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Despite the annual rise in patients with end-stage diseases necessitating 
organ transplantation, the scarcity of high-quality grafts constrains the further 
development of transplantation. The primary causes of the graft shortage are the 
scarcity of standard criteria donors, unsatisfactory organ preservation strategies, 
and mismatching issues. Organ preservation strategies are intimately related to 
pre-transplant graft viability and the incidence of adverse clinical outcomes. 
Static cold storage (SCS) is the current standard practice of organ preservation, 
characterized by its cost-effectiveness, ease of transport, and excellent clinical 
outcomes. However, cold-induced injury during static cold preservation, toxicity 
of organ preservation solution components, and post-transplantation reperfusion 
injury could further exacerbate graft damage. Long-term ex vivo dynamic machine 
perfusion (MP) preserves grafts in a near-physiological condition, evaluates graft 
viability, and cures damage to grafts, hence enhancing the usage and survival 
rates of marginal organs. With the increased use of extended criteria donors 
(ECD) and advancements in machine perfusion technology, static cold storage 
is being gradually replaced by machine perfusion. This review encapsulates the 
latest developments in cryopreservation, subzero non-freezing storage, static cold 
storage, and machine perfusion. The emphasis is on the injury mechanisms linked 
to static cold storage and optimization strategies, which may serve as references 
for the optimization of machine perfusion techniques.
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1 Introduction

Donation after brain death (DBD), living donation, and extended criteria donors (ECD) 
constitute the primary sources of donor grafts. Despite the annual rise in patients with 
end-stage diseases necessitating organ transplantation worldwide, the total number of DBD 
and living organ donors remains mostly unchanged (1). The scarcity of high-quality donor 
organs has constrained the development of organ transplantation, making the enhancement 
of utilization and survival rates of ECD a pressing concern.

In recent decades, the development and application of various organ preservation solutions 
have established static cold storage (SCS) as the standard preservation practice for donated 
organs. This organ preservation technique is secure, simple, and easily transportable, while 
ex vivo dynamic machine perfusion (MP) was previously overlooked. Current SCS techniques 
are well established. However, SCS techniques and some components in organ preservation 
solutions may be hazardous (2, 3). Numerous current research studies reported the addition 
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of diverse protective agents into existing organ preservation solutions, 
with the minimization or substitution of harmful constituents, to 
enhance the protective effects of organ preservation solutions. The 
literature mostly concerns a modified variant of the histidine-
tryptophan-ketoglutarate (HTK) solution, known as the HTK-N 
solution. Preclinical evidence indicates that the HTK-N solution 
outperforms the HTK solution in organ preservation. The effectiveness 
and safety of HTK-N solution have been confirmed by a pilot 
randomized controlled clinical phase II trial in living donor 
transplantation of human kidney preservation, and the outcomes of a 
prospective, randomized, single-blind, multicenter, phase III study on 
kidney, liver, and pancreatic transplantation are currently unavailable 
(4, 5). Despite the fact that existing organ preservation solutions are 
being gradually improved, the absence of donor organ viability 
assessment, tissue damage from prolonged hypothermia, limited cold 
storage duration, and the ischemia–reperfusion injury (IRI) that 
inevitably occurs during transplantation have constrained the clinical 
application of ECD grafts (6–8). Contemporary technologies of 
cryopreservation and subzero non-freezing preservation remain 
significantly underdeveloped. This has led to a resurgence of interest 
in MP preservation.

Ex vivo dynamic MP facilitates the evaluation of graft viability and 
functional repair, hence alleviating IRI and reducing the risk of 
primary non-function and delayed graft function (DGF) (1, 9). 
Despite the high cost and technical complexity of MP preservation for 
transplants, along with the risk of organ waste in the event of 
preservation failure, this technology creates the conditions for the 
successful clinical application of ECD grafts. This review describes 
several preservation strategies, including cryopreservation, subzero 
non-freezing preservation, SCS, and MP, to enhance the reader’s 
comprehensive understanding of the diverse preservation alternatives 
for grafts. Furthermore, we emphasize the constraints of SCS and its 
related damage mechanisms, which may offer insights into the 
optimization of MP approaches.

2 Cryopreservation protocols

For decades, cryopreservation solutions have been widely utilized 
to freeze cells in liquid nitrogen or at −80°C refrigerators. To further 
diminish the toxicity of cryopreservation solutions and the possibility 
of pathogenic bacterial contamination, an increasing number of 
cryopreservation solutions are devoid of serum and dimethyl 
sulfoxide. While cell cryopreservation technology is secure and well-
established, research on whole-organ cryopreservation remains in its 
nascent stages. The cryopreservation of kidneys and hearts has been 
extensively explored; nevertheless, organ function cannot be reinstated 
following cryopreservation at temperatures below −45°C (10). The 
primary causes of cryopreservation failure are the cytotoxic effects of 
cryoprotective agents (CPAs) and the formation of sharp ice crystals, 
which result in tissue matrix fragmentation and endothelial damage, 
leading to microvascular dysfunction, significant metabolic 
disturbances, and acute immune rejection (11, 12). Recent innovations 
in the composition of cryopreservation solutions and freezing and 
rewarming technologies have significantly enhanced the potential for 
the preservation of human whole organs.

Hydrogel encapsulation provides a non-toxic alternative to 
conventional cryopreservation (13, 14). Alginate is a non-toxic, 

biocompatible polymer, and alginate encapsulation is being used for 
both cryopreservation and non-cryopreservation of higher plants, 
animals, and human cells (15, 16). The thicknesses of 3% alginate or 
5% gelatin-methacryloyl hydrogel encapsulation optimally preserved 
mouse testicular tissues by inhibiting ice crystal formation, 
minimizing basement membrane contraction, improving cell 
morphology, and augmenting mitochondrial activity (14). Vitrification 
is the rapid cooling of an organ to a stable, ice-free, glassy state, 
preventing solid ice injury to tissues; however, vitrification necessitates 
the application of highly concentrated and possibly hazardous CPAs 
(17–19). High-quality CPAs should possess excellent water solubility, 
membrane permeability, and little harmful effects at lower 
temperatures and higher concentrations (20, 21). Using higher 
concentrations of cryoprotectants, reducing solution volumes to 
lessen toxicity and osmotic stresses, and implementing innovative 
technologies like radiofrequency heating or nano-heating to fast and 
evenly rewarm are all likely to minimize freezing injury further (17, 
22, 23). Cryopreservation by vitrification has effectively preserved 
heart valves, liver and kidney tissue sections, corneas, blood vessels, 
embryonic tiny structural tissues, and whole organs such as the liver 
and kidneys. In the cryopreservation of solid organs, the grafts were 
initially perfused with standard organ preservation solutions (e.g., 
UW solution) and subsequently stored at low temperatures 
(approximately 4℃) for preservation. Once the equipment was ready, 
the organs were connected to a specialized perfusion system, where 
they were first rinsed with a diluted carrier solution, with careful 
adjustments made to the pressure or flow rate.  After attaining initial 
osmotic equilibrium, the organ was perfused with a full-strength 
carrier solution, supplemented with specialized nanoparticles, and 
subsequently placed in a controlled-rate freezer for vitrification. The 
vitrification techniques enabled the cryopreservation of rat kidneys 
for a duration of up to 100 days, with the ability for the gradual 
restoration of kidney function following nano-heated thawing and 
allografting (17). The same technique was applied to freeze and revive 
rat liver, successfully retaining the liver tissue architecture and vascular 
endothelial cells, enabling the liver to absorb indocyanine green and 
generate bile during reperfusion (19). The unsatisfactory results of 
vitrification-based cryopreservation for the heart may be attributed to 
the loss of myocardial tone caused by uneven freezing and rewarming, 
which inhibits the myocardium’s ability to pump blood. Inspired by 
the cryo-tolerance characteristics of the North American wood frog, 
the intracellular delivery of non-coding RNA not only activates the 
intrinsic antioxidant system but also enables cells to develop cold 
tolerance and reduce graft freezing damage (24). This technique 
optimizes the preservation of vascular endothelial cell integrity in the 
donor organs and mitigates IRI and immune rejection.

3 Subzero non-freezing preservation 
protocols

Considering the difficulties and risks linked to cryopreservation 
protocols, the subzero non-freezing preservation protocol, also known 
as the supercooling preservation protocol, has been explored 
concurrently. This technique enables the preservation of organs 
without freezing at subzero temperatures by employing organ 
preservation solutions enriched with high concentrations of osmotic 
cryoprotectants to perfuse and submerge the organs, regulating the 
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height of the gas-liquid interface, while simultaneously monitoring 
and regulating the preservation temperature in real-time. A newly 
developed organ preservation system based on isochoric supercooling 
facilitates real-time monitoring of the preservation process, maintains 
the stability of the preservation solution, and prevents the formation 
of ice nuclei at subzero temperatures without the addition of CPAs, 
thereby enabling the extended preservation of large grafts (25). The 
subzero non-freezing preservation protocol has been validated in 
models of heart, liver, and kidney transplantation, extending organ 
preservation time by a minimum of 48 h (26, 27). Prevalent CPAs 
presently accessible include glycerol, methanol, ethanol, propanediol, 
ethylene glycol, butylene glycol, dimethyl sulfoxide, polyethylene 
glycol, 3-O-methyl-glucose, and antifreeze proteins (12, 26–28). 
Trehalose is a disaccharide commonly present in plants, animals, and 
microbes in nature. Rat lungs were preserved using ET-Kyoto solution 
with trehalose at 4°C and −2°C for 17 h, followed by perfusion with 
low-oxygenated blood. It was observed that lungs preserved at −2°C 
exhibited reduced arterial pressure, higher tidal volume and arterial 
partial pressure of oxygen, decreased endothelial cell damage, and 
increased intracellular adenosine triphosphate (ATP) levels (28). The 
superior protective effect may be associated with trehalose in the 
ET-Kyoto solution. A human liver transplantation model was used to 
verify the protective effect of the University of Wisconsin (UW) 
solution with glycerol and trehalose as adjuvants. This approach safely 
preserves the liver at −4°C without freezing for 33–42 h, retaining its 
viability after subnormothermic machine perfusion (SNMP) (29). It 
is important to emphasize that the livers in this experiment were not 
subjected to in vivo transplantation or later functional analyses. The 
use of 3-O-methyl-glucose and polyethylene glycol as CPAs prevented 
intra- and extracellular freezing at −6°C and maintained rat liver 
viability for 96 h. Following rewarming and homotransplantation, 
liver survival rates were 100 and 58% for 72 and 96 h of preservation, 
respectively. However, recipient rats exhibited delayed recovery of 
consciousness and movement throughout the initial postoperative 
week, with some experiencing weight loss (30). Porcine kidneys can 
be  securely preserved at −5°C for 120 h with a peptoid-based 
preservation solution, which has demonstrated superior effectiveness 
compared to the UW solution for urogenesis, blood flow, and oxygen 
consumption following hypothermic machine perfusion (HMP) (31). 
The subzero non-freezing preservation protocol presents a promising 
alternative for organ preservation; nevertheless, these advantages have 
yet to be substantiated in large animal models. Moreover, the stability 
and safety of the subzero non-freezing preservation protocol are 
suboptimal, as random icing influenced by the volume of supercooled 
preservation solutions and the freezing characteristics following 
vibration could hinder the transport of donor organs. The toxicity of 
CPAs, osmotic stress, and IRI may also adversely impact the organ’s 
functional recovery.

4 Static cold storage protocols

SCS is now the standard practice for organ preservation, and the 
development of organ preservation solutions has been crucial in 
reducing graft injury during cold storage. The preservation process is  
straightforward, necessitating that the organ be submerged in the 
same solution at around 4℃ after being perfused with the organ  
preservation solution. For kidney preservation, Celsior solution, HTK 

solution, and UW solution are more favorable than Eurocollins 
solution in terms of the incidence of DGF (31). Currently, the most 
commonly used lung preservation solution is Perfadex solution, which 
contains glucose and the colloidal osmotic agent dextran and can 
prevent cell swelling and endothelial cell damage and reduce the 
incidence of primary graft dysfunction (32, 33). The selection between 
UW and HTK solutions for static liver preservation remains 
controversial. Despite the International Liver Transplantation Society’s 
disapproval of HTK solution for preserving donation after circulatory 
death (DCD) livers, Foley et al. utilized a comprehensive national 
database to compare the two preservation options, revealing that HTK 
solution exhibited an equivalent protective effect to UW solution in 
the preservation of DCD livers (34, 35). Given that various organs 
exhibit distinct tolerances to ischemia and hypothermia and that the 
composition of organ preservation solutions influences organ viability 
and clinical outcomes, it is essential to customize preservation 
strategies for individual organs. Table 1 summarizes the composition 
of widely used SCS solutions.

Donor organs are underutilized because of geographic limitations 
on donor-recipient matching and the restricted in vitro preservation 
duration. The application of organ preservation solutions at around 
4°C for perfusion and immersion of grafts could inhibit cell 
metabolism and sustain organ viability for 4–6 h (36). Donor heart 
storage longer than 4 h is related to primary graft dysfunction (37). An 
optimal long-term survival rate was observed in pancreatic grafts with 
cold ischemia durations under 12 h. The incidence of graft failure 
increased by 1.2–1.4 times when pancreatic cold ischemia time ranged 
from 12 to 24 h (38). Previously, a duration of 6 h was considered the 
maximum permissible cold ischemia time for lung transplantation 
(39). Nonetheless, extensive distribution of donor lungs frequently 
requires the utilization of allografts with ischemia times exceeding 6 h. 
There is a dispute concerning the maximum duration of SCS of the 
lungs. Some reports indicate that a storage duration exceeding 6 or 8 h 
does not influence grade 3 primary graft dysfunction within 72 h after 
transplantation, reintubation, extracorporeal membrane oxygenation 
post-transplantation, acute rejection within 30 days, duration of 
hospital stay, and 5-year survival rates (39, 40). Unfortunately, the 
optimization of various existing organ preservation solutions cannot 
attain a significant breakthrough in SCS duration due to the inherent 
limitations of SCS technology. Contemporary biochemical and basic 
molecular biology techniques have facilitated a deeper comprehension 
of the injury mechanisms behind SCS (Figure 1).

4.1 Cold-induced injury

The SCS of grafts reduces ATP consumption and extends 
preservation, but the low temperature may induce additional injury 
(2). The cold-induced injury occurs independently of hypoxia/
reoxygenation injury and is linked to increased chelatable iron pool 
and disruption of chloride (Cl−) homeostasis, ultimately resulting in 
apoptosis (41–44).

4.1.1 Chelatable iron pool and Fenton reaction
The majority of intracellular iron is tightly linked to proteins, 

with just a tiny percentage (0.2–3%) constituting the chelatable iron 
pool (45). The intracellular pool of redox-active iron (Fe2+/Fe3+) 
increased swiftly following the initiation of cold incubation at 4°C; 
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however, this augmentation was reversible upon rewarming after a 
brief cold incubation duration (2, 43, 45, 46). Cells incubated with 
HTK solution, histidine-lactobionate solution, and CE solution at 
21°C and 37°C, respectively, still exhibited cytotoxicity. This damage 
was associated with significant lipid peroxidation, which could 
be mitigated by the antioxidants trolox, butylated hydroxytoluene, 

N-acetylcysteine, and membrane-permeable iron chelators such as 
2,2′-dipyridyl, 1,10-phenanthroline, LK614 LK616, and 
deferoxamine. The testing of individual components of different 
organ preservation solutions, utilizing a modified Krebs–Henseleit 
buffer, indicated that the cytotoxicity of these solutions originates 
from histidine and phosphate (47, 48). The two substances are 

TABLE 1 Composition of current preservation solutions/overview.

Constituents 
(mmol/l)

UW HTK HTK-N EC Perfadex CE LPDG IGL-1 IGL-2 TiProtec

Na+ 29 15 16 15 138 100 138 125 125 16

K+ 125 10 10 115 6 15 6 25 25 93

Ca2+ 0.01 0.02 0.27 0.25 0.03 0.5 0.05

Mg2+ 5 4 8 0.8 13 0.8 5.5 5 8

Cl− 20 50 30 15 142 142 103.1

Zn2+ 0.091

2
4SO − 5 0.8 0.8 5 5

3HCO− 10

HEPES 10

Phosphate 25 58 0.8 0.8 25 25 1

Histidine 180 124 30 30

Histidine.HCl 18

N-acetyl-L-histidine 57 30

Allopurinol 1 1

Glutathione 3 3 3 9

Tryptophan 2 2 2

Aspartate 5 5

Adenosine 5 5 5

Glutamic acid 20

α-ketoglutarate 1 1 2 2

Alanine 5 5

Glycine 10 10

NaNO2 (nmol/L) 50

L-arginine 3

Raffinose 30 30

Glucose 180 5 5 10

Saccharose 30 9.1 20

Mannitol 30 60 60 60

polyethylene glycol 35 1 5

Dextran 40 50 g/L 50 g/L

Lactobionate 100 80 80 100

HES (g/l) 59

Deferoxamine 0.025 0.082

LK614 0.0075 0.017

Viscosity (cP) 1.2 1.7

pH 7.4 7.2 7.0 7.2 7.4 7.3 7.4 7.4 7.4 7.0

Osmolarity (mOsm/L) 320 310 302 375 325 320 295 320 360 305

HEPES, 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid; HES, hydroxyethyl starch; CE, Celsior; LPDG, low potassium dextran glucose solution.
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closely linked to the production of iron-dependent reactive oxygen 
species (ROS).

Oxidative stress refers to the imbalance between ROS and antioxidants 
within cells. Low-reactivity ROS, such as hydrogen peroxide, can interact 
with redox-active iron and generate highly reactive species, including iron-
oxygen species and hydroxyl radicals, in a process referred to as the Fenton 
reaction (2). The hydroxyl radical induces various forms of damage, 
including lipid peroxidation, alterations in mitochondrial permeability, and 
a loss in mitochondrial membrane potential, particularly observed in 
hepatocytes and vascular endothelial cells (45, 46). Modified TiProtec 
solution and HTK-N solution contain the iron chelators desferrioxamine, 
which is hydrophilic and exhibits poor membrane permeability, and 
LK614, which is lipophilic and demonstrates good membrane permeability. 
Additionally, these solutions partially or completely substitute histidine 
with N-acetyl-L-histidine, effectively inhibiting the generation of hydroxyl 
radicals (4, 5, 49). Lactobionate in UW solution, CE solution, and Institut 

Georges Lopez-1 (IGL-1) solution also chelates ferric iron and mitigates 
oxidative damage during SCS (50). These organ preservation solutions also 
contain the antioxidant glutathione. Glutathione peroxidase 4 utilizes the 
tripeptide glutathione as a cofactor and is essential in mitigating lipid 
peroxidation (51). Coenzyme Q10 also functions as an effective antioxidant; 
however, its poor water solubility and stability present challenges for adding 
it into organ preservation solutions as a pharmaceutical agent.

4.1.2 Dysregulation of chloride homeostasis
A decrease in serum Cl− concentration will increase mortality risk in 

individuals with hypertension, heart failure, or myocardial infarction (52, 
53). In recent years, there has been growing evidence that intra- and 
extracellular Cl− concentrations and Cl− channels are intimately related 
to IRI (54, 55). The decrease in intracellular Cl− concentration can inhibit 
the formation of the nicotinamide adenine dinucleotide phosphate 
oxidase complex and promote the combination of vascular endothelial 

FIGURE 1

The injury mechanisms associated with SCS. cGMP, cyclic guanosine monophosphate; ARE, antioxidant responsive element; mtROS, mitochondrial 
ROS; Nrf2, nuclear factor-erythroid 2-related factor 2; cAMP, cyclic adenosine monophosphate; H2O2, hydrogen peroxide. Created in BioRender. Ran, 
Q. (2025) https://BioRender.com/z95k029, licensed under Academic License.
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growth factor receptor 2 with protein tyrosine phosphatase 1B, thus 
preventing the activation of oxidase-mediated signaling of vascular 
endothelial growth factor receptor 2 and ultimately suppressing 
angiogenesis (56). In a recent multicenter, double-blind, randomized, 
controlled trial of DCD kidney transplantation, the administration of a 
balanced low-Cl− crystalloid solution (Plasma-Lyte 148) in place of a 
0.9% normal saline solution for the maintenance of blood volume was 
associated with a decreased incidence of dialysis treatment within 7 days 
post-transplantation (57). Consequently, the balanced crystalloid 
solution is recommended as the gold standard method of intravenous 
infusion for DCD kidney transplantation.

Maintaining appropriate intra- and extracellular Cl− concentrations 
is crucial not only during the reperfusion process following 
transplantation but also during the SCS of grafts. A comparative analysis 
of cold incubation of hepatocytes utilizing modified Krebs–Henseleit 
buffer and various common organ preservation solutions indicated that 
cold-induced iron-nondependent injury stemmed from the higher Cl− 
concentration in the preservation solutions; however, this damage was 
relatively mild (43). The incorporation of L-arginine into the HTK 
solution, the partial substitution of histidine with N-acetyl-L-histidine, 
and the reduction of Cl− concentration led to a modified HTK fluid. This 
Cl−-deficient HTK solution improved myocardial systolic and diastolic 
force post-heart transplantation in rats; nevertheless, this advantageous 
effect could not be definitively ascribed to Cl− deficiency (58). To clarify 
the impact of Cl− concentration in preservation solutions on preservation 
effectiveness, Wu et al. conducted a comparison between a new HTK 
solution with low Cl− concentration and one with high Cl− concentration 
in a mouse heart transplantation model. Their findings indicated that the 
preservation solution with high Cl− concentration significantly decreased 
myocardial injury and resulted in a higher graft survival rate, but this 
model cannot differentiate whether the benefits of HTK solution variants 
with high Cl− concentration are due to positive effects on cardiac cells or 
endothelial cells (59). Comparable research protocols and outcomes of 
experiments have also been validated in a rat liver transplantation model, 
with Cl− toxicity manifesting only when concentrations exceed 40 to 
50 mmol/L (43, 60). Consequently, we reach a preliminary conclusion 
that the extent of iron-nondependent injury associated with SCS has a 
U-shaped correlation with the Cl− concentration in the storage solution.

The mechanism by which extracellular Cl− concentration induces 
cell death at low temperatures remains ambiguous, while alterations in 
intracellular pH and the activation of the early intrinsic apoptosis 
pathway might relate to this phenomenon. The ATP-gated P2X7 receptor 
is a plasma membrane receptor that is part of the P2X purinoceptor 
family. The P2X7 receptor agonist 2′-3′-O-(4-benzoylbenzoyl)-ATP can 
elicit membrane potential depolarization, pore formation, cell shrinkage, 
and lactate dehydrogenase release. Replacement of Cl− in the culture 
medium with gluconate inhibits cell contraction and the release of lactate 
dehydrogenase mediated by the P2X7 receptor, suggesting that pore 
formation and extracellular Cl− inflow are crucial in P2X7 receptor-
induced apoptosis (61). Apoptosis is differentiated from necrosis by a 
characteristic volume loss or apoptotic volume decrease, which is 
attributed to ion redistribution. The UV-C light-induced changes in 
intracellular Cl− concentration in Jurkat T cells influenced the activation 
of the mitogen-activated protein kinase signaling pathway at an early 
stage of the apoptotic signaling cascade. This apoptotic feature could 
be  inhibited by the Cl− channel inhibitor disodium 4-acetamido-4-
isothiocyanato-stilbene-2,2-disulfonate (62). The Cl− channels in the cell 
membrane exhibit a lack of specificity regarding the transport of Cl−. 

Alongside Cl−, these channels can also transport other anions such as 
halides, pseudohalides, and bicarbonates, exhibiting a higher transport 
efficiency than Cl−. Members of the dimorphic chloride intracellular 
channels (CLICs) family are extensively distributed across various 
intracellular compartments and exhibit unique characteristics, including 
a single transmembrane domain and a dimorphic existence as either 
soluble or membranous forms. They play a significant role in membrane 
trafficking, cytoskeletal function, apoptosis, cell cycle regulation, and 
vascular endothelial growth factor-mediated angiogenesis (63). CLIC1, 
CLIC4, and CLIC5 are abundant in rodent hearts, with CLIC4 localized 
to the mitochondrial outer membrane and CLIC5 found in the 
mitochondrial inner membrane (64). An acidic pH facilitates the 
conversion of CLICs into a membrane-associated conformation, 
enhancing the exposure of the hydrophobic inter-domain interface. 
Additionally, they found that purified CLIC5 can function as a fusogen, 
interacting with membranes to induce fusion, as evidenced by the 
increased diameter of liposomes and the mixing of lipids and contents 
between liposomes (65). Despite extensive research over several decades, 
definitive evidence supporting the function of CLICs as Cl− channels 
remains absent, hindering a comprehensive understanding of their 
physiological role.

4.1.3 Microvascular diastolic dysfunction
The coronary circulation resembles the renal circulation and exhibits 

strong auto-regulation capabilities (66–69). Microvascular resistance is 
crucial for blood perfusion within a specific microzone (70). Utilizing 
organ preservation solutions at 4–5°C for the perfusion and immersion of 
donor organs effectively lowers cell metabolism and prolongs storage 
duration. However, low-temperature liquid immersion significantly affects 
blood flow. The contraction of microvessels results in inadequate perfusion 
and supply of energy precursors in specific regions. Additionally, the 
buffering capacity against metabolic acidosis is compromised (71). The 
dysfunction of coronary vasodilatory functions is a significant, independent 
predictor of cardiac mortality in patients not having coronary artery disease 
(72). The activation of the sympathetic nervous system induced by cold 
exposure does not significantly affect blood flow in transplanted denervated 
human hearts, suggesting impaired vasodilatory functions of coronary 
arteries (73). Successive warm and cold ischemia also impairs the 
vasodilation of the DCD kidneys. Unfortunately, the vasodilatory functions 
cannot be improved by the constituents of the UW solution or IGL-1 
solution (74). The rapid function deterioration of vascular smooth muscle 
cells may be intricately linked to the intimal hyperplasia observed in late 
graft failure.

Nitric oxide (NO) is a gaseous, lipophilic nitrogen oxide. The 
diminished NO bioavailability is a prevalent characteristic of endothelial 
dysfunction in cardiovascular disease. Low quantities of NO exhibit a 
significant anti-apoptotic effect in healthy organisms and can also mitigate 
cold-induced injury in isolated grafts (75). During SCS, the NO produced 
by endothelial nitric oxide synthase (eNOS) decreases with the 
consumption of L-arginine and tetrahydrobiopterin. Following reperfusion, 
most of the eNOS is suddenly activated by an influx of extracellular 
calcium. The deficiency of L-arginine and tetrahydrobiopterin results in 
increased superoxide generation by eNOS, further exacerbating oxidative 
stress. This procedure is known as the “uncoupling” of eNOS (76, 77). Prior 
research indicates that exogenous NO not only inhibits platelet aggregation 
and leukocyte adhesion and diminishes the inflammatory response, but 
also activates guanylate cyclase and enhances the synthesis of cyclic 
guanosine monophosphate, which induces myosin dephosphorylation in 
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vascular smooth muscle and ultimately facilitates vascular smooth muscle 
relaxation and augments organ perfusion and energy reserves (78–80). 
Moreover, exogenous NO enhances both systolic and diastolic cardiac 
performance post-reperfusion, inhibits eNOS uncoupling, and increases 
the production of the antioxidant enzyme heme oxygenase-1, hence 
diminishing superoxide generation and apoptosis (75, 81). Some works of 
literature have reported the direct sources of NO or substrates of NO 
synthase, including nitroglycerin, S-nitroso human serum albumin, 
nitrosothiols, and L-arginine, as adjuvants in organ preservation solutions 
(82–85). These substances exhibit superior protective effects in improving 
the microvascular function of the liver, kidneys, and heart.

4.2 ATP depletion and accumulation of 
metabolic substrates

The limited ATP generated by anaerobic metabolism permits the 
grafts to survive just a brief duration of ischemia. A shortage of cellular 
ATP inhibits the activity of endoplasmic reticulum calcium-ATPase in 
renal tubular cells, hepatocytes, and cardiomyocytes, resulting in 
elevated cytosolic calcium levels. The opening of the mitochondrial 
membrane permeability transition pore during ischemia may 
subsequently result in mitochondrial calcium overload (2). Calcium-
dependent proteases, including phospholipase A2 and calpain, are 
rendered inactive in acidic environments. Following reperfusion, the 
restoration of intra- and extracellular pH, along with mitochondrial 
calcium overload, activates these proteases, resulting in cell damage 
(86). The direct administration of ATP disodium into the coronary 
arteries during percutaneous coronary intervention has demonstrated 
enhancement of ventricular wall motion function, reduction of 
no-reflow rates, and mitigation of reperfusion injury (87, 88). 
Nonetheless, the poor membrane permeability of ATP challenges its 
direct application as an energy source for donor organs. The research 
employed adenosine, a metabolite of ATP, as its focal point. Adenosine 
is presently utilized as a substrate for the synthesis of ATP in UW, IGL-1, 
and Institut Georges Lopez-2 (IGL-2) solutions (89, 90). Aspartate can 
undergo transamination to produce oxaloacetate, which functions as a 
substrate in the tricarboxylic acid cycle and facilitates ATP production. 
Prior research indicates that a preservation solution supplemented with 
aspartate and α-ketoglutarate enables renal proximal tubules to generate 
ATP via anaerobic metabolism and sustain mitochondrial membrane 
potential, thereby mitigating hypoxia-reoxygenation mitochondrial 
injury (91). In recent years, modified HTK-N solutions have been 
developed by supplementing aspartate and α-ketoglutarate (already 
present in the HTK solution) to provide a tricarboxylic acid cycle 
substrate. This preservation solution ameliorates the deficiency of 
energy precursors during the SCS of grafts (82, 86, 92, 93). CE solutions 
utilize glutamate as a precursor for the synthesis of ATP (94). The 
addition of adequate energy precursors to organ preservation solutions 
not only creates a modest quantity of ATP but also moderately slows the 
accumulation of intermediates from the tricarboxylic acid cycle.

Increased mitochondrial ROS production can frequently 
be observed in diseases characterized by mitochondrial dysfunction, and 
an important hallmark of these diseases is reduced or impaired oxidative 
phosphorylation and enhanced glycolysis enzyme activity, indicating 
that mitochondrial ROS production is closely linked to glycolysis 
processes (5, 95). ROS-induced glucose uptake can, in turn, influence 
ROS generation and elimination. Elevated extracellular glucose 

concentrations can promote spontaneous glucose auto-oxidation and 
the synthesis of advanced glycation end products, along with collateral 
glucose metabolism, which involves hexosamine, protein kinase C, and 
polyol pathways (96). These processes collaborate to cause increased 
oxidative stress and damage to cell structures. When the delicate balance 
between glucose-induced ROS formation and the intrinsic antioxidant 
system as well as glucose-mediated ROS scavenging is disrupted, 
intracellular ROS and glucose levels will increase in a vicious cycle, 
ultimately resulting in cell death. Long-chain acylcarnitines are 
intermediates of detrimental long-chain fatty acids. In ischemic 
myocardium, the activity of carnitine palmitoyltransferase 1 is elevated 
while that of carnitine palmitoyltransferase 2 is diminished, resulting in 
the progressive accumulation of long-chain acylcarnitines within the 
intermembrane space of mitochondria. This accumulation causes 
hyperpolarization of mitochondrial membrane potential, inhibition of 
oxidative phosphorylation, and excessive generation of ROS (97).

The accumulation of succinate in mitochondria is a prevalent 
metabolic characteristic of ischemic tissues. The synergistic effect of 
fumarate overflow resulting from purine nucleotide decomposition and 
the partial reversal of the malate/aspartate shuttle induces a reversal of 
succinate dehydrogenase, finally resulting in the accumulation of 
mitochondrial succinate (98). Following reperfusion, succinate 
accumulated in the mitochondria is swiftly re-oxidized by succinate 
dehydrogenase; meanwhile, reverse electron transport through 
mitochondrial complex I facilitates the rapid and substantial production 
of ROS. The ROS pulse operates together with a series of damaging 
events following reperfusion, ultimately resulting in cell death (99). 
Malonic acid serves as a competitive inhibitor of succinate 
dehydrogenase. Dimethyl malonate, a prodrug of malonic acid, can 
mitigate IRI when administered before and during ischemia (99). 
Itaconate, a metabolite of cis-aconitate that accumulates concurrently 
with succinate during ischemia, can also function as a competitive 
inhibitor of succinate dehydrogenase. It serves as a regulator to 
modulate mitochondrial redox metabolism, inhibiting succinate 
accumulation and suppressing ROS generation (100–102). Experiments 
on large animals such as rabbits, dogs, and pigs have demonstrated that 
lungs preserved at 10°C have less mitochondrial damage and can 
withstand cold ischemia for a longer time. This protective effect may 
be due to the fact that lung tissue produces more itaconate at 10°C (100, 
101, 103). So far, lungs preserved at 10°C have achieved a total clinical 
preservation time of up to 24 h without negative effects on organ 
function or short-term outcomes following transplantation. As a result, 
the appropriate temperature for donor lung preservation has been 
re-evaluated, and 10°C may become the standard criteria (104). 
Interestingly, most HMP is performed at temperatures ranging from 6 
to 10°C, and this higher temperature may be another explanation for 
its superiority compared to SCS (4°C). The immune response gene 1 
(IRG1) encodes an enzyme responsible for the production of itaconate. 
The histone deacetylase inhibitor valproic acid can induce the 
transcription of IRG1, which in turn promotes the nuclear translocation 
of nuclear factor erythroid 2-related factor 2 and the synthesis of heme 
oxygenase-1 as well as superoxide dismutase 1 in mouse cardiomyocytes. 
This process improves the utilization of itaconate and diminishes the 
accumulation of succinate during cold storage (37). The IRG1/itaconate 
pathway similarly activates nuclear factor erythroid 2-related factor 
2-mediated antioxidant responses in hepatocytes and attenuates hepatic 
IRI (102). Targeting metabolic pathways to modulate metabolite 
concentrations is an attractive therapeutic option during SCS.
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4.3 Hypoxia-induced cell swelling

Cell damage resulting from hypoxia and edema is both progressive 
and cumulative, with hypoxia-induced cell swelling inflicting greater 
damage than either condition independently. The extent of swelling 
correlates with the duration of SCS and the precise composition of the 
organ preservation solution selected (105). Under hypothermic hypoxic 
conditions, cell swelling is attributed to altered intra- and extracellular ion 
concentrations (driven by the Na+/H+ exchanger, Na+/ 3HCO−  symporter, 
and Na+-K+-2Cl− cotransporter), reduced levels of cyclic adenosine 
monophosphate, decreased Na+/K+-ATPase activity, and upregulated 
expression of nuclear respiratory factor 1, ultimately resulting in 
inadequate organ perfusion (86, 106–108). Pathological pore formation 
in cell membranes under hypoxic conditions can also facilitate the 
permeation of Na+ and Cl−, resulting in cell swelling, and this process can 
be prevented by glycine and alanine in HTK-N solution (3, 61). Moreover, 
the disruption of endothelial cell occludin, VE-cadherin, and F-actin 
results in increased capillary permeability, which subsequently promotes 
plasma leakage following reperfusion and induces vasogenic edema (106, 
109). This implies that alterations in tight junctions and adherens 
junctions may be the fundamental cause of vasogenic edema linked to 
SCS. Injury to vascular endothelial cells predisposes the graft to acute 
rejection, resulting in primary graft dysfunction.

Maintaining moderate crystalloid or colloid osmotic pressure of 
organ preservation solutions helps to reduce microcirculatory 
disturbances. Mannitol has been mixed into HTK, CE, IGL-1, and 
IGL-2 solutions to alleviate hypoxia-induced cell swelling; nonetheless, 
mannitol can permeate the hepatocyte membrane, resulting in 
hepatocyte edema (110). Due to the inability of sucrose molecules to 
traverse cell membranes, the modified HTK-N solution utilizes 
sucrose in place of mannitol within the HTK solution (111). UW 
solutions utilize the relatively high molecular weight of anions, 
raffinose, lactobionate, and hydroxyethyl starch to alleviate 
SCS-induced cell swelling, demonstrating superior efficacy in 
reducing cardiac and pancreatic endothelial cell injury. However, 
certain studies indicate that high-viscosity hydroxyethyl starch could 
trigger acute kidney injury and elevate mortality risk (50, 112, 113). 
Although sucrose and raffinose cause cell shrinkage, moderate cell 
shrinkage seemingly does not impact cell function as well as cell 
membrane integrity (110). Low potassium dextran glucose solution 
uses dextran to sustain osmotic pressure in the solution and 
demonstrates superiority in lung preservation (114). Polyethylene 
glycol 35 is a non-immunogenic, non-toxic, water-soluble polyether 
compound that improves the activity of the vasodilator NO and the 
mitochondrial enzyme aldehyde dehydrogenase 2, regulates 
immunogenicity and ameliorates microcirculatory abnormalities 
following SCS and reperfusion (115, 116). It serves as a colloidal 
osmotic agent for IGL-1 and IGL-2 solutions, presenting superior 
protection for fatty liver grafts during SCS and oxygenated 
hypothermic machine perfusion (HMPox) (90). Clarysse et al. have 
demonstrated that polyethylene glycol 35 can stabilize the endothelial 
glycocalyx in a rat intestinal IRI model, consequently restricting 
reperfusion-mediated cell swelling, bacterial translocation, and 
inflammatory responses (117). Hyperbranched polyglycerol, a 
compact branched polymer characterized by low viscosity, is a 
promising colloid for the preservation of donor organs. In a mouse 
cardiac allograft transplantation model, hyperbranched polyglycerol 
decreased neutrophil infiltration and markedly improved cardiac 
function and tissue integrity (118).

4.4 Inflammation response

Hypoxia is believed to be the fundamental cause of inflammation 
and immunological response (119). Hypoxia can also interact with the 
inflammatory response, causing further deterioration of organ function 
and, in particular, promoting the advancement of inflammatory 
diseases (120). A common hallmark of perioperative organ failure in 
surgical patients is a hypoxia-induced inflammatory response, 
suggesting that hypoxia itself is an inflammatory stimulation (121, 122). 
Hypoxia and inflammation are related to the activation of the hypoxia-
inducible factor (HIF) and the nuclear factor κB (NF-κB) transcription 
factor family, respectively. HIF and NF-κB co-regulate the effector 
functions of immune cells and increase susceptibility to hypoxia (123, 
124). HIF is crucial for the activation and increased phagocytosis of 
macrophages and neutrophils, while NF-kB is involved in the 
proliferation of several immune cells, including T cells, B cells, and 
dendritic cells (125). The expression of the endotoxin receptor Toll-like 
receptor 4 and the conduction of NF-κB-mediated inflammatory 
signaling during kidney transplantation increased progressively with 
the prolongation of SCS. Research utilizing Toll-like receptor 4 
knockout mice observed diminished renal IRI, implying that prolonged 
ischemia and hypoxia of donor organs amplify inflammatory responses 
through the Toll-like receptor 4 signaling pathway (126). Active 
inflammation also causes tissue hypoxia, which results from the 
concentration of inflammatory cells (including neutrophils, eosinophils, 
and monocytes), higher rates of cellular oxidative metabolism, and 
increased activity of various oxygen-consuming enzymes (119, 121).

There is extensive crosstalk between the two molecular signaling 
pathways, HIF and NF-κB, as they share a number of activating stimulus 
sources, modulators, and targets (120, 125). Hypoxia has been 
demonstrated to stimulate the co-activation of the HIF and NF-κB 
signaling pathways in a manner dependent on IκB kinase and 
transforming growth factor β-activated kinase 1 (127, 128). Elevated 
NF-κB activity stimulated by inflammatory cytokines promotes the 
transcription of messenger RNA of HIF-1α, and the negative feedback 
of HIF-1α can also regulate NF-κB transcriptional activity under 
inflammatory conditions (129, 130). Signaling mediators, including 
S-2-hydroxyglutarate, hydrogen sulfide, and ROS, activated by tissue 
inflammation, also play a role in the regulation of HIF activity in 
immune cells (131). There is also reciprocal feedback between oxidative 
stress and the inflammatory response, which leads to further damage of 
grafts. ROS are powerful inflammatory initiators that promote the 
synthesis and release of many pro-inflammatory mediators, including 
prostaglandin E2, leukotriene B4, tumor necrosis factor-α, 
interleukin-1β (IL-1β), and IL-6 (132, 133). The metabolite itaconate, 
which accumulates during SCS, not only inhibits succinate accumulation 
but also exhibits anti-inflammatory properties. The knockdown of IRG1 
intensified injury to grafts and systemic inflammatory responses, while 
the metabolic reprogramming of itaconate by upregulating the 
expression of IRG1, which encodes the enzyme responsible for itaconate 
production, improved cardiac and hepatic function after extended SCS 
(37, 38, 102). Targeting immunometabolic pathways could be  a 
promising method for improving graft outcomes.

4.5 Ischemia–reperfusion injury

Prolonged ischemia results in irreversible organ damage; however, 
tissue damage persists and exacerbates following reperfusion. This 
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phenomenon is known as IRI (134). Prior research indicates that IRI 
encompasses multiple pathological mechanisms, including apoptosis, 
necrosis, ferroptosis, calcium overload, oxidative stress, no-reflow 
phenomenon, inflammatory response, protease activation, subcellular 
remodeling, cell hypertrophy, extracellular matrix remodeling, and fibrosis, 
among others (51, 135–137). The mechanisms of IRI partially overlap with 
those previously discussed and will not be described in detail here. It is 
crucial to stress that the ischemia typically described in these publications 
is warm ischemia. The cascade pathways of injury associated with 
prolonged cold ischemia of grafts partially differ from those of warm 
ischemia; for instance, in porcine DCD kidneys, warm ischemia 
preferentially activates caspase-1, while cold ischemia significantly elevates 
caspase-3 activity and triggers tubular apoptosis (219). Multiple studies 
have documented the application of caspase inhibitors aimed at the 
apoptotic pathway as a prospective strategy to enhance graft performance. 
While caspase inhibition mitigated the severity of post-transplantation 
injury, it failed to avert cellular damage entirely (220–222). This indicates a 
simultaneous activation of alternative damage pathways. In recent years, 
controlled reperfusion approaches, also known as ischemic 
postconditioning, which regulate blood pressure, acid-base balance, oxygen 
saturation, and ion concentrations during reperfusion, continue to be 
investigated to alleviate reperfusion injury (223). However, each variable 
section in the ischemia-reperfusion process further complicates these 
damage mechanisms. During hibernation, animals decrease their basal 
metabolic rate, and comprehending the mechanisms of organ protection 
during this state may elucidate the pathophysiology of DGF. However, 
animal organs do not experience true ischemia during hibernation, which 
more accurately parallels the HMPox protocol (224, 225). Additional 
advancements in the protective benefits of SCS seem challenging to attain. 
Ischemia and reperfusion are two consecutive processes, and IRI inevitably 
occurs when grafts are preserved by SCS, thus making dynamic MP an 
attractive field of research.

5 Machine perfusion

The requirement to improve post-transplantation survival of ECD 
(which includes DCD donors) grafts and recent advances in MP technology 
have resulted in the development of clinically effective ex vivo MP devices 
for liver, heart, lung, and kidney grafts that maintain organ viability for up 
to 24 h. MP entails linking the organ’s own blood vessels to a perfusion 
system that continuously supplies the isolated organ with a perfusate 
containing oxygen, nutrients, and therapeutic agents during the 
preservation and transportation phase. Long-term ex vivo dynamic MP not 
only maintains microvascular tone, enhances aerobic metabolism, and 
excretes toxic metabolites, but also repairs ECD grafts and evaluates graft 
viability (8, 9). The MP also aids in diminishing the occurrence of DGF, 
even when utilized to preserve grafts from standard criteria donors (138). 
Currently, MP technology encompasses multiple aspects like perfusion 
temperature, oxygen saturation, selection of perfusion solution, continuous 
versus pulsatile perfusion, duration of perfusion, evaluation of organ 
viability, and organ repair. Owing to the varied types of grafts and their 
functional conditions, a standardized MP technique is presently unavailable.

5.1 Temperature of machine perfusion

The efficiency of cell energy metabolism correlates directly 
with ambient temperature. Based on the perfusion temperature, 

the MP strategies are categorized into HMP, SNMP, controlled 
oxygenation rewarming, and normothermic machine perfusion 
(NMP). The nonoxygenated HMP (0–8°C) protocol initially 
perfuses the graft directly using an existing organ preservation 
solution. This approach enables the organ to achieve a lower 
metabolism, sustain intra- and extracellular pH levels, and 
mitigate cell swelling (1). The advantages and disadvantages of 
HMP protocols and SCS protocols for the preservation of DCD 
kidneys have been controversial. The latest data from six organ 
procurement facilities in the United States indicate that the SCS 
protocol is less effective than the nonoxygenated HMP protocol 
in reducing the DGF of DBD kidneys (139). Oxygenation of the 
perfusate promotes intracellular ATP synthesis and delays 
ischemic injury, which is known as the HMPox protocol (1, 140, 
141). Multicenter clinical controlled trials have demonstrated 
that HMPox-preserved livers have a lower risk of primary 
nonfunction and nonanastomotic biliary strictures compared to 
conventional SCS protocols (142, 143). The SNMP protocol 
(12–34°C) is currently in an awkward situation. Although this 
protocol not only reduces cell energy metabolism but also allows 
for organ repair/recovery, experimental animal studies have 
shown mixed results. In an in vitro preservation experiment of 
DCD kidneys, the SNMP protocol markedly increased blood 
flow, urine output, and creatinine clearance and maintained 
renal structural integrity in comparison to HMPox and 
SCS. Nonetheless, in this research, the preservation effect of 
SNMP was not compared with NMP. In fact, the NMP protocol 
appears to be  more advantageous than SNTM for kidney 
preservation (144). Research on liver transplantation indicates 
that fatty livers produce more ATP during SNMP compared to 
NMP; however, glutathione is significantly depleted in 
hepatocytes during SNMP, which is probably attributed to the 
hepatocytes’ inability to overcome the threshold energy 
necessary for glutathione synthesis under subnormothermic 
conditions (145). Controlled oxygenation rewarming (8–20°C) 
is the relay process of SCS and HMP, enabling a slow and 
precisely controlled rewarming of grafts to prevent 
mitochondrial malfunction and the activation of apoptotic 
signaling pathways resulting from excessively rapid rewarming 
(146). NMP (35–38°C) adopts a membrane oxygenator to 
oxygenate erythrocytes or other oxygen carriers within the 
perfusate. An adequate supply of oxygen and nutrients can 
restore the grafts to a physiological metabolic state, allowing the 
functional assessment and repair of ECD grafts (8, 147, 148). 
This approach effectively prevents cell injury resulting from 
hypothermia and the rewarming process, offering substantial 
benefits in suppressing vasospasm, safeguarding vascular 
endothelial cells, and suppressing immune rejection (7, 149). 
NMP can restore ATP depleted during ischemia in isolated 
porcine kidneys, enabling metabolic recovery, and is capable of 
maintaining the equilibrium of acid–base and the integrity of 
renal tubular structure compared to SCS, HMP, and SNMP (144, 
150). Several studies have demonstrated that normothermic 
conditions (about 36°C) are the optimal temperature for the 
preservation of liver grafts. NMP can lower lactate levels during 
hepatic perfusion in vitro, maintain hepatic metabolic activity, 
and lower the risk of early allograft dysfunction (151, 152). As 
a result, the NMP technique has been gradually applied to 
clinical liver transplantation.
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5.2 Perfusate composition and oxygen 
carriers

The composition of the perfusate is essential for grafts during in vitro 
MP preservation, similar to SCS. The ideal perfusate should include oxygen 
carriers, suitable concentrations of diverse ions or colloidal osmotic agents, 
acid–base buffering agents, energy precursors, and growth factors (8). 
Currently, perfusates are mainly classified as banked blood (BB), plasma-
free red cell-based solutions, and acellular perfusates. The oxygenation of 
the crystalloid or colloid organ preservation solution, commonly applied 
in clinical practice, supplies dissolved oxygen that may only satisfy the 
metabolic requirements of the grafts during HMP and SNMP at 
temperatures below 20°C (141). So far, BB has been successfully used as a 
perfusate for the extended preservation of the lungs, liver, kidneys, and 
heart (153–155). Nevertheless, conflicting evidence persists about the 
application of BB in cardiac NMP. The TransMedics OCS Heart advocates 
for using BB to perfuse the heart; however, clinical trials conducted by 
Chew et al. indicate that BB is inappropriate as a perfusate for donor hearts 
(156). The intricacies of BB and the potential hazards of immunological 
responses, thrombosis, hemolysis, and infectious disease transmission have 
resulted in the progressive substitution of blood products with novel 
perfusates featuring diverse, precisely defined compositions (157). The 
plasma-free red cell-based solutions comprise physiological oxygen carriers 
and establish an anti-inflammatory milieu free of platelets and leukocytes, 
presenting advantages over BB (149). Prolonged NMP following the 
oxygenation of a plasma-free red cell-based solution could progressively 
rehabilitate the impaired function in marginal liver grafts. However, when 
the perfusion duration surpasses 24 h, the iron in hemoglobin will 
gradually oxidize, resulting in an accumulation of methemoglobin (158). 
The incorporation of the antioxidant N-acetylcysteine into plasma-free red 
cell-based solutions can efficiently inhibit the synthesis and accumulation 
of methemoglobin (159). Furthermore, the oxygenator applied during 
extended MP can trigger platelet dysfunction and damage the integrity of 
red blood cells, resulting in increased hemolysis in the perfusate (158). 
Comparatively, membrane oxygenators are more effective than other types 
of oxygenators in reducing hemolysis.

Considering the hemolysis of erythrocytes, a variety of artificial 
oxygen carriers have been manufactured (Table  2). These oxygen 
carriers exhibit superior oxygen-transport capabilities; nonetheless, 
certain kinds have been documented to possess nephrotoxic, 
ophthalmotoxic, or induce systemic vasoconstriction (160). 
Erythrocruorin, a giant metalloprotein in invertebrates like annelids 
and crustaceans, is comparatively safe. It not only facilitates effective 
oxygen delivery but also possesses anti-inflammatory qualities (161). 
However, there is currently no human red blood cell substitute 
acknowledged by the United States Food and Drug Administration. 
The search for a suitable oxygen carrier remains an appealing research 
direction since it would significantly reduce the waste of BB and allow 
for mass production of perfusates, finally resulting in cost savings.

5.3 Organ function evaluation

The viability evaluation and screening of grafts before 
transplantation can decrease the risk of adverse events post-
transplantation. The MP parameters and the analysis of perfusate 
composition are frequently employed to evaluate graft activity; 
nevertheless, these data typically exhibit constrained prediction 
accuracy. The MP parameters frequently employ hemodynamic 

data as a reference, including vascular resistance (the ratio of 
perfusion pressure to blood flow) and hemodynamic alterations 
following the administration of vasoactive drugs (162–165). 
Functional parameters obtained by left ventricular catheterization 
offer an effective assessment of myocardial performance during MP 
of cardiac grafts (165). A study published over a decade ago 
provided a comprehensive review of contrast-enhanced ultrasound, 
three-dimensional ultrasound, and magnetic resonance 
spectrometry techniques for assessing renal perfusion and ATP 
levels preoperatively (166, 167). The resonance Raman spectroscopy 
technique is a novel, real-time, non-invasive method for assessing 
graft function which uses a 441 nm laser and high-resolution 
spectroscopy to quantify the oxidative status of mitochondrial 
cytochromes during perfusion. This approach elucidates 
mitochondrial function and the degree of graft damage, enabling 
the customization of optimal reoxygenation strategies (168). 
Evaluating the extent of mitochondrial damage in DCD livers 
during HMP by analyzing flavin mononucleotide and nicotinamide 
adenine dinucleotide levels in the perfusates through mass 
spectrometry and fluorimetry can forecast liver function (169). 
Indocyanine green fluorescence imaging during HMP of liver 
grafts may also provide valuable insights into the functional 
evaluation and selection of marginal livers following the damage-
repair process (170). These non-invasive techniques provide rapid 
access to test results in a sterile operating environment and present 
benefits over conventional assessment methods.

Components of the perfusate applicable for evaluating graft 
injury include organ damage markers (such as cardiac enzymes), 
activated immune cells, lipid peroxidation products, lactate, 
electrolytes, oxygen partial pressure of perfusate, and both anti-
inflammatory and pro-inflammatory cytokines (171, 172). The 
concentration of bilirubin, creatinine, and urea nitrogen in the 
perfusate, together with urine and bile output, are critical parameters 
for evaluating the vitality of renal tubular cells and hepatocytes. 
Variations in pH, bicarbonate, and glucose levels between MP 
perfusate and bile have also been demonstrated to be  reliable 
indicators of bile duct cell functionality (165, 173). The extracellular 
vesicles originating from the donor grafts can be released into the 
blood and urine, which could reflect the graft’s functional condition. 
The analysis of nanoparticles, including extracellular vesicles, in 
perfusate and urine during NMP can evaluate renal quality before 
and during transplantation (174, 175). Cell-free microRNAs serve as 
sensitive biomarkers for early tissue damage. The quantitative reverse 
transcriptase polymerase chain reaction analysis of microRNAs 
within perfusate and bile indicated that the quantities of hepatocyte-
derived microRNA-122 and cholangiocyte-derived microRNA-222 
could indicate bile secretion function and the severity of 
cholangiocyte injury after 6 h of NMP (176, 177). Future research 
may focus on transcriptomic analysis of inflammation-related gene 
expression during MP to evaluate graft function.

5.4 Marginal organ repair

Graft viability is closely linked to the occurrence of primary 
nonfunction and DGF following transplantation (172). In comparison with 
grafts from DBD and living donation, ECD grafts suffer more severe IRI 
and exhibit a higher incidence of post-transplant acute rejection, graft 
insufficiency, or graft loss, hence adversely impacting the long-term 
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survival of the grafts (178–180). Although HMPox can increase ATP levels 
and decrease mitochondrial ROS formation during reperfusion, the 
practical application of this technique for organ repair remains debatable 
(1, 145, 181). The warm, oxygen- and nutrient-rich perfusate sustains the 
graft in a near-physiological metabolic condition, enabling both the 
evaluation of graft function and the targeted administration of therapeutic 
agents in an isolated environment, thereby offering a chance for functional 
repair of marginal organs and cell regeneration. This comparatively isolated 
environment not only blocks inflammatory cell infiltration and 

immunological rejection but also mitigates the adverse consequences of 
systemic administration of drugs. Prolonging the ex-vivo dynamic MP 
preservation of grafts beyond 24 h could theoretically facilitate marginal 
organ repair and cell regeneration while eliminating metabolically 
detrimental waste products; however, this depends on the further 
development of more technologically sophisticated perfusion equipment 
(182, 183). Prevalent techniques for graft repair encompass anti-
inflammatory therapy, stem cell therapy, RNA interference therapy, and 
nutrient delivery (9, 184) (Table 3). These techniques could improve organ 

TABLE 2 Overview of the advantages and disadvantages of different artificial oxygen carriers in machine perfusates.

Machine 
perfusates

Oxygen carriers Advantages Disadvantages References

Banked whole blood

Red blood cells Low production of methemoglobin; 

Close to physiological conditions

Waste of BB; Immune responses; 

Hemolysis; Thrombus formation; Blood-

borne infectious transmission; Cross-

matching difficulties; Rapid increase in 

blood potassium; Blood lactate increased; 

High viscosity

Chew et al. (156) and 

Laing et al. (157)

Plasma-free red 

cell-based solutions

Red blood cells Low production of methemoglobin; 

Creates an anti-inflammatory 

environment without platelets and 

leukocytes; Physiological oxygen 

carrier

Waste of BB; Immune responses; 

Hemolysis; Biochemical and humoral 

variations; Blood-borne infectious 

transmission; Cross-matching difficulties

Hosgood and 

Nicholson (149) and 

Laing et al. (157)

Acellular perfusates

Water Provides sufficient oxygen at low 

temperatures; Direct use of 

preservation solutions for SCS

Not suitable for SNMP and NMP; 

Requires oxygenation under high PO2 

conditions; Amino acid oxidation

Panisello Rosello et al. 

(115), Doorschodt 

et al. (161), Minor 

et al. (185), Iwata et al. 

(186), and Minor et al. 

(187)

Hemoglobin No cross-matching required; Long-

term storage; Low liquid viscosity; 

Natural oxygen carrier

Production of methemoglobin; 

Vasoconstriction; Short half-life; 

Nephrotoxicity; Removal of nitric oxide

Zin et al. (188), 

Jansman et al. (189), 

and Jahr et al. (190)

Perfluorocarbon High O2 affinity; Obey Henry’s law; 

Can be mass-produced

Risk of vision loss; Requires oxygenation 

under high PO2 conditions; Instabilities 

of PFC emulsions; Transient drop in 

neutrophils and platelets; Flulike 

symptoms; Hypertension; Pulmonary 

complications

Jägers et al. (191) and 

Ye et al. (192)

Iron(II) porphyrin Covalently binds to serum albumin 

without changing its structure and 

function; No cytotoxicity

Difficult to synthesize; Easily binds to 

endogenous carbon monoxide

Kitagishi et al. (193) 

and Wang et al. (194)

Liposome microbubbles Molecular imaging; Targeted drug/

gene delivery; Easily diffuse across 

membranes; Low drug 

bioaccumulation

Short circulatory lifetime (<1 h); 

Relatively large (micron) sizes; Repetitive 

administration increases serum viscosity

Sirsi et al. (195),  

Tao and 

Ghoroghchian (196), 

and Fix et al. (197)

Erythrocruorin Simple gradient release O2; High O2 

affinity; Non-immunogenic; Potential 

anti-inflammatory, anti-bacterial, and 

antioxidant properties; Slight 

vasodilation; Good stability; Long 

circulating half-life; Low toxicity

Only used in preclinical HMP and 

clinically in SCS

Kruczkowska et al. 

(198)

Nanomaterials Can be mass-produced Low water solubility; Easy to aggregate 

into large particles; Hepatorenal toxicity; 

Short half-life

Rubeo et al. (199, 200)
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TABLE 3 Strategies of graft repair during MP.

Repair strategies Materials Outcomes Animal models References

Anti-inflammatory therapies

MCC950 ↓NLRP3 inflammasome pathway 

activation; ↓IL-1β; ↓hepatocytes 

apoptosis

Pig kidney HMP allograft 

model

Yu et al. (201)

Emricasan ↓Liver fibrosis; ↓alanine 

minotransferase

Human liver transplantation 

model

Weinberg et al. (202)

PFCOC ↓Myeloperoxidase activity; 

↓potassium and lactate; ↓vascular 

resistance; ↑ATP

Rat ex vivo lung SNMP model Arni et al. (203)

Hemoadsorber ↓Gene transcription of IL-1B, 

NLRP3, caspase1 and neutrophil 

recruitment chemokines

Human kidney NMP model Ferdinand et al. (204)

Gene therapies

C5 siRNA-LNP ↓Expression and activity of 

complement C5; ↑graft survival

Rat kidney transplantation 

model

Ishigooka et al. (205)

Lentiviral vectors ↑IL-10, MIP-1α, MIP-2, IP-10, 

epidermal growth factor; ↓IL-12, 

IL-17, MCP-1, IFN-γ

Rat kidney transplantation 

model

Yuzefovych et al. (206)

Therapeutic gasses

Carbon monoxide ↑Cyclic guanosine monophosphate, 

heme oxygenase-1; ↑p38 

phosphorylation; ↓JNK 

phosphorylation; ↓IL-6 and IL-1b 

mRNA

Rat lung transplantation 

model

Dong et al. (207)

NO ↓Vascular resistance Pig kidney pulsatile MP model Gage et al. (208)

Hydrogen sulfide ↓Oxygen consumption; 

↓mitochondrial activity; unchanged 

ATP levels

Porcine kidney NMP model Maassen et al. (209)

Cellular therapies

Mesenchymal stromal cells Mesenchymal stromal cells were 

retained in the renal cortex and did 

not affect plasma creatinine, 

glomerular filtration rate, or 

neutrophil gelatinase-associated 

lipocalin concentrations

Porcine kidney NMP and 

auto-transplantation model

Lohmann et al. (210)

Multipotent adult progenitor 

cells

295 unique proteins with 

immunomodulatory potential were 

found in the perfusate

Human liver NMP model Laing et al. (211)

hAECs ↑IL-6, IL-10, and G-CSF; ↑gene 

expression of IL-6, IL-10, HLA-G, 

HLA-E, and PDL-1

Rat-isolated pancreatic islets 

model

Lebreton et al. (212)

T regulatory cells ↓Donor-specific antibodies in 

recipient mice; preserved graft 

vascular structure; ↑graft survival

Murine cardiac allograft 

model

Masaoka et al. (213)

Extracellular vesicles ↑COX IV-1; ↑HGF and VEGF; 

↓caspase-3; improved renal 

ultrastructure

Human kidney HMPox model Rampino et al. (214)

Nutritional support
Citric acid Kidney metabolism was maintained 

in an active state for up to 4 days.

Human kidney NMP model De Haan et al. (215)

Remove metabolic waste

Continuous renal replacement 

therapy

Livers were successfully preserved 

in a perfusion system with 

physiological perfusate for 100 h.

Human liver NMP model Nalesso et al. (216)

(Continued)
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function and augment graft survival via multiple mechanisms. The 
successful salvage of marginal organs helps mitigate the imbalance between 
the supply and demand for grafts.

6 Conclusion and outlook

Organ preservation solutions are one of the most significant 
instruments in organ transplantation, and lowering cell metabolism 
or minimizing the graft’s ischemia duration in vitro is a prerequisite 
for maintaining graft viability. Cryopreservation, subzero 
non-freezing preservation, and SCS adopt low temperatures to 
diminish cell metabolism, hence improving graft ischemic 
tolerance. With the growing demand for organ transplants, doctors 
are compelled to use grafts from ECD donors; nonetheless, these 
grafts are more susceptible to harm, and conventional static 
preservation techniques might further worsen the grafts. The 
elimination or partial substitution of potentially toxic substances in 
organ preservation solutions serves as an important modification 
strategy for these solutions. In other words, the high levels of 
hazardous CPAs will inevitably restrict the clinical application of 
cryopreservation and subzero non-freezing preservation protocols. 
Despite the costly expense and technical complexity of long-term 
ex vivo dynamic MP, which increases the discard of grafts in the 
event of preservation failure, it offers multiple benefits over 
conventional static storage methods, particularly in enabling the 
dynamic assessment of organ viability and facilitating organ repair 
and regeneration. The successful repair and regeneration of grafts 
relies mainly on the prolonged duration of ex vivo MP as well as the 
development and utilization of safe and effective artificial oxygen 
carriers and therapeutic agents. Interestingly, several energy 
precursors utilized in organ preservation solutions for SCS, together 
with therapeutic medicines documented in the literature, are 
probably compatible for direct incorporation into machine 
perfusates. The spiral development of organ preservation strategies 
necessitates reliance on established research findings and the 
emergence of innovative technologies. Consequently, artificial 
oxygen carriers and organ repair/regeneration techniques require 
further investigation. This review offers a systematic overview of 
advancements in diverse organ preservation techniques, which 
we believe will contribute to the optimization and innovation of 
organ preservation strategies.
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TABLE 3 (Continued)

Repair strategies Materials Outcomes Animal models References

Antioxidant therapy

Alb-NC ↑Glutathione levels; ↑SOD and 

catalase activity; ↓mitochondrial 

DNA4977 deletion

Human liver NMP model Del Turco et al. (217)

N-alkyl-O-HTCC ↑SOD2 and ALDH2 activity in 

mitochondrion

Rabbit kidney HMP model Zhang et al. (218)

NLRP3, NOD-like receptor protein 3; PFCOC, perfluorocarbon-based oxygen carriers; C5 siRNA-LNP, lipid nanoparticle formulation of small-interfering RNA against complement C5; 
MIP-1α, macrophage inflammatory protein-1alpha; IP-10, interferon-γ-induced protein 10; MCP-1, Monocyte chemotactic protein-1; hAECs, human amniotic epithelial cells; G-CSF, 
granulocyte colony-stimulating factor; HLA-G, human leukocyte antigen G; COX, cytochrome c oxidase; HGF, hepatocyte growth factor; JNK, c-Jun N-terminal kinase; VEGF, vascular 
endothelial growth factor; PDL-1, programmed death ligand 1; Alb-NC, nanoceria conjugated with albumin; N-alkyl-O-HTCC, N-alkylated-O-(2-hydroxyl) propyl-3-trimethyl ammonium 
chitosan chloride; SOD, superoxide dismutase; ALDH2, mitochondrial acetaldehyde dehydrogenase 2.
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