
Frontiers in Medicine 01 frontiersin.org

Plasma methylated HIST1H3G as 
a non-invasive biomarker for 
diagnostic modeling of 
hepatocellular carcinoma
Weiwei Zhu 1,2†, Huifen Wang 1,2†, Yudie Cai 1,2, Jun Lei 1,2, Jia Yu 1,2, 
Ang Li 2 and Zujiang Yu 1*
1 Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 
China, 2 Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou, China

Background: DNA methylation carrying epigenetic aberrations could potentially 
serve as a non-invasive tool for revolutionizing cancer diagnosis and monitoring. 
Here, we comprehensively evaluated the diagnostic value of plasma methylated 
HIST1H3G, and constructed diagnostic and prognostic models aimed at 
facilitating early detection and improving the prognosis of hepatocellular 
carcinoma (HCC).

Methods: The level of HIST1H3G promoter methylation in HCC tissues was 
evaluated based on the UALCAN database, followed by validation through 
serum samples collected from HCC patients. We  recruited 205 participants, 
encompassing 70 HCC patients, 79 liver cirrhosis (LC) patients, 46 hepatitis 
patients and 10 HCC patients before and after treatment with either transarterial 
chemoembolization (TACE) or radiofrequency ablation (RFA). Analysis of plasma 
HIST1H3G was performed using methylation-specific quantitative polymerase 
chain reaction (qPCR). Diagnostic and prognostic prediction models were 
formulated using the random forest algorithm, and the performance of these 
models was rigorously evaluated through receiver operating characteristics 
curve (ROC) analysis.

Results: The methylation level of HIST1H3G was markedly elevated in both HCC 
tissues and plasma samples derived from HCC patients. HIST1H3G, PIVKA-II, total 
bilirubin (TBIL) and age were selected as the optimal markers and were included 
in the development of a diagnostic model. This model demonstrated superior 
accuracy in distinguishing HCC from high-risk populations, outperforming 
alpha-fetoprotein (AFP) in both the training cohort consisting of LC patients 
and the validation cohort comprising hepatitis patients. Additionally, HIST1H3G 
and albumin (Alb) were chosen to establish a prediction model for early HCC 
diagnosis, and this model exhibited a remarkable ability to identify early HCC. 
Furthermore, our prognostic prediction model proved effective in predicting the 
prognosis and survival outcomes of HCC patients.

Conclusion: Together, we  identified and validated a diagnostic model that 
incorporated methylated HIST1H3G and clinically applicable serological 
indicators in HCC. The findings of our study established a pivotal foundation for 
the development of a non-invasive approach to identification and management 
in HCC.
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1 Introduction

Hepatocellular carcinoma (HCC), the most common type of liver 
cancer, ranks as the third leading cause of cancer-related mortality 
globally, primarily attributed to liver cirrhosis (LC) resulting from 
chronic hepatitis virus infection, alcohol consumption, and fat 
accumulation (1–3). The asymptomatic nature of HCC in its early stages 
often results in patients being diagnosed at an advanced stage, with a 
dismal 5-year survival rate below 30% (4). Early detection holds 
immense potential in enabling timely treatment and improving survival 
rates. Unfortunately, there has been little success in developing effective 
serum-based screening methods for HCC (5, 6). Therefore, there 
remains a great need for minimally invasive, early detection methods to 
allow timely stratification of patients to appropriate therapies.

Among the various screening methods considered, liquid biopsy 
based on DNA methylation has emerged as a promising non-invasive 
diagnostic tool in clinical applications (7, 8). DNA methylation, a key 
epigenetic modification, plays a crucial role in transcriptional 
regulation of genes and maintaining the stability of the genome. 
Aberrant DNA methylation arises when a methyl group (CH3) is 
added to a cytosine base within a cytosine-phosphate-guanine (CpG) 
dinucleotide, triggering the deregulated transcription and activation 
of oncogenic pathways (9). In recent years, numerous efforts to detect 
cancer methylation have demonstrated that a significant proportion 
of genes exhibit aberrant DNA methylation patterns in cancerous 
tissues (10). Consequently, several methylated markers have been 
validated and approved for clinical use in cancer detection (11–13), 
including plasma methylated SEPT9 testing for colorectal cancer (14, 
15). However, there is a paucity of validated methylation markers 
available for HCC. Furthermore, studies aimed at identifying HCC 
methylation biomarkers have often focused on advanced HCC 
patients and healthy individuals as controls, limiting their widespread 
application as routine screening tools in high-risk populations, such 
as patients with LC and chronic hepatitis. Therefore, it is imperative 
to conduct comprehensive profiling of chronic hepatitis, LC, and 
HCC patients to accurately identify early-stage HCC cases within 
these high-risk groups.

In this study, we  identified HIST1H3G as a DNA methylation 
biomarker of HCC. We also compared the diagnostic efficiency of 
HIST1H3G with existing approaches, including AFP and PIVKA-II, 
in discriminating HCC patients from high-risk individuals with LC 
and chronic hepatitis using quantitative polymerase chain reaction 
(qPCR) analysis of plasma samples. Notably, we  established a 
diagnostic prediction model employing plasma samples from 79 LC 
patients and 70 HCC patients. This model was then independently 
validated in a cohort comprised of 46 chronic hepatitis plasma 
samples, as well as 20 plasma samples collected from 10 HCC patients 
prior to and following treatment with either transarterial 
chemoembolization (TACE) or radiofrequency ablation (RFA). 
Additionally, leveraging the aforementioned 70 HCC plasma data, 
we further developed a prediction model specifically tailored for early 
HCC diagnosis, drawing upon the Barcelona Clinic Liver Cancer 
(BCLC) stage classification. Furthermore, a prognostic prediction 
model was constructed utilizing the same samples from HCC patients. 
Herein, we reported a diagnostic prediction model based on a DNA 
methylation biomarker to improve or complement current detection 
strategies, thereby enabling more precise prognostic stratification of 
HCC patients in clinical practice.

2 Methods

2.1 Participant information

Between December 2022 and October 2023, a total of 225 patients 
were recruited from the First Affiliated Hospital of Zhengzhou 
University, with 205 patients ultimately meeting the inclusion criteria. 
All patients with HCC were diagnosed in accordance with the 
“Diagnostic and Therapeutic Criteria for Primary Liver Cancer (2022 
Edition)” issued by the Ministry of Health of China. LC was diagnosed 
based on imaging findings (CT or MRI). Chronic hepatitis patients 
were identified as those experiencing abnormal hepatic function 
indicators and digestive system symptoms, such as fatigue and 
anorexia, for a duration exceeding 6 months. All patients met the 
following criteria: (1) complete case data; (2) age between 18 and 
80 years; (3) no history of malignant tumor in other organs.

A comprehensive set of clinical characteristics were gathered for 
each enrolled patient, including age, gender, alanine aminotransferase 
(ALT) levels, aspartate transaminase (AST) levels, total bilirubin 
(TBIL), AFP, PIVKA-II, neutrophil-to -lymphocyte ratio (NLR), 
platelet (PLT) count, prothrombin time (PT), blood ammonia levels, 
tumor size, tumor number, and BCLC staging. The BCLC staging 
system, recognized internationally as the gold standard for HCC 
clinical staging, demonstrates core superiority through its 
multidimensional integrated assessment framework and seamless 
linkage to therapeutic decision-making. These data were meticulously 
collected through the Hospital Electronic System. All laboratory 
examinations were conducted by the Department of Clinical 
Laboratory at the First Affiliated Hospital of Zhengzhou University. 
The study was approved by the Ethics Committee of the First Affiliated 
Hospital of Zhengzhou University, Zhengzhou, China (2023-KY-
0425-002). Written informed consent of each patient was obtained.

2.2 Sample collection and storage

A total of 10 mL of venous blood was collected using cell-free 
DNA storage tube (CoWin Bioteck, Jiangsu, China). Plasma samples 
were isolated by repeated centrifugation at 1,500 g for 10 min at room 
temperature, and stored at −80°C for subsequent cfDNA extraction.

2.3 Methylation assay

We obtained data on the promoter methylation of HIST1H3G in 
HCC tissues from UALCAN database (available at: http://ualcan.path.
uab.edu), an interactive web portal for performing in-depth analyses 
of TCGA gene expression data (16). The screening conditions were: 
“Gene: HIST1H3G”; “TCGA dataset: Liver hepatocellular carcinoma”; 
“Links for analysis: Methylation”; “Profile based on: Sample types, 
Individual cancer stages, and Tumor grade.”

The diagnostic kit designed for HIST1H3G methylation utilized 
qPCR detection in human plasma samples. BGI Genomics (Shenzhen, 
China) supplied all the necessary kits. The assay was conducted in 
strict accordance with the manufacturer’s instructions. Briefly, cell-
free DNA (cfDNA) was extracted from plasma samples and underwent 
bisulfite conversion, followed by qPCR detection. ACTB (β-actin) was 
utilized as an internal control, serving as a benchmark for assessing 
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both the quantity of cfDNA present in the samples and the efficiency 
of the PCR amplification process. For results to be deemed valid, the 
ACTB cycle threshold (Ct) must be  below 34.8. Furthermore, a 
HIST1H3G Ct value below 45 was interpreted as a positive result, 
indicating the presence of methylation in the HIST1H3G gene.

2.4 Model construction

Methylation marker HIST1H3G and clinical parameters were 
applied to the diagnostic and prognostic models by random forest 
algorithm. Probability of disease (POD) index represented the ratio 
between the count of randomly generated decision trees that predicting 
a sample as “HCC” and that of a control. The selected optimal markers 
were employed to compute the POD index for both the diagnostic and 
prognostic models. For the assessment of these models, the receiver 
operating characteristic (ROC) curve was generated using R version 
3.3.0 with the pROC package, and the area under this curve (AUC) 
served as an indicator of the ROC performance.

2.5 Statistical analysis

Statistical analyses were carried out utilizing SPSS Version 21 
(SPSS, Chicago, IL, United  States), GraphPad Prism version 8 
(GraphPad Software, San Diego, CA, United States) software tools and 
R language (version 3.3.0). The Wilcoxon rank sum test was employed 
to compare continuous variables across the two groups. Differences 
among the three groups were assessed using one-way 
ANOVA. Categorical variables were compared using Fisher’s exact 
test. p-values <0.05 were considered statistically significant.

3 Results

3.1 Patient characteristics

We consecutively enrolled a total of 225 hospitalized patients. After 
a thorough exclusion process, 20 patients were excluded, leaving us 
with 70 HCC patients, 79 LC patients, 46 chronic hepatitis patients, 
and 10 HCC patients who were recruited prior to undergoing either 
TACE or RFA procedure and followed up for biomarkers 1 month 
post-treatment. Subsequently, the 205 patients who met the inclusion 
criteria were divided into the training phase and the validation phase. 
Employing plasma samples from 79 LC patients and 70 HCC patients, 
a diagnostic prediction model was constructed. This model underwent 
independent validation within a cohort comprised of 46 chronic 
hepatitis plasma samples, as well as 20 plasma samples collected from 
10 HCC patients prior to and following treatment with either TACE or 
RFA. Moreover, using the aforementioned 70 HCC plasma samples, 
we developed a prediction model specifically designed for early HCC 
diagnosis based on the BCLC staging criteria. Among these 70 samples, 
24 samples categorized as stage 0-A were defined as early-stage HCC, 
while 18 samples in stage B and 28 samples in stage C were collectively 
classified as late stage HCC. This approach ensured greater precision 
and reliability in diagnosing early HCC. Additionally, a prognostic 
prediction model was constructed utilizing the HCC samples of stage 
B and stage C. The study design was depicted in Figure 1.

The clinical characteristics of the participants are summarized in 
Table  1. The mean age of the HCC group (56.0 ± 9.7 years) was 
significantly higher compared to the LC group (51.0 ± 12.3 years) and 
the hepatitis group (47.0 ± 13.5 years). Male patients were more prevalent 
in the HCC group (77.1%) than in the hepatitis group (52.2%), while 
there was no significant difference in the male-to-female ratio between 
the HCC and LC groups (77.1% vs. 78.5%). HBV or HCV infection was 
more common in the HCC group than in the chronic hepatitis group 
(90.0% vs. 43.4%), but no significant difference was observed between 
the LC and HCC patients (79.8% vs. 90.0%). Serum levels of AFP and 
PIVKA-II were greatly elevated in HCC patients compared to those with 
LC and hepatitis (both p < 0.05). The mean ΔCt value of HIST1H3G was 
notably lower in HCC patients compared to both LC and hepatitis 
patients (both p < 0.05). NLR was higher in the HCC group than in the 
LC and hepatitis groups (both p < 0.05). TBIL levels in HCC group were 
significantly reduced compared to LC group (p = 0.012) and hepatitis 
group (p = 0.024). Serum concentrations of ALT and AST were markedly 
decreased in HCC patients compared to those with hepatitis (all 
p < 0.05). The mean PLT count in HCC patients was significantly higher 
than in LC patients (p = 0.001) but lower than in hepatitis patients 
(p = 0.001). Additionally, the concentrations of PT was also substantially 
lower in HCC patients compared to those with LC (p < 0.05). However, 
there were no statistically significant differences in the median levels of 
TP, Alb, Hb, and blood ammonia among the groups (all p > 0.05).

3.2 The methylation level of HIST1H3G in 
HCC tissues and plasma

Firstly, based on UALCAN database, we identified the expression 
level of methylated HIST1H3G in HCC tissues. Our findings revealed 
a obviously higher methylation level of HIST1H3G in 377 HCC tissues 
versus 50 adjacent normal tissues (Figure 2A). We also observed that 
elevated methylated HIST1H3G expression correlated with advanced 
TNM stage (Figure 2B) and low differentiation grade (Figure 2C). This 
indicated that hyper-methylation of HIST1H3G played a crucial role 
in the molecular pathogenesis and progression of HCC.

For a more comprehensive study, we obtained plasma samples 
from 46 chronic hepatitis patients, 79 LC patients, and 70 HCC 
patients. The mean ΔCt value of HIST1H3G in the HCC group was 
markedly decreased compared to both the hepatitis and LC groups 
(Figure 2D). The lower ΔCt values of HIST1H3G observed in HCC 
patients suggested significantly higher DNA methylation levels when 
compared to those with LC and hepatitis. Furthermore, our results 
corroborated the elevation of serum AFP and PIVKA-II in the HCC 
group (Figures  2E,F). These results suggested that methylated 
HIST1H3G could potentially serve as a biomarker for HCC.

3.3 The diagnostic value of plasma 
methylated HIST1H3G in patients with HCC

To assess the diagnostic value of methylated HIST1H3G, the 
hepatitis and LC groups were combined into a single non-HCC group. 
ROC curve was constructed to evaluate the performance of 
HIST1H3G. Additionally, AFP and PIVKA-II, which are commonly 
employed as serum-based biomarkers for HCC screening in clinical 
practice, were evaluated to assess their diagnostic accuracy. As 
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presented in Figure 3, HIST1H3G demonstrated the highest area under 
the ROC curve (AUC) at 0.875. The AUCs for AFP and PIVKA-II were 
0.725 and 0.848, respectively. Our results showed that HIST1H3G 
exhibited excellent diagnostic accuracy in differentiating HCC from 
non-HCC cases, closely followed by PIVKA-II, and both 
outperformed AFP.

Each biomarker exhibited distinct patterns of serum level 
distribution and range. We conducted an analysis of the correlation 
coefficients to ascertain statistically relationships between the 
biomarkers. The correlation coefficient between AFP and HIST1H3G 
was 0.4 (p < 0.05) (Supplementary Figure 1A), whereas the correlation 
between PIVKA-II and HIST1H3G was 0.58 (p < 0.05) 
(Supplementary Figure 1B). Furthermore, a correlation coefficient of 

0.59 was observed between AFP and PIVKA-II (p < 0.05) 
(Supplementary Figure 1C). The findings indicated a weak correlation 
between HIST1H3G and both AFP and PIVKA-II, implying that 
HIST1H3G may be utilized independently as an adjunctive diagnostic 
tool for HCC patients.

3.4 Construction of the diagnostic 
prediction model for HCC

To demonstrate the diagnostic value of the methylated HIST1H3G 
for HCC, we developed a diagnostic prediction model that could 
specifically identify HCC individuals from high-risk populations, 

FIGURE 1

Study design. The major objective was to develop a non-invasive tool for early detection of HCC based on methylated HIST1H3G. The training phase 
comprised of 79 liver cirrhosis serum samples and 70 HCC serum samples was to construct a diagnostic prediction model. This model underwent 
independent validation within a cohort comprised of 46 hepatitis plasma samples, as well as 20 plasma samples collected from 10 HCC patients prior 
to and following treatment with either TACE or RFA. Due to limited sample size, only hepatitis and HCC patients were available in the validation phase. 
Moreover, using the aforementioned 70 HCC plasma samples, we developed a prediction model specifically designed for early HCC diagnosis based 
on the BCLC staging criteria. Additionally, a prognostic prediction model was constructed utilizing the HCC samples of 18 stage B and 28 stage C. 
HCC, hepatocellular carcinoma; BCLC stage, Barcelona Clinic Liver Cancer stage.
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including those with LC and hepatitis. The POD index was calculated 
using the identified optimal markers in both the training and the 
validation cohorts.

Utilizing the training dataset comprising 70 HCC and 79 LC 
samples, we employed a random forest model in the discovery phase. 
The analysis revealed HIST1H3G, PIVKA-II, TBIL, and age as the most 
discriminatory markers (Figure 4A). Incorporating these four markers 
yielded the highest AUC value for the model (Figure 4B). In the training 
phase, our diagnostic prediction model exhibited an impressive AUC of 
0.967, with a 95% CI ranging from 0.941 to 0.993, effectively separating 
the HCC and LC cohorts (Figure 4C). The POD value was significantly 

elevated in HCC samples compared to LC samples (p < 0.05, Figure 4D). 
These findings strongly suggested that our diagnostic prediction model, 
which was based on the selected markers, held considerable promise for 
accurately identifying HCC patients within the LC cohort.

3.5 Validation diagnosis and supplemental 
performance of the classifier for HCC

During the validation phase, a total of 46 hepatitis samples, along 
with 20 samples obtained from 10 HCC patients prior to and following 

TABLE 1 Clinical characteristics of the enrolled participants.

Clinical characteristics Hepatitis (n = 46) LC (n = 79) HCC (n = 70) p-values (hepatitis 
vs. HCC)

p-values (LC 
vs. HCC)

Age (year) 47.0 (13.5) 51.0 (12.3) 56.0 (9.7) <0.001 0.011

Gender

  Female 22 (47.8%) 17 (21.5%) 16 (22.9%) 0.005 0.844

  Male 24 (52.2%) 62 (78.5%) 54 (77.1%)

Aetiological factors

  Viral hepatitis (HBV/HCV) 20 (43.4%) 63 (79.8%) 63 (90.0%) <0.001 0.084

  Non-viral hepatitis 26 (56.5%) 16 (20.3%) 7 (10.0%)

  AFP (0–8.87 ng/mL) 300.6 (1142.7) 34.1 (102.1) 27591.6 (107446.3) 0.027 0.010

  PIVKA-II (0–40 mAU/mL) 46.1 (78.4) 71.6 (374.4) 13968.9 (25422.4) <0.001 <0.001

  HIST1H3G (ΔCt value) 12.0 (5.1) 13.0 (4.6) 5.7 (5.3) <0.001 <0.001

Tumor size (cm)

  ≤3 — — 40 (57.1%)

  3–5 — — 30 (42.9%)

No. of tumor

  Single — — 29 (41.4%)

  Multiple — — 41 (58.6%)

BCLC stage

  A — — 28 (40.0%)

  B — — 17 (24.3%)

  C — — 25 (35.7%)

Cirrhosis

  Yes 0 (0%) 79 (100%) 66 (94.3%)

  No 46 (100%) 0 (0%) 4 (5.7%)

ALT (<40 U/L) 212.8 (295.8) 56.4 (104.3) 43.0 (43.0) 0.001 0.657

AST (<40 U/L) 168.1 (173.1) 84.3 (134.8) 69.3 (66.9) 0.002 0.766

TBIL (μmol/L) 79.6 (109.7) 70.4 (100.1) 30.7 (63.3) 0.024 0.012

TP (g/L) 64.0 (7.3) 62.2 (6.9) 64.3 (6.9) 0.805 0.069

Alb (35–55 g/L) 37.5 (5.4) 34.4 (6.0) 36.0 (5.7) 0.164 0.085

Hb (120–160) 151.6 (149.6) 112.9 (22.9) 126.6 (19.5) 0.079 0.265

PLT (83–303 × 109/L) 181.8 (73.6) 96.8 (65.0) 135.8 (73.5) 0.001 0.001

NLR 2.3 (2.8) 2.7 (2.2) 3.7 (3.2) 0.012 0.019

PT (9–14 s) 13.2 (5.8) 15.8 (4.6) 13.4 (2.0) 0.996 0.000

Blood ammonia (16–60 μmol/L) 44.4 (21.8) 46.9 (23.9) 48.9 (26.0) 0.330 0.619

LC, liver cirrhosis; HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II; 
BCLC stage, Barcelona Clinic Liver Cancer stage; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; TP, total protein; Alb, albumin; Hb, hemoglobin; PLT, 
platelet; NLR, neutrophil to lymphocyte ratio; PT, prothrombin time.
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TACE or RFA procedure, were employed to authenticate the diagnostic 
efficacy of the model in detecting HCC. Importantly, the classification 
accuracy exhibited remarkable concordance between the training and 
validation datasets, attesting to the effectiveness of the modeling 
process and the minimal occurrence of over-fitting (Table  2). 
Furthermore, the mean POD value was significantly elevated in the 20 
samples from the 10 HCC patients compared to the 46 control samples 
(p < 0.05, Figure 5A). Remarkably, the model achieved an AUC value 
of 0.955 (95% CI 0.912 to 0.999) when distinguishing between HCC 

and hepatitis cohorts (Figure 5B), thereby validating its substantial 
diagnostic potential for HCC.

We further explored the complementary role of our model for AFP 
and PIVKA-II in the diagnosis of HCC. The diagnostic value of the 
classifier was evaluated in HCC patients who were initially undetected 
by AFP or PIVKA-II testing, using cutoff values established in clinical 
practice (AFP at 20 ng/mL, PIVKA-II at 40 mAU/mL). Our classifier 
exhibited a remarkable capacity in distinguishing AFP-negative HCC 
patients from those with LC (Figure 5C). Additionally, the classifier’s 
performance in discriminating PIVKA-II-negative HCC from LC 
remained noteworthy (Figure 5D). These results demonstrated that our 
diagnostic model greatly improved the ability of AFP and PIVKA-II to 
differentiate HCC from high-risk patients.

3.6 Abilities of HIST1H3G in identifying 
early HCC

To assess the diagnostic potential of HIST1H3G in the detection 
of early HCC, we utilized the aforementioned 70 HCC plasma samples 
to validate the reliability of this methylation biomarker. According to 
the BCLC staging criteria, 24 samples from the 70 were categorized as 
stage 0-A, representing early-stage HCC, while 18 samples in stage B 
and 28 samples in stage C were collectively grouped as late-stage 
HCC. A ROC analysis was conducted to compare the diagnostic 
performance of HIST1H3G with AFP and PIVKA-II in aiding the 
diagnosis of early HCC. The AUC for HIST1H3G was superior to both 
AFP and PIVKA-II (Figure 6A), indicating its promising potential as 
a biomarker for the early detection of HCC.

Similarity, we developed a prediction model specifically designed 
for early HCC diagnosis, with HIST1H3G and Alb chosen as the 
optimal markers (Figure 6B). The average POD value was significantly 

FIGURE 2

Analysis of methylated HIST1H3G in tissue and plasma, and analysis of AFP and PIVKA-II in serum. (A–C) Promoter methylation levels in HCC, different 
grades and stages obtained from UALCAN database. (D) ΔCt values of HIST1H3G in enrolled groups. (E,F) Serum levels of AFP and PIVKA-II in enrolled 
groups. The values plotted were derived through the application of logarithmic transformation to the AFP and PIVKA-II levels. HCC, hepatocellular 
carcinoma; LC, liver cirrhosis; NS, no significance; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II.

FIGURE 3

Diagnostic outcomes for serum HIST1H3G, PIVKA-II and AFP in the 
diagnosis of HCC. AUC (HIST1H3G) > AUC (PIVKA-II) > AUC (AFP). 
AUC, the area under the ROC curve; AFP, alpha-fetoprotein; PIVKA-II, 
protein induced by vitamin K absence or antagonist-II.
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elevated in the 24 patients with advanced HCC compared to the 46 
patients with early HCC (Figure 6D). Furthermore, the POD achieved 
an AUC value of 0.843 (95% CI 0.754 to 0.932) when discriminating 
between the two groups (Figure 6C). These results underscored the 
robust diagnostic performance of our prediction model in identifying 
patients with early HCC, indicating its potential as a powerful tool for 
early detection.

3.7 Construction of prognostic prediction 
model for HCC

We conducted a thorough analysis to explore the relationship 
between methylated HIST1H3G expression and the prognosis of 46 

patients with advanced HCC (18 in stage B, 28 in stage C), excluding 
stage 0-A due to the small number of deaths. Subsequently, these patients 
were stratified into deceased and surviving groups based on their 
outcomes. Our results, presented in Figure 7A through ROC curves, 
demonstrated that PIVKA-II and HIST1H3G exhibited superior 
sensitivity than AFP in assessing the survival outcomes of HCC patients. 
Moreover, PIVKA-II, ALB, and Hb emerged as the optimal markers, 
playing a crucial role in predicting the survival status of patients with 
advanced HCC (Figures 7B,C). These data indicated that HIST1H3G 
served not only as a valuable biomarker but also as an aid for clinicians 
in predicting the prognosis of patients with advanced HCC.

Based on previous research findings, we observed that HIST1H3G, 
AFP, PIVKA-II, ALB, and Hb held significant predictive value in 
determining the staging or prognosis of HCC. Therefore, a total of 10 

FIGURE 4

Construction of the diagnostic prediction model for HCC by random forest model. (A) HIST1H3G, PIVKA-II, TBIL, and age were selected as the optimal 
marker set. (B,C) The POD index achieved an AUC value of 0.967 with 95% CI of 0.941 to 0.993 between HCC and LC cohorts in the discovery phase. 
(D) The POD value was significantly increased in the HCC samples versus the LC samples (p < 0.001). AUC, the area under the ROC curve; POD, 
probability of disease; HCC, hepatocellular carcinoma; LC, liver cirrhosis; PIVKA-II, protein induced by vitamin K absence or antagonist-II; TBIL, total 
bilirubin; AFP, alpha-fetoprotein; PT, prothrombin time; PLT, platelet; NLR, neutrophil to lymphocyte ratio; Hb, hemoglobin; Alb, albumin; AST, aspartate 
aminotransferase; TP, total protein; ALT, alanine aminotransferase.

TABLE 2 Performance of the POD for the diagnosis of HCC in training and validation cohort.

Cohort AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training cohort 0.967 (0.941–0.993) 91.43 96.20 95.52 92.68

Validation cohort 0.955 (0.912–0.999) 90.0 82.0 69.23 95.0

POD, probability of disease; AUC, the area under the ROC curve; HCC, hepatocellular carcinoma; PPV, positive predictive value; NPV, negative predictive value.
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paired before and after procedure serum samples obtained from HCC 
patients were analyzed to further identify their ability in evaluating 
treatment response. Within the cohort, consisting of six participants 
in the surviving group and four participants in the deceased group, 
comparative analysis revealed that HIST1H3G, AFP, PIVKA-II, ALB, 
and Hb exhibited non-significant alterations pre- and post-treatment 
in the surviving cohort (all p > 0.05, Supplementary Figures 2A–E). It 
was worth mentioning that HIST1H3G increased post-treatment in 
surviving group, albeit without statistical significance compared to 
pre-treatment (Supplementary Figures 2A,F). Analogous trends were 
observed within the deceased group (Supplementary Figures 2F–J).

4 Discussion

HCC remains a rather challenging and devastating liver disease at 
the global level (1). Early detection is the most effective way to reduce 
HCC mortality. AFP is the well-known and widely used biomarker for 
HCC. However, the observation that 80% of patients with small HCC 
showed no increase in AFP level (17), which indicated that AFP was 
not optimal for the detection of early HCC. DNA methylation, being 
a crucial epigenetic modification, typically manifests as an early event 

in carcinogenesis, presenting considerable potential as biomarkers for 
the early detection, staging of cancer and prognosis (10, 18). Therefore, 
we  undertook the present work to achieve a comprehensive 
classification of HCC and establish tools for HCC prognostic and 
therapeutic efficacy assessment. To our knowledge, this is the 
inaugural investigation utilizing DNA methylation marker HIST1H3G 
in model establishment and validation for HCC.

Currently, the identification of HCC methylation biomarkers 
typically studied in healthy individuals serving as controls, thus 
constraining its potential for widespread application as a routine 
screening tool in high-risk populations. Patients suffering from 
cirrhosis and chronic liver disease remained at a significantly elevated 
risk for HCC occurrence (2). Additionally, non-alcoholic 
steatohepatitis (NASH), often associated with metabolic syndrome or 
diabetes mellitus, is emerging as the fastest growing etiology of HCC, 
especially in the West (19, 20). Given this, we decided to incorporate 
these high-risk populations as our control groups, rather than relying 
solely on healthy individuals. Consequently, we  conducted a 
comprehensive analysis on patients with chronic hepatitis, LC and 
HCC, aiming to accurately detect early HCC cases among these high-
risk groups. This approach was more likely to represent the 
distribution of the population in actual clinical practice in China.

FIGURE 5

Validation diagnosis and the complementary role for the diagnosis of AFP-negative and PIVKA-II-negative HCC patients. (A) The POD value was 
significantly increased in the HCC samples versus the hepatitis samples in the validation phase (p < 0.001). (B) The model performed robustly in 
validation phase, which achieved an AUC value of 0.955 (95% CI 0.912 to 0.999) between HCC and hepatitis cohorts. (C,D) Performance of the model 
in the diagnosis of AFP-negative and PIVKA-II-negative HCC patients. POD, probability of disease; AUC, area under the curve; HCC, hepatocellular 
carcinoma; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II.

https://doi.org/10.3389/fmed.2025.1571737
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhu et al. 10.3389/fmed.2025.1571737

Frontiers in Medicine 09 frontiersin.org

FIGURE 6

Abilities of HIST1H3G in identifying early HCC. (A) Diagnostic outcomes for serum HIST1H3G, PIVKA-II and AFP in the diagnosis of early HCC. AUC 
(HIST1H3G) > AUC (AFP) > AUC (PIVKA-II). (B) HIST1H3G and Alb were selected as the optimal marker set. (C) The POD index achieved an AUC value of 
0.843 with 95% CI of 0.754 to 0.932 between early-stage HCC and late-stage HCC cohorts. (D) The POD value was significantly increased in the late-
stage HCC samples versus the early-stage HCC samples (p < 0.001). AUC, the area under the ROC curve; POD, probability of disease; HCC, 
hepatocellular carcinoma; Alb, albumin; AST, aspartate aminotransferase; AFP, alpha-fetoprotein; PT, prothrombin time; ALT, alanine aminotransferase; 
NLR, neutrophil to lymphocyte ratio; TP, total protein; PIVKA-II, protein induced by vitamin K absence or antagonist-II; Hb, hemoglobin; TBIL, total 
bilirubin; PLT, platelet.

FIGURE 7

Construction of prognostic prediction model for HCC. (A) Diagnostic outcomes for serum HIST1H3G, PIVKA-II and AFP in predicting the survival status 
of patients with advanced HCC. AUC (PIVKA-II) > AUC (HIST1H3G) > AUC (AFP). (B,C) PIVKA-II, Alb, and Hb were selected as the optimal marker set. 
AUC, the area under the ROC curve; PIVKA-II, protein induced by vitamin K absence or antagonist-II; Alb, albumin; AFP, alpha-fetoprotein; AST, 
aspartate aminotransferase; TBIL, total bilirubin; TP, total protein; Hb, hemoglobin; NLR, neutrophil to lymphocyte ratio; PLT, platelet; ALT, alanine 
aminotransferase; PT, prothrombin time; VI, vascular invasion; HCC, hepatocellular carcinoma.
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The emerging field of liquid biopsy is pioneering innovative 
diagnostic approaches for cancer and other diseases (21). Cancer-
specific DNA methylation patterns have been investigated as feasible 
biomarkers in various cancers. In a large-scale clinical validation study, 
Gao et al. (22) successfully established a model for the early detection 
and localization of six distinct cancer types affecting the colorectum, 
esophagus, liver, lung, ovary, and pancreas, utilizing cfDNA methylation 
technology. Numerous promising methylation-based screening models 
for HCC have been put forward. Luo et al. (23) identified 2,321 DNA 
methylation biomarkers of tissue samples with high throughput DNA 
bisulfite sequencing and developed a HCC screening model, which 
achieved a sensitivity of 86% and specificity of 98% in the training cohort 
and a sensitivity of 84% and specificity of 96% in the independent 
validation cohort. Through integrated analyses of RNA-sequencing and 
DNA methylation data, Long et al. (24) constructed diagnostic and 
prognostic models using two DNA methylation-driven genes in HCC 
and achieved satisfactory performances. Kisiel et al. (25) reported a 
panel of six methylated DNA markers based on sequencing of tissues in 
phase II, which yielded a best-fit AUC of 0.96 (95% CI, 0.93–0.99) when 
detecting early-stage HCC in high-risk populations. In our study, 
we identified HIST1H3G as a DNA methylation biomarker by qPCR in 
plasma samples, and developed diagnostic and prognostic models based 
on methylated HIST1H3G.

HIST1H3G is a member of the histone H3 family, encoding a 
replication-dependent histone that plays a crucial role in maintaining 
the structure of nucleosomes within chromosome fibers in eukaryotes. 
Histone modifications regulate chromatin structure and gene 
expression by adding or removing specific chemical groups to histones. 
For instance, histone acetylation is typically associated with gene 
activation, while histone methylation may either suppress or activate 
gene expression, depending on the specific methylation site (26, 27). In 
this study, we determined that DNA methylation level of HIST1H3G 
was overexpressed both in HCC tissues and serum. The specific 
increase of HIST1H3G in HCC suggested that it could be a potential 
marker of HCC. Moreover, the diagnostic ability of HIST1H3G was 
superior than that of AFP and PIVKA-II. Consistent with our findings, 
it has been reported that HIST1H3G was involved in the development 
of glioblastoma, acute lymphoblastic leukemia and cervical cancer (13, 
28, 29). Specifically, significant increased HIST1H3G in methylation 
was confirmed in lung adenocarcinoma based on a genome-wide 
methylation screening (30). Besides, Zhang et al. (31) presented that 
HIST1H3G was upregulated and considered key methylation marker 
with higher AUC values for osteoporosis. Although the mechanism 
and biological function of HIST1H3G hypermethylation in HCC 
tumorigenesis have not been reported, our data demonstrated that 
HIST1H3G could still be a potential DNA marker in HCC.

An efficient screening assay must exhibit a sufficiently high degree 
of specificity to minimize false positive rates and to avoid unnecessary 
anxiety and medical expenditures among individuals without 
HCC. To construct a highly accurate model, random forest algorithm 
was used to select optimal markers in our study. Our diagnostic 
model, which integrated HIST1H3G, PIVKA-II, TBIL, and age, 
effectively distinguished patients with HCC from those with LC and 
chronic hepatitis across the training and validation cohorts. The 
sensitivity of our classifier for HCC was comparable to surveillance 
with ultrasound (32), the current recommendations for HCC 
screening. Meanwhile, the model also exhibited potential diagnostic 
capability in both AFP-negative and PIVKA-II-negative groups, 

underscoring its complementary role in HCC diagnosis alongside 
AFP and PIVKA-II. These findings demonstrated that our model had 
strong classification potential for discriminating HCC from LC and 
chronic hepatitis individuals, and held promise as a non-invasive 
diagnostic tool for HCC.

In addition, we  found that hypermethylation of HIST1H3G 
significantly outperformed than AFP and PIVKA-II in distinguishing 
early-stage HCC from all stage HCC patients. Although serum AFP 
is the most clinically utilized biomarker for HCC, its performance in 
detecting early-stage HCC remains far from optimal (17). As many 
as 40% of HCC cases across all stages in cirrhotic patients 
demonstrate normal serum AFP levels, and detection rates for early-
stage HCC may be as low as 30% according to previous studies (6, 
33). Recently, PIVKA-II proposed to serve as a complementary or 
alternative diagnostic tool to AFP for HCC, while its diagnostic 
performance in detecting early-stage HCC was notably influenced by 
the underlying liver disease etiology (6). Our study also helped to 
demonstrate the unsatisfactory performance of AFP and PIVKA-II 
for early-stage HCC. In contrast, our model showed high sensitivity 
and specificity for early HCC detection. More importantly, high 
methylation level of HIST1H3G showed comparable ability with 
PIVKA-II in forecasting mortality in HCC patients, even though 
HIST1H3G was not selected for model construction by the random 
forest model. Our study lays a foundation for the possibility of using 
HIST1H3G methylation as diagnostic and prognostic biomarker for 
HCC in serum samples of patients.

Despite the significance of our prediction model, several 
limitations might impede the interpretation of our results. Firstly, the 
hepatitis/LC group had shorter median ages than the HCC group in 
both the discovery and validation cohorts, which may have influenced 
the biomarker levels. An age-matched cohort might reduce the 
potential selection bias. Secondly, different benign liver diseases 
served as control group, LC were included in training phase, while 
hepatitis patients with different etiologies were included in validation 
phase. The same disease population in both cohorts would be helpful 
to improve the model for achieving the most optimal performance. 
Thirdly, the number of enrolled HCC patients in the validation 
cohort was relatively small, especially the data both before and after 
treatment were used for analysis. Additional different stages of HCC 
participants would be helpful to validate the robustness of our model. 
Fourthly, the reliability of our prognostic model was constrained by 
a relatively short clinical follow-up and a limited number. In the 
forthcoming period, we plan to evaluate the expression levels and 
concordance of HIST1H3G in both tissues and serum of HCC 
patients, and conduct multi-center studies with a substantial sample 
size to verify the robustness of its diagnostic power. Afterwards, 
we will establish a sensitive technique to identify the existence of 
HIST1H3G in cfDNA for screening patients with HCC.

In conclusion, prediction models were meticulously developed 
and validated, utilizing a combination of a DNA methylation 
biomarker alongside clinically applicable protein markers and routine 
biochemical assessments. To the best of our knowledge, this is the first 
time that methylated HIST1H3G has been used in the construction of 
diagnostic and prognostic models for HCC patients. These models 
possessed significant predictive value for HCC, indicating their 
potential utility in prognosis and personalized medical treatment 
strategies. The findings of our study on HCC serve as a pivotal 
foundation for developing a non-invasive approach for cancer 
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identification and management, with potential applications across a 
wide range of malignancies.
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