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Background: Kidney transplantation is the optimal form of renal replacement 
therapy, but the long-term survival rate of kidney graft has not improved 
significantly. Currently, no well-validated model exists for predicting long-term 
kidney graft survival over an extended observation period.

Methods: Recipients undergoing allograft kidney transplantation at the Organ 
Transplantation Center of the First Affiliated Hospital of Kunming Medical 
University from 1 August 2003 to 31 July 2023 were selected as study subjects. 
A nomogram model was constructed based on least absolute selection and 
shrinkage operator (LASSO) regression, random survival forest, and Cox 
regression analysis. Model performance was assessed by the C-index, area 
under the curve of the time-dependent receiver operating characteristic curve, 
and calibration curve. Decision curve analysis (DCA) was utilized to estimate the 
net clinical benefit.

Results: The machine learning-based nomogram included cardiovascular 
disease in recipients, delayed graft function in recipients, serum phosphorus in 
recipients, age of donors, serum creatinine in donors, and donation after cardiac 
death for kidney donation. It demonstrated excellent discrimination with a 
consistency index of 0.827. The calibration curves demonstrated that the model 
calibrated well. The DCA indicated a good clinical applicability of the model.

Conclusion: This study constructed a nomogram for predicting the 20-year 
survival rate of kidney graft after allograft kidney transplantation using six factors, 
which may help clinicians assess kidney transplant recipients individually and 
intervene.
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1 Introduction

Chronic kidney disease (CKD) is a public health problem that has 
a serious impact on human health (1). It is estimated that 
approximately 850 million people worldwide are affected by kidney 
diseases, a condition that now ranks as the third fastest-growing cause 
of death globally and is associated with substantial individual, 
healthcare, and societal costs (2). With the progression of CKD, 
patients suffering from kidney failure can only choose kidney 
replacement therapy to sustain their lifespan, including hemodialysis, 
peritoneal dialysis, and kidney transplantation (3). Kidney 
transplantation provides the best chance for kidney failure patients to 
achieve long-term, dialysis-free survival at minimal cost (4). In terms 
of both efficacy and financial burden, kidney transplantation is the 
best form of kidney replacement therapy (5). However, kidney 
transplant recipients are facing a risk of losing their grafts after surgery 
(6). Roughly one-fifth of kidney transplant recipients will suffer graft 
loss within 5 years, and more than half of kidney transplant recipients 
will suffer graft loss within 10 years (7).

The predominant etiologies of kidney graft loss are graft failure 
and recipient death with a functioning graft. The former may 
be related to surgical manipulation, immune rejection, and recurrent 
disease, while the most prominent causes of the latter include 
cardiovascular diseases (CVD), malignancies, and infections (8, 9). 
Kidney graft loss leads to a decline in physical function, a reduced 
quality of life, a greater psychological burden, and an increased risk of 
hospitalization and mortality (10). Additionally, it necessitates the 
resumption of kidney replacement therapy, exposing the patient to a 
higher risk of comorbidities and life-threatening complications (11). 
Therefore, early prediction of risk of kidney graft loss is essential for 
the clinical management of kidney transplant recipients, as it facilitates 
the improvement of both short- and long-term outcomes in 
these patients.

Rao et  al. proposed a continuous kidney donor risk index to 
quantify the risk of graft failure, but their study was exclusively 
focused on deceased donor kidneys (12). Foucher et al. developed a 
composite score to predict the risk of graft loss after transplantation, 
but their study was limited to an 8-year follow-up period and lacked 
long-term survival data (13). Hernández et al. constructed a novel risk 
score to predict all-cause mortality after renal transplantation with no 
consideration of the situation of isolated graft failure with surviving 
recipients (14). It is challenging to accurately predict graft outcomes 
using traditional statistical models due to the variety of factors that 
influence graft survival. Habehh et al. demonstrated that machine 
learning techniques have made significant contributions in predicting 
and identifying acute health events, disease populations, disease states, 
and immune responses, which can address many factors and their 
interactions to improve the accuracy of predictive models (15). This 
study conducted a 20-year survival analysis of kidney graft with the 
aim of exploring risk factors affecting long-term survival of kidney 
graft and constructing a reliable and intuitive predictive model.

2 Materials and methods

This study follows the recommendations of the Transparent 
Reporting of a multivariable prognostic model for Individual 
Prognosis or Diagnosis (TRIPOD) (16).

2.1 Study population

Recipients who underwent allograft kidney transplantation at the 
Organ Transplantation Center of the First Affiliated Hospital of 
Kunming Medical University from 1 August 2003 to 31 July 2023 were 
included in this study. The enrollment criteria included: (1) 
age ≥ 18 years; (2) first kidney transplantation and single organ 
transplantation; (3) all donor-recipient pairs demonstrated good ABO 
blood group compatibility; (4) all cases underwent strict human 
leukocyte antigen (HLA) matching and achieved relatively favorable 
matching grades; (5) complement-dependent cytotoxicity (CDC) test 
pre-transplantation <10%; (6) recipient’s panel reactive antibody 
(PRA) < 10%; (7) recipients survived post-operatively with a 
functioning graft for at least 3 months; (8) recipients received 
immunosuppressive induction with biological agents (interleukin-2 
receptor antagonists or lymphocyte-depleting antibodies) during the 
pre-, intra-, or post-transplant period, except for cases involving 
monozygotic twins; and (9) recipients regularly maintained on a triple 
immunosuppressive regimen of anti-rejection therapy after surgery: 
calcineurin inhibitor (CNI) + mycophenolic acid analogs + 
glucocorticoids. Exclusion criteria included: (1) death during surgery 
for transplantation; (2) insufficiency or loss of graft kidney function 
due to surgical factors; (3) combination of severe hematologic 
diseases, malignant tumors, or severe liver diseases; and (4) data 
missing >20%.

2.2 Data collection

The general characteristics of the recipients included age, gender, 
body mass index (BMI), primary disease (defined according to the 
ICD-9 diagnostic classification system, including chronic 
glomerulonephritis, hypertensive nephropathy, IgA nephropathy, 
lupus nephritis, purpuric nephritis, nephrotic syndrome, kidney 
stones, gouty nephropathy, polycystic kidneys, diabetic nephropathy, 
and unknown cause), pre-transplant dialysis modality (hemodialysis, 
peritoneal dialysis, mixed dialysis, and no dialysis), duration of 
pre-transplant dialysis, clinical comorbidities (hypertension, diabetes, 
CVD, and gout), smoking history, alcohol abuse history, and blood 
transfusion history. The laboratory data of the recipients included 
serum creatinine (Scr), blood urea nitrogen (BUN), serum uric acid 
(SUA), hemoglobin (HGB), albumin (ALB), total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), serum kalium (K), 
serum phosphorus (P), serum calcium (Ca), and blood type (A, B, O, 
and AB). The characteristics of the donors included age, gender, and 
laboratory data (Scr, BUN, SUA, and blood type). The above laboratory 
information was collected from the results of venous blood tests of the 
donor and the recipient within 24 h before surgery. Transplant-related 
information includes donor source, number of HLA mismatches, 
CDC test, PRA of recipient, whether delayed graft function (DGF) 
occurred after transplantation, and type of postoperative CNI 
(cyclosporin or tacrolimus). Donor sources include living donation 
between relatives (LDR), donation after brain death (DBD), and 
donation after cardiac death (DCD). DGF is defined as the 
requirement for dialysis treatment in kidney transplant recipients 
within 1 week postoperatively due to unrecovered kidney 
function (17).
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2.3 Follow up

Kidney transplant recipients were observed in follow-up from the 
date of kidney transplantation, and all study subjects were observed 
for a minimum of 3 months, with an observation cut-off date of 31 
October 2023 and an observation endpoint of kidney graft loss.

2.4 Definition

Kidney graft loss was defined as recipient death with a functioning 
graft, graft nephrectomy, resumption of dialysis again, and 
re-transplantation of the kidney.

2.5 Statistical analysis

R software (version 4.2.2; R Foundation for Statistical Computing, 
Vienna, Austria) and SPSS (version 26.0; IBM, Armonk, NY, 
United States) were employed for data analysis and graphing in this 
study. The difference in the analysis was statistically significant if 
p < 0.05.

Firstly, the baseline characteristics of the kidney transplant 
recipients and donors were statistically described and compared 
between groups. Missing data were addressed using multiple 
imputation methods. The T-test, Mann–Whitney U, Chi-square, and 
Fisher exact tests were utilized for between-group comparisons as 
appropriate. The overall survival rate of kidney grafts was calculated 
using Kaplan–Meier survival analysis.

Next, least absolute selection and shrinkage operator (LASSO) 
regression with 10-fold cross-validation and random survival forest 
(RSF) were performed to screen factors associated with the long-term 
survival rate of kidney graft, respectively. LASSO regression was 

conducted by the R package “glmnet.” RSF was performed using the 
R package “randomForestSRC.”

Then, the candidate variables screened by the above two machine 
learning methods were crossed, and the final overlapping variables 
obtained were subjected to Cox multivariate regression analysis to 
construct the prediction model. A nomogram was generated using the 
R packages “survival” and “rms.”

Finally, following the recommendations of the TRIPOD guidelines, 
the Bootstrap method (resampling = 1,000) was chosen for internal 
validation of the model (16). The discriminative power was assessed by 
the consistency index (C-index) and the area under the curve (AUC) of 
the time-dependent receiver operating characteristic (ROC) curve. The 
model calibration was evaluated by the calibration curve. The decision 
curve analysis (DCA) was utilized to estimate the clinical applicability.

3 Results

3.1 Patient characteristics

In the beginning, 527 recipients were recruited, among whom 19 
were not qualified, resulting in a final eligible population of 508 
recipients. During the follow-up period, 87 recipients experienced 
graft loss, and 421 did not experience graft loss. Figure 1 depicts the 
enrollment of the study population.

The baseline characteristics are summed up in Table 1. The 508 
recipients had a median age of 32.5 years (27.8, 40.0 years), consisting 
of 71.5% males (n = 363) and 28.5% females (n = 145). Chronic 
glomerulonephritis was the most common cause of kidney failure, 
accounting for 51.8%. The most frequent pre-transplant dialysis 
modality was hemodialysis, accounting for 88.2%, and the median 
duration of pre-transplant dialysis was 1.5 years (1.0, 2.4 years). The 
most common donor source was LDR (62.8%), followed by DBD 

FIGURE 1

Flowchart of study enrollment.
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TABLE 1 Characteristics between graft loss group and graft non-loss group.

Variables Total (n = 508) Graft loss group 
(n = 87)

Graft non-loss group 
(n = 421)

p value

Recipients

Age (years) 32.5 (27.8, 40.0) 33.1 (25.9, 40.7) 32.5 (27.8, 39.9) 0.776

Gender, n (%) 0.041

  Male 363 (71.5%) 70 (80.5%) 293 (69.6%)

  Female 145 (28.5%) 17 (19.5%) 128 (30.4%)

BMI (kg/m2) 21.2 (19.0, 23.5) 21.4 (19.2, 23.7) 21.1 (19.0, 23.5) 0.251

Primary disease, n (%) 0.252

  Chronic glomerulonephritis 263 (51.8%) 50 (57.5%) 213 (50.6%)

  Hypertensive nephropathy 74 (14.6%) 14 (16.1%) 60 (14.3%)

  IgA nephropathy 38 (7.5%) 5 (5.7%) 33 (7.8%)

  Lupus nephritis 8 (1.6%) 0 (0%) 8 (1.9%)

  Purpuric nephritis 22 (4.3%) 6 (6.9%) 16 (3.8%)

  Nephrotic syndrome 16 (3.1%) 1 (1.1%) 15 (3.6%)

  Kidney stones 14 (2.8%) 2 (2.3%) 12 (2.9%)

  Gouty nephropathy 21 (4.1%) 4 (4.6%) 17 (4.0%)

  Polycystic kidneys 2 (0.4%) 1 (1.1%) 1 (0.2%)

  Diabetic nephropathy 7 (1.4%) 1 (1.1%) 6 (1.4%)

  Unknown cause 43 (8.5%) 3 (3.4%) 40 (9.5%)

Dialysis modality, n (%) 0.148

  Hemodialysis 448 (88.2%) 79 (90.8%) 369 (87.6%)

  Peritoneal dialysis 40 (7.9%) 7 (8.0%) 33 (7.8%)

  Mixed dialysis 14 (2.8%) 0 (0.0%) 14 (3.3%)

  No dialysis 6 (1.2%) 1 (1.1%) 5 (1.2%)

Dialysis duration (years) 1.5 (1.0, 2.4) 1.0 (0.6, 2.0) 1.5 (1.0, 3.0) 0.001

Hypertension, n (%) 0.265

  Yes 481 (94.7%) 85 (97.7%) 396 (94.1%)

  No 27 (5.3%) 2 (2.3%) 25 (5.9%)

Diabetes, n (%) 1.000

  Yes 7 (1.4%) 1 (1.1%) 6 (1.4%)

  No 501 (98.6%) 86 (98.9%) 415 (98.6%)

CVD, n (%) <0.001

  Yes 96 (18.9%) 37 (42.5%) 59 (14.0%)

  No 412 (81.1%) 50 (57.5%) 362 (86.0%)

Gout, n (%) 1.000

  Yes 26 (5.1%) 4 (4.6%) 22 (5.2%)

  No 482 (94.9%) 83 (95.4%) 399 (94.8%)

Smoking history, n (%) 0.893

  Yes 149 (29.3%) 25 (28.7%) 124 (29.5%)

  No 359 (70.7%) 62 (71.3%) 297 (58.5%)

Alcohol abuse history, n (%) 0.905

  Yes 25 (4.9%) 5 (5.7%) 20 (4.8%)

  No 483 (95.1%) 82 (94.3%) 401 (95.2%)

Blood transfusion history, n (%) 0.058

  Yes 413 (81.3%) 77 (88.5%) 336 (79.8%)

  No 95 (18.7%) 10 (11.5%) 85 (20.2%)

Scr (μmol/L) 1093.3 (896.0, 1316.5) 1098.7 (906.3, 1385.0) 1093.1 (895.2, 1304.0) 0.328

BUN (mmol/L) 21.3 ± 7.2 21.5 ± 6.3 21.2 ± 7.4 0.697

(Continued)
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(29.7%) and DCD (7.5%). The median number of HLA mismatches 
was 3 (2, 4). DGF occurred in 35 cases (6.9%). Cyclosporin was taken 
by 50 recipients (9.8%) and tacrolimus by 458 recipients (90.2%) after 
kidney transplantation.

Compared to the graft non-loss group, in terms of characteristics 
of recipients, the graft loss group had a greater proportion of males 
(p = 0.041), a shorter pre-transplant dialysis duration (p = 0.001), a 
higher proportion of recipients with CVD (p < 0.001), lower levels of 

TABLE 1 (Continued)

Variables Total (n = 508) Graft loss group 
(n = 87)

Graft non-loss group 
(n = 421)

p value

SUA (μmol/L) 436.4 (363.3, 498.8) 451.0 (376.0, 516.4) 436.0 (362.5, 490.0) 0.297

HGB (g/L) 114.0 (97.0, 130.0) 101.0 (88.0, 121.0) 116.0 (99.0, 131.5) <0.001

ALB (g/L) 43.9 (40.2, 46.6) 42.0 (36.8, 44.7) 44.3 (41.0, 46.9) <0.001

TC (mmol/L) 3.8 (3.2, 4.3) 3.6 (3.3, 4.3) 3.80 (3.2, 4.3) 0.476

TG (mmol/L) 1.3 (1.0, 1.9) 1.3 (1.0, 2.2) 1.3 (1.0, 1.9) 0.61

HDL-C (mmol/L) 1.1 (0.9, 1.3) 1.1 (0.8, 1.3) 1.1 (0.9, 1.3) 0.323

LDL-C (mmol/L) 2.3 (1.9, 2.8) 2.2 (2.0, 2.9) 2.3 (1.9, 2.8) 0.581

K (mmol/L) 5.0 (4.4, 5.6) 5.2 (4.5, 6.0) 5.0 (4.4, 5.5) 0.032

P (mmol/L) 1.8 (1.2, 2.4) 2.2 (1.8, 2.8) 1.7 (1.2, 2.3) <0.001

Ca (mmol/L) 2.4 (2.2, 2.5) 2.4 (2.2, 2.5) 2.4 (2.3, 2.5) 0.169

Blood type, n (%) 0.395

  A 170 (33.5%) 25 (28.7%) 145 (34.4%)

  B 129 (25.4%) 19 (21.8%) 110 (26.1%)

  O 151 (29.7%) 31 (35.6%) 120 (28.5%)

  AB 58 (11.4%) 12 (13.8%) 46 (10.9%)

Donors

Age (years) 49.0 (39.0, 54.0) 49.0 (45.0, 54.0) 48.0 (38.0, 54.0) 0.033

Gender, n (%) 0.168

  Male 223 (43.9%) 44 (50.6%) 179 (42.5%)

  Female 285 (56.1%) 43 (49.4%) 242 (57.5%)

Scr (μmol/L) 71.2 (61.0, 83.1) 81.0 (65.0, 91.2) 69.8 (60.0, 81.0) <0.001

BUN (mmol/L) 5.8 (4.6, 7.4) 7.7 (5.1, 9.3) 5.6 (4.5, 7.1) <0.001

SUA (μmol/L) 300.0 (252.4, 353.0) 321.3 (233.0, 374.5) 300.0 (254.9, 346.3) 0.191

Blood type, n (%) 0.417

  A 154 (30.3%) 22 (25.3%) 132 (31.4%)

  B 121 (23.8%) 18 (20.7%) 103 (24.5%)

  O 207 (40.7%) 42 (48.3%) 165 (39.2%)

  AB 26 (5.1%) 5 (5.7%) 21 (5.0%)

Transplant-related

Donor source, n (%) <0.001

  LDR 319 (62.8%) 43 (49.4%) 276 (65.6%)

  DBD 151 (29.7%) 19 (21.8%) 132 (31.4%)

  DCD 38 (7.5%) 25 (28.7%) 13 (3.1%)

HLA mismatches 3 (2, 4) 3 (2, 5) 3 (2, 3) 0.023

Same blood type, n (%) 0.441

  Yes 423 (83.3%) 70 (80.5%) 353 (83.8%)

  No 85 (16.7%) 17 (19.5%) 68 (16.2%)

DGF, n (%) <0.001

  Yes 35 (6.9%) 25 (28.7%) 10 (2.4%)

  No 473 (93.1%) 62 (71.3%) 411 (97.6%)

CNI, n (%) 0.079

  Cyclosporin 50 (9.8%) 13 (14.9%) 37 (8.8%)

  Tacrolimus 458 (90.2%) 74 (85.1%) 384 (91.2%)
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HGB (p < 0.001) and ALB (p < 0.001), and higher levels of K 
(p = 0.032) and P (p < 0.001); regarding characteristics of donor, the 
age (p = 0.033), Scr (p < 0.001), and BUN (p < 0.001) in the graft loss 
group were higher; for transplant-related characteristics, the number 
of HLA mismatches (p = 0.023) and the percentage of recipients who 
developed DGF (p < 0.001) was higher in the graft loss group, and 
there was a statistically significant difference in donor source between 
the two groups (p < 0.001). No other baseline data differed significantly.

The Kaplan–Meier survival analysis showed that the median 
survival time of the kidney grafts in 508 recipients was 15.2 years, and 
the cumulative survival rates at years 1, 3, 5, 10, 15, and 20 were 98.8, 
93.7, 88.3, 66.6, 54.4, and 43.9%, respectively, as described in Figure 2.

3.2 Characteristics selection

The LASSO regression with 10-fold cross-validation screened 12 
variables associated with long-term survival rates of the kidney grafts 
when λ took the minimum value (0.02512473), as displayed in 
Figures 3A,B. Recipient variables included gender (male), age, primary 
disease (polycystic kidney), CVD, P, and pre-transplant dialysis 
modality (no dialysis). Donor variables included age, Scr, and 
BUN. Transplant-related variables included donor source (DCD), 
number of HLA mismatches, and DGF.

After hyperparameter tuning, RSF had the lowest prediction error 
rate of 19.09% when the number of trees was 80 and the number of 
terminal nodes was 65. There were 13 variables with significance 
greater than 0.01, as illustrated in Figure  4. Recipient variables 
included CVD, P, ALB, SUA, K, BMI, duration of pre-transplant 
dialysis, and LDL-C. Donor variables included Scr, BUN, and age. 
Transplant-related variables included donor source and DGF.

Combining the results of the two machine learning methods 
above, seven overlapping variables were selected as candidates for 

constructing the prediction model, including recipient combined CVD, 
DGF, recipient P, donor age, donor Scr, donor BUN, and donor source.

3.3 Model construction

Seven candidate variables were included in the Cox multivariate 
regression analysis, which revealed that recipient combined CVD 
(HR = 3.241, 95%CI: 1.947 ~ 5.395, p < 0.001), DGF (HR = 2.799, 95% 
CI: 1.540 ~ 5.086, p = 0.001), recipient P (HR = 1.605, 95%CI: 
1.212 ~ 2.125, p = 0.001), donor age (HR = 1.037, 95%CI: 1.012 ~ 1.063, 
p = 0.004), donor Scr (HR = 1.023, 95%CI: 1.014 ~ 1.034, p < 0.001), 
and donation after DCD (HR = 3.350, 95%CI: 1.838 ~ 6.106, p < 0.001) 
were independent risk factors affecting the long-term survival rate of 
kidney graft, as presented in Table 2.

A nomogram model was constructed based on the six independent 
risk factors mentioned above, which can predict the probability of 
survival of the kidney graft at 1, 5, 10, 15, and 20 years after kidney 
transplantation, as displayed in Figure 5.

3.4 Model performance and Bootstrap 
internal validation

With Bootstrap internal validation, the C-index was 0.827. The 
AUC of the ROC curve at 1, 5, 10, 15, and 20 years were 0.985, 0.816, 
0.853, 0.894, and 0.703, respectively, as shown in Figure  6. It 
demonstrated that the model had good discriminatory ability.

The calibration curves displayed excellent consistency between 
predictions and observations at 1, 5, 10, and 15 years, which indicated 
that the model had excellent calibration, as illustrated in Figure 7.

The DCA was demonstrated in Figures  8A–E. The green 
horizontal line represents no endpoint event for all subjects and no 

FIGURE 2

Overall survival curve of the kidney grafts after allograft kidney transplantation.

https://doi.org/10.3389/fmed.2025.1556374
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


He et al. 10.3389/fmed.2025.1556374

Frontiers in Medicine 07 frontiersin.org

FIGURE 3

Characteristic selection by LASSO regression. (A) Dynamic process of variable screening. (B) 10-fold cross-validation to select the best λ.

FIGURE 4

Importance ranking of variables based on RSF.
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intervention. Red lines represent all subjects with an endpoint event 
and intervention for all. The blue line represents the nomogram in this 
study. As shown, the blue line is essentially above the green and red 
lines at 5, 10, 15, and 20 years, suggesting a significant net benefit and 
positive clinical applicability of the model at 5, 10, 15, and 20 years. 
While the DCA indicates clinical utility, real-world implementation 
requires prospective validation of the model’s impact on actual patient 
outcomes and healthcare costs.

4 Discussion

This study conducted a 20-year follow-up of recipients who 
underwent allograft kidney transplantation and constructed a 
nomogram model for predicting the long-term survival rate of kidney 
graft. In this study, LASSO regression and RSF were employed for 
predictor screening. LASSO regression addresses multicollinearity 

among covariates by applying an L1-norm penalty controlled through 
the regularization parameter λ, thereby optimizing model complexity 
and preventing overfitting. The RSF algorithm, a machine learning 
approach based on an ensemble of decision trees, can deal with nonlinear 
relationships and interactions, analyze high-dimensional data better, and 
ultimately enhance the model’s predictive accuracy and stability.

As the nomogram illustrates, the kidney graft with the following 
features has a lower probability of survival: recipient combined CVD, 
recipient developing DGF, recipient with a higher P level, donor with 
older age, donor with a higher Scr level, and donation after 
DCD. Given that the factors presented above are readily available in 
practice, this user-friendly nomogram may be  helpful for clinical 
decision-making. For example, suppose a kidney transplant recipient 
combined CVD and DGF, with a P of 2 mmol/L, whose donor is 
from a 30-year-old DCD, and whose donor end-stage Scr is 
120 μmol/L. Using the nomogram, the corresponding points for each 
predictor are assigned as follows: 25 points for CVD, 22 points for 
DGF, 20 points for p = 2 mmol/L, 15 points for donor age of 30 years, 
50 points for donor terminal Scr = 120 μmol/L, and 26 points for 
donation after DCD. The total score was 158 points by adding up the 
above six scores. By drawing a vertical line down the corresponding 
scale on the “Total Points” line segment, the predicted graft survival 
probabilities are 90% at 1 year, 25% at 3 years, and less than 5% at 10, 
15, and 20 years post-transplantation. Clinicians can readily utilize 
this nomogram to estimate long-term graft survival probabilities for 
individual kidney transplant recipients, enabling the identification of 
high-risk populations and facilitating early targeted interventions.

Research has indicated that CVD is an important cause of death 
and graft failure in kidney transplant recipients (18). It may 
be attributed to the hemodynamic disorders in CVD patients and 
reduced renal perfusion as well as even ischemia (19). Prolonged or 
severe hypoperfusion of the kidneys may accelerate the reduction of 
the number of normal nephrons, leading to the deterioration of 
kidney function (20). The common risk factors for CVD, such as 
hypertension and dyslipidemia, are widespread in kidney transplant 

FIGURE 5

Nomogram for predicting the probability of survival of the kidney graft. R: kidney transplant recipient; D: kidney transplant donor.

TABLE 2 A Cox multivariate regression analysis of kidney graft loss after 
allograft kidney transplantation.

Variables HR HR (95% CI) p value

Recipient combined CVD 3.241 1.947, 5.395 <0.001*

DGF 2.799 1.540, 5.086 0.001*

Recipient P 1.605 1.212, 2.125 0.001*

Donor age 1.037 1.012, 1.063 0.004*

Donor Scr 1.023 1.014, 1.034 <0.001*

Donor BUN 0.997 0.924, 1.076 0.936

Donor source

 LDR Reference

 DBD 1.237 0.640, 2.388 0.527

 DCD 3.350 1.838, 6.106 <0.001*

*: p < 0.05.
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recipients. In addition, long-term immunosuppression can affect the 
body’s metabolism and increase the risk of dyslipidemia and post-
transplant diabetes (21, 22). Accordingly, clinicians can slow the 
progression of CVD in recipients combined with CVD by individually 
adjusting the immunosuppressive treatment regimen, improving 
lifestyle, and pharmacological interventions to control blood pressure, 
blood glucose, and blood lipids (23).

DGF is the commonest early complication after kidney 
transplantation (24). A meta-analysis demonstrated that DGF may lead 
to graft failure and acute rejection and is associated with deterioration in 
short- and long-term survival of the kidney graft (25). The effect may 
be related to the damage caused by ischemia–reperfusion, which can lead 
to cellular metabolic disorders, inflammatory reactions, and fibrosis (26). 
In addition, ischemia–reperfusion injury may lead to strong immune 
rejection of the organism, and rejection has a detrimental effect on the 
long-term prognosis of the graft (27, 28). Clinical factors that have been 
identified in existing studies to be strongly associated with DGF include 
surgical factors, donor kidneys from dead donors, BMI of recipients, 
number of HLA mismatches, HLA antibodies, pre-transplantation 
dialysis modalities, and so on (29–31). Clinicians should assess the risk 
of DGF in patients before transplantation and intervene early to 
avoid DGF.

Disturbances in Ca and P metabolism are prevalent in kidney 
failure patients (32). High levels of P in kidney transplant recipients 

have been demonstrated to be strongly correlated with poorer graft 
survival rates (33). Current clinical guidelines recommend regular 
monitoring of serum calcium, phosphate, and parathyroid 
hormone levels in kidney transplant recipients during the post-
transplant period (34). High levels of P impair vascular endothelial 
function, induce cellular stress, premature senescence, and 
apoptosis, and promote arterial calcification, thereby facilitating 
the progression of kidney disease, increasing the risk of 
cardiovascular events, and ultimately affecting graft survival (35–
37). Moreover, hyperphosphatemia leads to compensatory 
elevation of fibroblast growth factor 23 and parathyroid hormone, 
which can cause left ventricular hypertrophy, renal anemia, and 
immune dysfunction (38). Therefore, clinicians should pay 
attention to monitoring the P levels and regulating Ca-P metabolic 
disorders through pharmacological interventions and 
dietary control.

Previous research has revealed that increased donor age is one 
of the essential risk factors for the long-term survival rate of kidney 
graft (39). As the age of the donor increases, the glomerulus 
progressively hardens, and the nephron decreases in size and 
number (40). Research has reported that nephrosclerosis accounts 
for only 2.7% of kidney biopsies in donors under 30 years old, 58% 
in donors aged 60–69 years, and 73% in donors over 70 years old 
(41). In recent years, there has been a gradual increase in the 

FIGURE 6

Time-dependent ROC curve of the nomogram.
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FIGURE 7

Calibration curves of the nomogram.

FIGURE 8

DCA of the nomogram. (A) 1-year; (B) 5-year; (C) 10-year; (D) 15-year; (E) 20-year.
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proportion of elderly deceased donors donating kidneys, as the 
growing demand for transplants far outstrips the number of kidneys 
available for grafting (42). A multicenter clinical study found that 
although increasing donor age has always been an adverse influence 
on graft survival, the long-term kidney graft survival rate from 
elderly donor kidneys has improved significantly with advances in 
medical care compared to a decade ago (43). The use of elderly 
donor kidneys is unavoidable in the current situation of kidney 
shortage. Therefore, it is more critical to quantify the risks associated 
with elderly donor kidneys and to enhance individualized post-
transplant care.

Scr is the most frequently used index for assessing kidney function, 
and a higher-than-normal donor Scr may represent an abnormality in 
the kidney function of the donor. The findings of Lenain et  al. 
demonstrated that a deceased donor-supplied kidney accompanied by 
acute kidney injury was associated with a decreased long-term survival 
rate of kidney graft (44). The results of Torreggiani et al. revealed that 
good preoperative kidney function in the donor was closely associated 
with good postoperative kidney function in the recipient (45). John 
et  al. showed that donor kidney function can influence graft and 
recipient survival in living kidney transplantation (46). Consequently, 
it is necessary for clinicians to quantify the impact of donor Scr on the 
long-term prognosis of the kidney graft for individualized care.

In this study, DCD was an independent risk factor for the long-term 
survival rate of kidney graft compared to LDR, whereas DBD and LDR 
had comparable effects. It may be explained by the fact that cardiac 
deaths are at a higher risk of organ ischemia, which is more likely to 
adversely affect the long-term prognosis of kidney graft (47). It has been 
demonstrated that fibrosis is more likely to be detected in the kidneys of 
recipients undergoing DCD compared to DBD when performing a renal 
biopsy at 1 year postoperatively (48). Nonetheless, Won et al. suggested 
that DCD donor kidneys have an acceptable overall survival despite their 
detrimental effect on survival (49). Moreover, it was also noted in a study 
that there was no significant difference in short- and long-term kidney 
graft survival between DCD and DBD (50). This is inconsistent with the 
results of this study. Therefore, further prospective, multicenter, large-
scale clinical studies are warranted to evaluate the long-term prognostic 
impact of DCD and DBD on kidney graft outcomes. What is certain, 
nevertheless, is that living donor kidneys have a higher survival rate of 
kidney graft and living donor kidney transplantation is the best 
treatment for kidney failure (51).

There have been some related studies on predicting the prognosis 
of kidney transplantation before. Hernández et  al. developed a 
predictive model using Cox regression analysis (14). Oomen et al.’s 
study combined literature review, expert opinions, and multivariate 
logistic regression to construct a predictive model for predicting graft 
function (52). This study integrates LASSO regression and the 
Random Survival Forest (RSF) algorithm with Cox regression, which 
helps mitigate model overfitting, enables effective analysis of high-
dimensional data, and enhances the predictive accuracy and stability 
of the model.

Recipient age, recipient HGB, recipient ALB, donor and recipient 
BMI, number of HLA mismatches, and primary disease leading to 
kidney failure have also been found to be predictors of long-term 
kidney graft survival rate after allograft kidney transplantation in 
previous studies (52–54). Of these, recipient HGB, recipient ALB, and 
HLA mismatch numbers were also found to be statistically different 
between groups when analyzing the baseline data in this study. But 
due to the limited sample size of this study, they were not included in 

the final prediction model in the subsequent analyses. So, it is 
necessary to conduct more research to validate and optimize 
the model.

This study has the following shortcomings: (1) This study is a 
retrospective observational study with data from only a single 
medical institution, limiting its generalizability to patients from other 
regions. (2) The model was only internally cross-validated using the 
Bootstrap method and lacked external validation. More efforts are 
necessary in the future to perform external validation across multi-
center cohorts to optimize the model’s generalizability and clinical 
applicability. (3) Patients with more than 20% missing data were 
eliminated from the analysis, which caused some selection bias since 
the data were not considered to be  missing randomly. However, 
LASSO regression was performed to assure the accuracy of the model 
and to avoid overfitting. (4) Due to the limited sample size of this 
study, HLA mismatches—widely recognized as a crucial factor 
influencing kidney graft outcomes—were not incorporated into the 
model. Therefore, more prospective, multicenter, large-sample 
clinical data are needed to further optimize and validate the model in 
the future.

5 Conclusion

This 20-year follow-up study constructed and internally validated 
a nomogram prediction model based on a machine learning 
approach for predicting long-term kidney graft survival rate after 
allograft kidney transplantation. The nomogram has six clinical and 
laboratory parameters, including recipient combined CVD, 
occurrence of DGF, recipient P, donor age, donor Scr, and donation 
after DCD. The model was internally validated with excellent results 
and may be  beneficial for clinicians in clinical management for 
kidney transplant recipients.
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