optimization of clinical decision-making of 
PE, which has significant advantages in the early prediction of PE, 
timely screening and diagnosis, and improved prognosis. The 
development of predictive models with strong generalization 
capabilities to assess the risk of PE in patients using ML algorithms 
has great potential for development (97). However, rigorous 
implementation and validation are essential to ensure the safety and 
efficacy of these techniques in clinical practice.
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