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Background: Deep learning has shown considerable promise in the differential 
diagnosis of lung lesions. However, the majority of previous studies have focused 
primarily on X-ray, computed tomography (CT), and magnetic resonance 
imaging (MRI), with relatively few investigations exploring the predictive value 
of ultrasound imaging.

Objective: This study aims to develop a deep learning model based on ultrasound 
imaging to differentiate between benign and malignant peripheral lung tumors.

Methods: A retrospective analysis was conducted on a cohort of 371 patients 
who underwent ultrasound-guided percutaneous lung tumor procedures across 
two centers. The dataset was divided into a training set (n = 296) and a test set 
(n = 75) in an 8:2 ratio for further analysis and model evaluation. Five distinct 
deep learning models were developed using ResNet152, ResNet101, ResNet50, 
ResNet34, and ResNet18 algorithms. Receiver Operating Characteristic (ROC) 
curves were generated, and the Area Under the Curve (AUC) was calculated to 
assess the diagnostic performance of each model. DeLong’s test was employed 
to compare the differences between the groups.

Results: Among the five models, the one based on the ResNet18 algorithm 
demonstrated the highest performance. It exhibited statistically significant 
advantages in predictive accuracy (p < 0.05) compared to the models based on 
ResNet152, ResNet101, ResNet50, and ResNet34 algorithms. Specifically, the 
ResNet18 model showed superior discriminatory power. Quantitative evaluation 
through Net Reclassification Improvement (NRI) analysis revealed that the NRI 
values for the ResNet18 model, when compared with ResNet152, ResNet101, 
ResNet50, and ResNet34, were 0.180, 0.240, 0.186, and 0.221, respectively. All 
corresponding p-values were less than 0.05 (p < 0.05 for each comparison), 
further confirming that the ResNet18 model significantly outperformed the 
other four models in reclassification ability. Moreover, its predictive outcomes 
led to marked improvements in risk stratification and classification accuracy.

Conclusion: The ResNet18-based deep learning model demonstrated superior 
accuracy in distinguishing between benign and malignant peripheral lung tumors, 
providing an effective and non-invasive tool for the early detection of lung cancer.
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Introduction

Lung cancer remains one of the most prevalent and fatal cancers 
worldwide, with peripheral lung cancer (PLC) constituting a 
substantial proportion of these cases (1). PLC originates in the outer 
regions of the lungs and is often difficult to detect in its early stages 
due to subtle symptoms, leading to a high rate of misdiagnosis (2). 
Epidemiological studies indicate that peripheral lung tumors account 
for approximately 30–40% of all lung cancer diagnoses, underscoring 
the urgent need for effective early detection and accurate diagnosis (1, 
3). Current clinical practices rely on low-dose computed tomography 
(LDCT) as the gold standard for lung cancer screening (4). However, 
while LDCT is highly effective, it involves the use of ionizing radiation, 
making it unsuitable for long-term monitoring, especially in 
individuals at high risk for lung cancer (5). Tissue biopsy, although 
definitive, is invasive and associated with potential complications, 
including bleeding and infection (2, 6). As a result, there is a growing 
interest in alternative, non-invasive diagnostic methods.

Ultrasound imaging has emerged as a promising non-invasive, 
radiation-free diagnostic tool for peripheral lung tumors, offering the 
advantage of high repeatability. This makes it particularly useful for 
monitoring patients over time and distinguishing between benign and 
malignant tumors (2, 5, 7). The application of ultrasound in lung 
tumor diagnosis has seen significant advancements in recent years. 
Recent studies have highlighted the improved accuracy of ultrasound 
techniques with the incorporation of elastography, which assesses 
tissue stiffness and provides valuable insights into tumor 
characterization (8). Additionally, the use of contrast-enhanced 
ultrasound (CEUS) has allowed for enhanced visualization of blood 
flow within tumors, further improving the ability to differentiate 
malignant from benign lesions (9). These innovations have made 
ultrasound a more reliable option for lung tumor diagnosis, 
particularly in settings where access to advanced imaging technologies 
such as CT or MRI may be limited.

However, despite these advancements, the accuracy of 
ultrasound diagnosis remains subject to operator-dependent 
variability, including factors such as experience, skill, and visual 
fatigue, which can lead to misjudgments (2, 5). To address these 
challenges, artificial intelligence (AI) techniques, particularly deep 
learning (DL) models, have been integrated into ultrasound 
imaging to improve diagnostic accuracy and consistency. Recent 
developments in AI have demonstrated substantial improvements 
in the automated analysis of ultrasound images, enabling more 
precise and reliable detection of lung tumors (7). Deep learning 
algorithms, especially convolutional neural networks (CNNs) like 
ResNet, have been shown to outperform traditional machine 
learning models by automatically detecting complex patterns and 
analyzing texture features that are often imperceptible to the human 
eye (7, 10). The ResNet architecture, known for its residual learning 
framework, helps mitigate the vanishing gradient problem and 
allows for the training of deeper neural networks, thus improving 
the robustness and accuracy of tumor detection (10, 11).

Therefore, incorporating AI into ultrasound imaging for PLC 
diagnosis has significantly reduced misdiagnosis rates and improved 

diagnostic confidence. AI-enhanced systems also provide real-time 
feedback, minimizing the effects of operator fatigue and variability, 
which are common limitations of traditional visual inspection (7). 
This study aims to develop and assess five deep learning models 
utilizing ultrasound images and clinical data of peripheral lung 
tumors. We hypothesize that these models will offer a highly accurate, 
non-invasive approach to differentiating benign from malignant 
tumors, thereby improving lung cancer screening and early diagnosis. 
The novelty of this research lies in the integration of ultrasound 
imaging with deep learning algorithms, addressing the limitations of 
conventional diagnostic methods and enhancing both diagnostic 
precision and clinical applicability.

Materials and methods

Study population

The study received approval from the institutional review board 
of The Second Affiliated Hospital of Xi’an Jiaotong University and 
Tongchuan mining bureau central hospital, which was conducted in 
accordance with the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards. This retrospective 
study collected data from 513 patients with peripheral lung tumors 
detected via chest CT across two centers between March 2020 and 
March 2024. The cohort included 438 patients from Center 1 and 75 
patients from Center 2, respectively. A total of 371 lung tumors, 
comprising 221 malignant and 150 benign cases, were included for 
further analysis. The inclusion criteria were as follows: (1) adult 
patients aged 18 years or older; (2) peripheral lung tumors detected 
through chest CT imaging; (3) patients who underwent ultrasound-
guided tissue biopsy; (4) pathological diagnosis confirming malignant 
lung tumors or inflammatory lesions; (5) clear ultrasound images of 
adequate quality were defined by two key criteria: a minimum 
resolution of 1.5 millimeters and a signal-to-noise ratio (SNR) 
threshold of 30 dB. These standards were established to ensure 
sufficient image clarity and diagnostic reliability for accurate feature 
extraction and tumor analysis; (6) complete clinical data. The 
exclusion criteria included: (1) patients with severe coagulation 
disorders or those unable to cooperate with ultrasound-guided tissue 
biopsy; (2) incomplete clinical data; (3) poor quality ultrasound 
images that could not provide valid data (Figure  1). All patients 
provided informed consent, and the key contents of the informed 
consent form are presented in the Supplementary materials.

Ultrasound data acquisition

Ultrasound diagnoses were performed by physicians with over 
5 years of relevant experience using the Acuson Sequoia color Doppler 
ultrasound diagnostic system (Siemens AG, Germany), equipped with 
a 5C1 abdominal probe operating within a frequency range of 1.0 to 
5.7 MHz. Based on lesion locations identified by CT scans, patients were 
positioned in supine, prone, or lateral decubitus positions to facilitate 

https://doi.org/10.3389/fmed.2025.1567545
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1567545

Frontiers in Medicine 03 frontiersin.org

comprehensive ultrasonic examination. Clear two-dimensional 
ultrasound images, capturing the maximum cross-sectional area of the 
lesions, were retained for further analysis. To ensure consistency in data 
quality, all ultrasound images were acquired by trained physicians 
adhering to standardized imaging protocols. Images with lower 
resolution or insufficient signal-to-noise ratio (SNR) were excluded 
from the study to maintain uniformity across the dataset.

Ultrasound image analysis and modeling

After anonymizing patient information, the original ultrasound 
images were imported into the Darwin AI Research Platform for 
further processing. The patient information labels included the 
following: gender, age, biopsy site, lesion size, history of lung diseases, 
smoking history, and lung tumor markers. Lesion-related labels 
encompassed pathological results (benign or malignant), shape 
(round, quasi-round, triangular, wedge-shaped, or irregular), 
echogenicity (homogeneous or heterogeneous), presence of necrosis 
(present or absent), air bronchogram (present or absent), and 
boundary clarity (clear or unclear). Regions of interest (ROIs) were 
manually delineated by physicians with more than 5 years of relevant 
experience. In cases of disagreement, senior physicians were consulted 
for a definitive diagnosis. The dataset, comprising 371 patients with 
lung tumors, was randomly divided into a training set (n = 296) and 
a test set (n = 75) in an 8:2 ratio. Peripheral lung tumor ROI images 

and corresponding clinical data were input into the system, and the 
output indicated whether the tumors were benign or malignant. Based 
on these ultrasound imaging data and annotations, deep learning 
models were developed to predict the benign or malignant nature of 
peripheral lung tumors using five distinct algorithms: ResNet152, 
ResNet101, ResNet50, ResNet34, and ResNet18. Receiver operating 
characteristic (ROC) curves were plotted, and the area under the 
curve (AUC) was calculated to assess the diagnostic performance of 
each model. The complete experimental process is illustrated in 
Figure  2. During model training, we  optimized hyperparameters 
including a learning rate of 0.001, a batch size of 64, and the Adam 
optimizer. We used a cosine annealing scheduler with a warm-up 
period for learning rate variation, and employed cross-entropy loss to 
guide the model in minimizing prediction errors. We implemented 
this study on a computer equipped with an Nvidia RTX A2000 GPU 
and an Intel Xeon Silver 4,208 CPU using the Darwin AI Research 
Platform. The average inference time per sample is approximately 50 
milliseconds, measured on the aforementioned hardware. This time 
may vary depending on the system configuration and the complexity 
of the input data.

Observation indicators

The sensitivity, specificity, accuracy, positive predictive value 
(PPV), and negative predictive value (NPV) of the five models in 

FIGURE 1

Flow diagram of the study population.
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diagnosing the benignity or malignancy of peripheral lung tumors 
were assessed. ROC curves were plotted for each model, and the AUC 
was calculated to measure their diagnostic performance.

Statistical methods

SPSS version 27.0 statistical analysis software was used to evaluate 
the significance of each model. Categorical data were expressed as 
frequencies and percentages. The classification performance of the 
models was assessed using the AUC, accuracy, sensitivity, specificity, 
PPV, and NPV derived from the ROC curves. The DeLong test was 
employed to compare the AUCs among the five versions of ResNet. A 
p-value of less than 0.05 was considered statistically significant, 
indicating a meaningful difference in performance.

Results

Pathological results

The study included a cohort of 371 patients diagnosed with 
peripheral lung tumors. Pathological analysis, based on biopsy or 
surgical resection, identified 221 malignant and 150 benign tumors. 
Detailed histological classifications are provided in Table 1. Among 
the malignant tumors, adenocarcinoma was the most common 
(26.95%), followed by squamous cell carcinoma (20.75%) and small 
cell carcinoma (5.12%). Benign lesions were predominantly chronic 
inflammation of lung tissue (26.42%) and organizing pneumonia 
(5.39%).

Performance of the deep learning models

In the training set, the sensitivity, specificity, and diagnostic 
accuracy for diagnosing the benignity or malignancy of peripheral 
lung tumors were as follows: 87.2, 70.4, and 77.0% for Model 152; 
70.1, 85.5, and 79.4% for Model 101; 88.0, 93.3, and 91.2% for Model 
50; 80.3, 66.5, and 72.0% for Model 34; and 82.1, 70.4, and 75.0% for 

Model 18. In the test set, the corresponding values were 78.1, 74.4, 
and 76.0% for Model 152; 81.3, 72.1, and 76.0% for Model 101; 81.3, 
74.4, and 77.2% for Model 50; 78.1, 74.4, and 76.0% for Model 34; and 
84.4, 69.8, and 76.0% for Model 18 (Table 2). The areas under the 
receiver operating characteristic (ROC) curves (AUCs) for the five 
models in the training set were 0.865, 0.852, 0.960, 0.803, and 0.835, 
respectively (Figure 3). In the test set, the AUCs were 0.822, 0.800, 
0.824, 0.823, and 0.831, respectively (Figure 4).

DeLong’s test revealed statistically significant differences in the 
AUCs between the five models, with ResNet18 outperforming the 

FIGURE 2

The complete experimental process.

TABLE 1 Pathological results of 371 peripheral lung tumors.

Pathological findings Benign n 
(%)

Malignant n 
(%)

Small cell carcinoma 19 (5.12)

Squamous cell carcinoma 77 (20.75)

Adenocarcinoma 100 (26.95)

Adenosquamous carcinoma 6 (1.62)

Large cell carcinoma 6 (1.62)

Malignant pleomorphic tumor 3 (0.81)

Mesenchymal sarcoma 2 (0.54)

Choriocarcinoma 2 (0.54)

Alveolar carcinoma 1 (0.27)

Metastatic renal clear cell carcinoma 2 (0.54)

Carcinosarcoma 2 (0.54)

MALT-L 1 (0.27)

Tuberculosis 11 (2.96)

Organizing pneumonia 20 (5.39)

Granulomatous inflammation 17 (4.58)

Vasculitic lung injury 1 (0.27)

Bacterial pneumonia 1 (0.27)

Chronic inflammation of lung tissue 98 (26.42)

Atypical adenomatous hyperplasia 2 (0.54)

MALT-L, Mucosa-Associated Lymphoid Tissue Lymphoma.
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other models in terms of predictive accuracy and discriminatory 
power. NRI analysis revealed substantial improvements in the 
ResNet18 model compared to the other models. The NRI values for 
each model were as follows: ResNet152 (NRI = 0.180), ResNet101 
(NRI = 0.240), ResNet50 (NRI = 0.186), and ResNet34 (NRI = 0.221). 
All NRI comparisons yielded statistically significant results, with 
p-values less than 0.05. These findings further substantiate that the 
ResNet18 model outperformed the other models in terms of 
reclassification ability and predictive accuracy.

Discussion

The current study successfully developed a deep learning model 
based on ultrasound imaging to differentiate benign and malignant 

peripheral lung tumors. This model, utilizing the ResNet18 
architecture, demonstrated superior performance with an AUC of 
0.835 in the training cohort and 0.831 in the testing cohort, compared 
to models based on other ResNet architectures (ResNet152, 
ResNet101, ResNet50, and ResNet34). The ResNet18 model 
significantly outperformed the other models in terms of predictive 
accuracy, discriminatory power, and reclassification ability, making it 
a promising tool for early lung cancer detection.

In recent years, deep learning techniques have significantly 
improved lung tumor diagnosis across imaging modalities like CT, 
PET/CT, and ultrasound. CT and PET/CT are commonly used in 
clinical settings for their high spatial resolution and detailed 
anatomical information. Studies have shown that deep learning can 
enhance the performance of these techniques in detecting 
malignancies. For example, Yang et al. (12) used deep convolutional 
neural networks (CNNs) to analyze CT scans, achieving over 90% 
accuracy in distinguishing between benign and malignant pulmonary 
nodules (12).

Despite their high diagnostic accuracy, CT and PET/CT have 
several limitations. Both involve ionizing radiation, which can lead 
to cumulative exposure risks, especially with repeated imaging. 
Additionally, PET/CT scanners are expensive and less accessible, 
limiting their use in some clinical settings (13). In contrast, 
ultrasound offers significant advantages, especially when combined 
with deep learning techniques. Unlike CT and PET/CT, ultrasound 
does not involve ionizing radiation, making it a safer option for 
patients, particularly in long-term monitoring. Ultrasound is also 
more cost-effective, portable, and accessible, making it ideal for 
resource-limited settings. Recent studies, such as Liu et al. (14), have 
shown that deep learning applied to ultrasound images can achieve 
88% sensitivity and 85% specificity for early lung cancer detection 
(14). Ultrasound’s real-time imaging capability provides immediate 
feedback, aiding quick decision-making, and it can be performed at 
the patient’s bedside, making it a valuable tool for point-of-care 
diagnosis (15). However, ultrasound does have limitations. Its quality 
is highly dependent on the skill of the operator, which can lead to 
inconsistent results. Ultrasound may also struggle to visualize deeper 
lung tissues due to interference from air in the lungs and difficulty 

TABLE 2 Comparison of the performance of each deep learning model in the training and test sets.

ResNet152 ResNet101 ResNet50 ResNet34 ResNet18

Training 
set

Test set Training 
set

Test set Training 
set

Test set Training 
set

Test set Training 
set

Test set

AUC 0.865 0.822 0.852 0.800 0.960 0.824 0.803 0.823 0.835 0.831

ACC 0.770 0.760 0.794 0.760 0.912 0.772 0.720 0.760 0.750 0.760

SEN 0.872 0.781 0.701 0.813 0.880 0.813 0.803 0.781 0.821 0.844

SPE 0.704 0.744 0.855 0.721 0.933 0.744 0.665 0.744 0.704 0.698

F1score 0.750 0.735 0.729 0.743 0.888 0.754 0.694 0.735 0.722 0.750

PPV 0.658 0.694 0.759 0.684 0.896 0.703 0.610 0.694 0.644 0.675

NPV 0.894 0.821 0.814 0.838 0.923 0.842 0.838 0.821 0.857 0.857

p value 2.648E-26 2.000E-06 1.237E-24 1.000E-05 4.249E-39 2.000E-06 2.2448E-18 2.000E-06 2.089E-22 1.000E-06

95%CI 0.823,0.906 0.725,0.919 0.808,0.896 0.701,0.899 0.937,0.983 0.724,0.924 0.750,0.851 0.726,0.921 0.788,0.881 0.738,0.925

AUC, Area Under the Curve; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; F1score, F1 Score; PPV, Positive Predictive Value; NPV, Negative Predictive Value; 95%CI, 95% Confidence 
Interval.

FIGURE 3

ROC curves of each deep learning model in the training set.
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distinguishing solid tumors from surrounding structures. 
Additionally, deep learning algorithms for ultrasound are still 
underdeveloped compared to those for CT and PET/CT, which have 
more standardized images (16). Despite these challenges, ultrasound’s 
non-invasive nature, lack of ionizing radiation, portability, and real-
time feedback make it a promising tool for lung cancer detection, 
particularly when enhanced by advanced deep learning techniques 
(17–20).

The reasons for choosing ResNet to construct the predictive 
model in this study, rather than other architectures (e.g., 
EfficientNet, Vision Transformer), are as follows: firstly, ResNet 
introduces the concept of residual connections, which address the 
vanishing gradient problem by allowing gradients to flow more 
easily through deeper layers (21). This enables the training of 
much deeper networks without the degradation in performance 
typically seen in conventional deep networks (22). In comparison, 
while EfficientNet and ViT also achieve high performance, they 
do not inherently mitigate the vanishing gradient problem to the 
same extent, especially in very deep architectures (23, 24). 
Secondly, ResNet excels in feature extraction, leveraging its deep 
architecture and residual blocks, which enables it to capture more 
complex patterns and fine-grained details in images (25). This is 
particularly useful in medical imaging, where subtle differences 
in image features are crucial for accurate diagnosis (26). 
EfficientNet and ViT, while powerful, may not always achieve the 
same level of fine-grained feature extraction, particularly for 
highly specialized tasks such as detecting peripheral lung tumors 
(27, 28). Thirdly, ResNet offers a good balance between model 
depth and computational cost (29). Although deeper networks 
typically require more computation, the residual connections in 
ResNet allow for more efficient training and inference compared 
to other architectures like ViT, which can be  computationally 
expensive due to the self-attention mechanism (30). EfficientNet, 
on the other hand, optimizes the trade-off between accuracy and 

efficiency, but its scaling strategy might still be  less 
computationally efficient than ResNet in certain applications (31, 
32). Fourthly, ResNet has been extensively validated across a wide 
range of medical imaging tasks, demonstrating robustness and 
reliability (33). It has a proven track record in both image 
classification and segmentation tasks (34, 35). While architectures 
like EfficientNet and ViT also show great promise, ResNet’s long-
standing success in medical imaging, along with its established 
frameworks for fine-tuning, makes it a reliable choice for clinical 
applications (36). In summary, ResNet’s advantages lie in its deep 
network capability, residual learning to avoid gradient issues, 
efficient feature extraction, and computational practicality, all of 
which make it particularly suitable for medical image analysis 
compared to other architectures like EfficientNet and Vision 
Transformer (37).

This study evaluated the performance of various ResNet 
architectures in predicting the benign or malignant nature of 
peripheral lung tumors. The findings revealed that the ResNet18-
based model outperformed those based on ResNet152, ResNet101, 
ResNet50, and ResNet34. A deeper analysis, considering both the 
algorithmic network architecture and the dataset, provides 
valuable insights into the factors contributing to this result. 
Firstly, ResNet18, being a relatively shallow model, has fewer 
layers compared to deeper networks like ResNet152. This means 
it requires less computational power, leading to faster training 
times and quicker inference speeds. This can be  important in 
resource-constrained environments, such as embedded systems or 
mobile devices (38). Secondly, with fewer parameters and layers, 
ResNet18 demands less memory for storage and computation. 
This is beneficial in settings where memory is limited, and it can 
be  crucial for deployment in edge devices or situations where 
there is a need to optimize for power consumption and storage 
(39). Thirdly, in many real-world tasks, particularly when the 
dataset size is not large enough to fully leverage the capacity of 
deeper networks, a smaller model like ResNet18 can avoid 
overfitting. Larger models like ResNet152, due to their increased 
number of parameters, may overfit on smaller datasets if not 
properly regularized (40). Fourthly, when performing transfer 
learning, using a smaller model like ResNet18 may lead to easier 
fine-tuning, especially on datasets where the target task is 
relatively simpler. The smaller number of parameters also means 
it is easier to modify the model for specific use cases without 
requiring excessive computational resources (41). Fifthly, while 
deeper models (like ResNet152) might provide better performance 
on very large datasets, ResNet18 offers a good balance between 
performance and computational efficiency. It can achieve decent 
accuracy with much less computational cost, making it ideal for 
practical applications where speed is essential (42). Sixthly, due to 
fewer layers and parameters, ResNet18 is more interpretable and 
simpler to analyze compared to deeper architectures. This 
simplicity can be beneficial for debugging or understanding how 
the network is making decisions (43). Overall, ResNet18 is 
preferred in situations where computational efficiency, memory 
constraints, or training time are critical considerations, while 
deeper ResNets like ResNet152 might be more suitable for large-
scale datasets and applications that demand the 
highest performance.

FIGURE 4

ROC plots of each deep learning model in the test set.
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There were still several limitations in this study. Firstly, while 
the results achieved are promising, the sample size remains limited. 
Future studies should include a larger cohort of patients, and 
external validation using independent test datasets is essential to 
confirm the generalizability of the model. Secondly, all data in this 
study were sourced from two centers. Therefore, additional multi-
center research is required to enhance the robustness and 
applicability of the findings in broader clinical settings. Thirdly, the 
model is employed solely for the classification of benign and 
malignant lung tumors. A more comprehensive analysis focusing 
on their pathological classification will be  conducted in 
subsequent studies.

Conclusion

The deep learning model based on ResNet18 demonstrated 
superior performance in differentiating between benign and 
malignant peripheral lung tumors compared to other ResNet-based 
models. The ResNet18 model exhibited statistically significant 
improvements in predictive accuracy and discriminatory power, as 
evidenced by ROC analysis and NRI evaluations. These findings 
highlight the potential of ultrasound imaging, in combination with 
advanced deep learning techniques, as an effective and non-invasive 
approach for the early detection of lung cancer. This study supports 
the clinical application of ResNet18 in enhancing diagnostic accuracy 
and risk stratification for lung lesions, contributing to more timely and 
accurate diagnosis of lung cancer.
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