
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Med.
Sec. Intensive Care Medicine and Anesthesiology
Volume 12 - 2025 | doi: 10.3389/fmed.2025.1554579
This article is part of the Research TopicExploring Machine Learning Applications in Visceral SurgeryView all 7 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background Gastrointestinal bleeding (GIB) is a common complication following Type A aortic dissection (TAAD) surgery, significantly impacting prognosis and increasing mortality risk. This study developed and validated a predictive model based on machine learning (ML) algorithms to enable early and precise assessment of postoperative GIB risk in TAAD patients.Medical records of patients who underwent TAAD surgery at Shanxi Bethune Hospital from January 2019 to September 2024 were retrospectively collected. Predictors were screened using LASSO regression, and four ML algorithms-Random Forest (RF), K-nearest neighbor (KNN), Support Vector Machines (SVM), and Decision Tree (DT)-were employed to construct models for predicting postoperative GIB risk. The dataset was divided into training and validation sets in a 7:3 ratio. Predictive performance was evaluated and compared using Receiver Operating Characteristic (ROC) curves and DeLong tests. Calibration curves and decision curve analysis (DCA) were used to assess model calibration and clinical utility. The SHapley Additive exPlanation (SHAP) algorithm was applied for interpretability analysis. This study adhered to the "Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis + Artificial Intelligence (TRIPOD+AI) guidelines." Results A total of 525 TAAD patients were included, with 63 (12%) developing GIB. Nine predictors were selected via LASSO regression for model construction. The RF model outperformed the SVM, KNN, and DT models in predicting postoperative GIB, with areas under the ROC curve (AUC) of 0.933, 0.892, 0.902, and 0.768, respectively, showing statistically significant differences (DeLong test, P < 0.05). Calibration curves and DCA further confirmed the RF model's excellent calibration and clinical utility. SHAP analysis identified the three most influential clinical features on the RF model's output: duration of mechanical ventilation (MV), Time to aortic occlusion, and red blood cell (RBC) transfusion. Conclusions The machine learning-based predictive model effectively assesses postoperative GIB risk in TAAD patients, aiding healthcare providers in early identification of risk factors and implementation of targeted preventive strategies.
Keywords: Type a aortic dissection, gastrointestinal bleeding, machine learning, Prediction model, The SHapley Additive exPlanation
Received: 02 Jan 2025; Accepted: 10 Apr 2025.
Copyright: © 2025 Li, Yang, Che, Wu, Guo, Li and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Siyu Che, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.