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Chronic obstructive pulmonary disease (COPD) is a complex condition marked

by chronic respiratory symptoms, such as cough and dyspnoea, and persistent

irreversible airway obstruction, punctuated by acute episodes of exacerbations.

COPD is associated with a significant mortality risk and several comorbidities,

including cardiovascular diseases. The link between COPD, acute exacerbations

and cardiovascular diseases has been recently acknowledged under the unifying

concept of cardiopulmonary risk. In this context, endothelial dysfunction (ED) has

been identified as a key contributor to the systemic manifestations of COPD and

an early event in atherogenesis, thus potentially linking respiratory diseases and

cardiovascular risk. Assessing endothelial dysfunction could therefore provide

valuable prognostic insights into COPD, while targeting it may emerge as a

promising therapeutic approach. Nonetheless, several aspects such as clinical

assessment options and potential treatment strategies are still under debate,

despite an intense research activity in recent years and promising results coming

from the field of pulmonary rehabilitation medicine, which seems to be highly

beneficial for the improvement of ED in COPD patients. On these premises, this

mini review aims to provide an updated overview of the pathophysiology of ED

in the context of COPD, with a focus on its assessment and its potential as an

attractive therapeutic target.

KEYWORDS

COPD, endothelial function, cardiovascular risk, disability, exercise, rehabilitation

Introduction

Chronic obstructive pulmonary disease (COPD) is a complex condition marked

by chronic respiratory symptoms, such as cough and dyspnoea, and persistent

irreversible airway obstruction (1). Data from 2020 suggest that COPD affects

∼10.6% of the global population (480 million people), with its prevalence projected

to rise to 23% by 2050 (2). COPD is also the third leading cause of global

mortality, heavily impacting quality of life, healthcare costs, and rehabilitation demands

(1). Additionally, COPD is associated with several comorbid conditions, including

cardiovascular diseases (CVDs), psychiatric disorders, and metabolic diseases (3, 4).

Moreover, acute exacerbations of COPD (AECOPD) further complicate its course

(5) and contribute to a faster worsening of lung function and to an increase in

cardiovascular mortality (6). In this setting, the unifying concept of COPD-related
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cardiopulmonary risk, defined as the increased chance for a

COPD patient to experience both major acute cardiovascular and

respiratory events, was recently introduced to underscore the

intimate link between COPD and CVDs (7).

While smoking is a known common risk factor between

COPD and CVD, scientific evidence suggests that inflammation

and oxidative stress may be crucial pathogenetic mechanisms

in COPD patients, acting as key factors of disease progression

(8). However, oxidative stress and chronic inflammation are

not confined to the airways, but are more often systemic, thus

affecting vascular integrity (9). Thus, also in light of research on

convalescent coronavirus disease 2019 (COVID-19) patients (10),

endothelial dysfunction (ED) has been recently recognized as a

crucial factor for the systemic manifestations of several respiratory

conditions, including COPD, as well as a key event in the process of

atherogenesis, thus linking respiratory diseases and cardiovascular

risk (8). However, the exact mechanisms underlying ED, along with

clinical assessment options and potential treatment strategies for

ED in COPD patients, remain subjects of debate despite significant

research efforts in recent years. Moreover, no consensus has been

reached regarding the most suitable assessment method or the

treatment strategy with the greatest potential to improve ED.

In light of the above, this narrative mini review will offer a

brief but comprehensive overview on the crucial mechanisms, the

assessment tools and the therapeutical options currently available

for ED among COPD patients, with the aim of providing updated

evidence and practical advice on the topic.

Endothelial dysfunction in COPD:
mechanisms and mediators

ED involves vascular damage driven by systemic inflammation,

hypoxia, and extracellular matrix injury through different

mechanisms involving multiple pathways, some of them not yet

fully understood, as shown in Figure 1 (11). As a result of these

multiple interactions, endothelial cells (ECs) are structurally

compromised and are impaired in their crucial physiological

activities (12).

Chronic and neurogenic inflammation

Chronic inflammation in COPD can disrupt intercellular

adhesion molecules (ICAM) expression and function, facilitating

increased leukocyte migration across the endothelium.

Accordingly, elevated ICAM-1 levels have been correlated

with respiratory decline and emphysema severity (13). Similarly,

inflammatory mediators like interleukin (IL)-8, tumor necrosis

factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1

persistently recruit leukocytes, exacerbating COPD during acute

exacerbations (14, 15). Neutrophil extracellular traps (NETs)

also cause EC cytotoxicity and airflow limitation (16). Moreover,

cigarette smoke worsens EDwith several mechanisms, including an

increased alveolar-capillary permeability and the creation of neo-

epitopes, which elicit autoimmune responses (17). Particularly,

carbonyl-modified antibodies and citrullinated proteins were

found in higher concentrations in COPD patients-derived airway

samples (18, 19).

Chronic inflammation also disrupts the function, mobilization,

and survival of circulating stem cells, such as endothelial progenitor

cells (EPCs) (20). These cells are typically recruited to sites of

injury, where they differentiate into mature ECs and integrate

into the damaged vasculature, aiding in the restoration of vascular

integrity. However, this process appears to be impaired in COPD

patients, potentially contributing to the development of ED and its

associated biological and clinical consequences.

Oxidative stress and NO bioavailability

Oxidative stress, a key driver of COPD progression and ED,

arises from elevated reactive oxygen species (ROS) in plasma and

ECs (21). ROS cause lipid peroxidation, activate the receptors for

advanced glycation (RAGE), and induce ferroptosis. Additionally,

oxidative stress reduces nitric oxide (NO) bioavailability, inducing

accumulation of asymmetric dimethylarginine (ADMA) and

prompting an increased arginase activity (9), thus impairing

vasodilation (22). Finally, neopterin levels, a biomarker of chronic

heart failure and systemic inflammation, have been shown to reflect

immune responses during oxidative stress in COPD patients and

correlate with reduced respiratory function (11, 23).

Cellular senescence and apoptosis

Cellular senescence in ECs results from telomere shortening,

mostly due to oxidative stress, and promoting chronic

inflammation and EC apoptosis (24, 25). In COPD, cigarette

smoke accelerates EC senescence and reduces anti-apoptotic

agents like prostacyclin (PGI2), further impairing endothelial

health (26).

Assessment of endothelial function in
COPD

Endothelial function can be evaluated using various techniques

with differing levels of invasiveness. Here, we highlight the most

effective methods for assessing ED in COPD patients.

Laboratory biomarkers

Biomarkers for ED, including acute-phase proteins, cytokines,

and adhesion molecules, can offer insights into the pathogenesis

of COPD and its related cardiovascular risk (27). Elevated C-

reactive protein (CRP) and fibrinogen levels have been linked to

a reduced NO synthesis and increased coronary artery disease

(CAD) risk (28, 29). Platelet activity markers, like P-selectin and

mean platelet volume (MPV), also highlight a pro-thrombotic

state in COPD patients (30, 31), while other generical markers

of oxidative stress, such as peroxynitrite, ADMA, vascular cell

adhesion molecule-1 (VCAM-1), and malondialdehyde have been

used to assess ED, alongside circulating endothelial cells (CECs),

EPCs, or endothelin-1 (ET-1), which are deemed to bemore specific

to endothelial function (32). In particular, studies have shown that

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1550716
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Marcuccio et al. 10.3389/fmed.2025.1550716

FIGURE 1

Pathogenetic mechanisms involved in the genesis of endothelial dysfunction among chronic obstructive pulmonary disease patients. All proposed

mechanisms seem to be related to chronic inflammation, alteration in NO production, and cellular senescence. IL, interleukin; TNF-a, tumor necrosis

factor a; MCP-1, monocyte chemoattractant protein; PAF, platelet-activating factor; NET, neutrophil extracellular traps; NE, neutrophil elastase; SP,

substance P; NKA, neurokinin A; GCRP, calcitonin gene-related peptide; NO, nitric oxide; NF-kB, nuclear factor kappa-light-chain-enhancer of

activated B cells; ROS, reactive oxygen species; Ox-LDL, oxidized low-density lipoprotein; eNOS, endothelial nitric oxide synthase; HIF-a,

hypoxia-inducible factor 1-alpha; VEGF, vascular endothelial growth factor; Bcl-2, B cells lymphoma 2; p53, protein 53; p16, protein 16; p21, protein

21. Parts of Figure 1 were created using images from Servier Medical Art, licensed under CC BY 4.0.

EPC functionality declines in COPD due to apoptotic triggers

(33). Microparticles, especially endothelial-derived microparticles

(EMPs), are elevated in COPD and have been shown to correlate

with reduced respiratory function and the severity of emphysema

(34, 35). Finally, endocan, a proteoglycan protein and sensitive

marker of ED, shows potential as a predictor of exacerbations

(36). Nonetheless, some crucial issues still affect the current use

of laboratory biomarkers in clinical practice, despite promising

results from trials. To date no single biomarker has been

demonstrated to hold capability of either diagnosing, predicting

and/or stratifying the severity of ED with acceptable sensibility

and specificity, at least in the clinical setting of COPD patients.

Finally, the limited availability and high costs of laboratory

assays for measuring cytokines, adhesion molecules, and certain

cell populations may pose another barrier to the widespread

implementation of laboratory biomarkers as tools for assessing ED

in COPD patients.

Clinical assessment strategies

Over the past 35 years, a variety of methodological approaches

have been developed to study endothelial function in humans

(37). Despite the widespread use of non-invasive methods for

assessing endothelial function, which are valuable for the primary

and secondary prevention of cardiovascular events, none of these

methods are currently recommended for routine clinical practice

according to existing guidelines (38).

Themost commonly used techniques for evaluating endothelial

function in research focus on post-occlusive reactive hyperemia

One of the earliest methods, introduced in the early 20th

century, is Venous Occlusion Plethysmography (VOP). This

technique assesses the functionality of the venous system in the

limbs, particularly in conditions such as chronic venous diseases,

claudication, and diabetes mellitus (39–41). In brief, changes in the

blood volume in the limbs are detected, thus indirectly measuring

the local post-ischemic vascular tone (42).

Laser Doppler Flowmetry (LDF) measures endothelium-

dependent dilation in small cutaneous vessels by applying the

Fizeau-Doppler principle, which derives blood flow velocity from

the frequency shifts in backscattered light caused by moving red

blood cells (43). However, its reproducibility is limited due to the

heterogeneity of the cutaneous microvasculature (44).

Flow-mediated dilation (FMD) refers to the increase in

blood flow-induced tangential wall shear stress following a post-

ischemic dilatory stimulus, a process that is dependent on NO

release (45). This ultrasound-based and non-invasive technique

is typically applied to a large-conductance vessel, such as the

brachial artery. The ischemic stimulus is induced by inflating

a pneumatic cuff on the forearm to supra-systolic pressure for
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5min. Upon cuff deflation, the sudden increase in brachial

artery blood flow generates elevated shear stress, triggering NO

release and subsequent vasodilation (45). Current guidelines

recommend specific pre-test conditions, including fasting for 10–

12 h, abstinence from smoking, vasoactive substances, alcohol,

coffee, and tea, avoidance of physical activity, and maintaining

an environmental temperature of 21–23◦C under soft lighting

(45). Despite consistent attempts in standardizing the procedure

(46), the main limitation of this method is its high operator-

dependency as well as a broad inter-subject variability (38).

Recently, however, semi-automated software cleared by the Food

and Drug Administration (FDA), such as Cardiovascular Suite R©

(FMD Studio, QUIPU Srl, Pisa, Italy), has been introduced to

enhance test reproducibility (Figure 2).

Peripheral arterial tonometry (PAT)-based technology

(EndoPAT; Itamar Medical, Caesarea, Israel) has also emerged as

an alternative for studying endothelial function (47). This method

employs two plethysmographic sensors placed on the fingertips to

detect pulsatile blood volume changes. An inflatable cuff is placed

on one upper arm (study arm), while the contralateral arm serves

as a control (48). The technique evaluates pulse wave amplitude

(PWA) both at baseline and during wall shear stress. The reactive

hyperaemia index (RHI) is calculated as the ratio of post-ischemic

to baseline PWA using dedicated software (49). Compared to other

non-invasive methods, PAT is simpler and more reproducible

(48). RHI is considered an indicator of endothelial function and

microvascular reactivity and is currently recognized as a key index

for evaluating patients at high cardiovascular risk (50).

A recent systematic review of clinical methods for assessing

endothelial function in COPD revealed that VOP, while historically

significant, is now rarely used. Conversely, FMD remains

the most widely applied technique in this context despite

the limitations discussed above (51). PAT, while simpler and

operator-independent, is however more expensive, and has been

employed in relatively few studies (52). Furthermore, its utility

in COPD might be influenced by the increased sympathetic tone

commonly observed in these patients (51), and therefore, further

investigation into its applicability and validation are warranted.

In summary, the clinical assessment tools discussed appear

to be promising alternatives for the routine evaluation of ED in

respiratory diseases, particularly COPD. However, the validation

and standardization of these methods, the identification of reliable

cut-off values, equipment-related costs (such as consumables in

the case of PAT), and the need for adequately trained operators

continue to hinder their widespread adoption.

Evidence from clinical research

Clinical methods for assessing endothelial function have been

employed in both stable COPD and AECOPD. A systematic

review with meta-analysis, including 8 observational studies on

334 patients affected by COPD, concluded that ED studied by

FMD is more pronounced in these patients compared to controls,

with a statistically significant mean difference of −3.15% (95%

confidence interval: −4.89, −1.40; P < 0.001). Additionally, ED

was found to be independent from classical risk factors and

cigarette smoking among COPD patients, thus underscoring a

possible different intrinsic pathogenetic mechanism (53). This

finding aligns with the conclusions of a previous systematic

review and is supported by similar meta-analytical data, which

identified a statistically significant mean difference in FMD values

of −3.22% (95% confidence interval: −4.74, −1.69; P < 0.001),

regardless of smoking habit (54, 55). Overall, this suggests that,

while cigarette smoking is associated with endothelial damage

through the triggering of the inflammatory cascade, the release

of ROS and the reduction of NO bioavailability, this factor

does not completely justify the increased cardiovascular risk in

COPD (51). The relationship between ED and airflow limitation

in COPD patients has been investigated in several studies. In

particular, Eickhoff et al. observed a reduction of FMD values in

relation to the increase of circulating inflammatory biomarkers

FIGURE 2

Evaluation of flow-mediated dilation (FMD) using FDA-approved software for edge detection, wall tracking, and shear-rate monitoring. (A) shows the

patient’s positioning and the setup of the equipment during the procedure. (B) illustrates the simple and intuitive interface of the software for

semiautomatic FMD assessment. (B) is reproduced with permission from Quipu SRL, Pisa, Italy.
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(e.g., CRP, fibrinogen, interleukin-6) in patients affected by stable

COPD, thus underlining a significant and dangerous association

between airway obstruction, inflammation, ED and, therefore,

cardiovascular risk (56). The relationship between lower values of

FMD and a more impaired respiratory function was also explored

in another study, further contributing to corroborate the close

link between symptomatic worsening and lung function decline in

moderate-to-severe COPD and impairment in endothelial function

(57). Currently, only a few authors have investigated endothelial

function using PAT-based technology in patients with COPD and

this pathological condition is certainly associated with reduced

RHI values (52, 55). However, the implications of this body of

evidence and a comparison with FMD or other techniques are

still scarce and should be explored with appropriately designed

trials. Alongside stable COPD, endothelial damage analyzed with

either FMD or PAT has also been studied in AECOPD. In this

regard, a recent meta-analysis conducted on 5 studies, including

a total of 279 patients, has contributed to shed light on this

still poorly explored topic (58). FMD appeared to be significantly

reduced in AECOPD especially due to the reduced bioavailability

of NO. Two studies (24 total AECOPD) of the 5 analyzed in this

meta-analysis used PAT as a technique for evaluating endothelial

damage: in one study, only 50% of patients presented a reduced

RHI (RHI < 0.40) (59), while in the other no relationship

between a reduction in RHI values and AECOPD was found (60).

Some authors have highlighted a significant endothelial function

impairment during severe AECOPD, which tended to improve after

the acute phase. This acute worsening and its subsequent reversal

might be due to the temporary flare-up in systemic inflammation

which involves the endothelium, leading to FMD alterations. This

interesting evidence contributes to justify the observed increase in

cardiovascular morbidity and mortality during AECOPD (61).

In conclusion, the aforementioned findings suggest that ED

may not simply be an epiphenomenon arising from shared risk

factors between COPD and CVD, but rather an intrinsic feature

of COPD that could play a significant role in COPD-associated

cardiopulmonary risk.

Therapeutic advances: targeted
therapies and rehabilitation

Although no specific medication for the treatment of isolated

ED is currently approved, its amelioration still constitutes an

unexpected but highly positive “side effect” of several commercially

available drugs (32), including some antioxidant and nutraceutical

preparations (9). Nonetheless, non-pharmacological therapies, and

in particular pulmonary rehabilitation (PR) may play an important

role in the improvement of ED among COPD patients.

Molecular and pharmacological therapies

Traditional cardiovascular drugs, including renin-angiotensin

pathway inhibitors and statins, may have benefits in COPD-

related ED (62). In particular, statins, such as fluvastatin and

atorvastatin, have demonstrated a reduction in mortality risk,

decreased CRP levels, and a substantial improvement in endothelial

function among COPD patients, as shown in the RODEO trial

(NCT00929734), which highlighted endothelial improvements

through FMD (63, 64). The effect of statins on ED might

be related to the activation of anti-inflammatory pathways and

conversely reduced CRP levels (64). Considering the role of

platelet activation in ED, antiplatelet drugs may reduce ED and

thrombotic risk in COPD. The PLATO trial (NCT00391872)

found that ticagrelor not only reduces cardiovascular risk but

also lowers bleeding risk compared to clopidogrel in COPD

(65). These findings are supported by meta-analyses showing

reduced mortality in COPD patients treated with antiplatelet

agents (66). The antioxidant properties of N-acetylcysteine (NAC)

have been investigated in clinical studies; however, its efficacy

in managing ED in COPD remains controversial (67). Ongoing

studies on antioxidant enzymes, including glutathione peroxidase

and superoxide dismutase, have shown promising results on ED in

animal models (68). Additionally, Ginkgo biloba extract (EGb) has

demonstrated protective effects on pulmonary endothelial cells in

vitro by upregulating the nuclear factor erythroid 2-related factor 2

(Nrf2) pathway (69).

The phosphodiesterase 4 (PDE4) inhibitor roflumilast,

approved by FDA for COPD, inhibits leukocyte-endothelial

cell interactions and is being evaluated in clinical trials for its

anti-inflammatory properties through increased cAMP levels

in inflammatory cells. Preliminary findings suggest it reduces

exacerbation frequency and improves residual volume without

significant changes in forced expiratory volume in 1 s (FEV1)

(70, 71).

Finally, bosentan, an endothelin receptor antagonist, has shown

potential benefits in hemodynamic parameters for COPD patients

with pulmonary hypertension (PH) in experimental studies, though

improvements in respiratory function were not observed (72, 73).

When considering potential pharmacological therapies,

however, attention should be given to the variability in patient

responses and their subsequent tolerability (74). In fact, the

aforementioned drugs often present with side effects, so the

risk/benefit ratio in the specific context of COPD should be

carefully evaluated. Further research is needed to determine

whether administering such drugs in the presence of a confirmed

diagnosis of ED in COPD patients could provide an advantageous

option for these patients.

Pulmonary rehabilitation

Multidisciplinary pulmonary rehabilitation is a cornerstone of

COPD management, as emphasized in international guidelines

(75). Such programs improve morbidity, mortality, quality of life,

and disability levels in COPD patients (76). Beyond pulmonary

benefits, recent studies suggest that cardiac and pulmonary

rehabilitation significantly enhance vascular health and reduce

cardiovascular risk.

Regular physical exercise promotes endothelial repair by

stimulating the mobilization of EPCs, enhancing endothelial

nitric oxide synthase (eNOS) phosphorylation, and upregulating

the activity of superoxide dismutase (32). EPC mobilization is

modulated by factors such as NO bioavailability, interleukin-6
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levels, and the presence of growth factors like vascular endothelial

growth factor (VEGF) (77). Increased EPC levels have been shown

to correlate with improvements in FMD, reductions in arterial

stiffness, and a decrease in systemic inflammatory markers (78, 79).

Physical exercise has been shown to increase wall shear stress,

leading to improved vascular function and structure (80). Studies

on endothelial function in COPD patients undergoing pulmonary

rehabilitation have reported improvements in arterial stiffness and

cardiovascular parameters, including blood pressure and pulse (81).

For example, an 8-week supervised training program enhanced

FMD and endothelial function, even in small sample studies (82).

Another study found that combining pulmonary rehabilitation

with nitrate therapy produced superior endothelial outcomes

compared to rehabilitation alone, likely due to insufficient training

intensity to optimize wall shear stress (83).

Ambrosino et al. (84) recently conducted a longitudinal cohort

study including 40 severe COPD patients and demonstrated a

significant improvement (mean variation: + 1.62% ± 1.59) in

endothelial function, assessed by FMD, after a personalized 4-

week rehabilitation program. During the inpatient rehabilitation

course, changes in lung function and spirometry parameters,

as reflected by FEV1, were considered strong predictors of

changes in FMD, thus confirming the direct association between

the severity of airway obstruction and endothelial dysfunction.

Improvements in endothelial function were observed also when

stratifying patients according to demographic factors, treatment,

and concomitant medical conditions; the only factor associated to a

lower improvement of FMD values was hypercholesterolemia. The

Authors therefore concluded that multidisciplinary rehabilitation

may be able to improve endothelial dysfunction in COPD patients,

therefore improving their cardiovascular risk profile.

Furthermore, a retrospective post-hoc analysis of 46 COPD

patients undergoing a 5-week rehabilitation program found

no significant impact of inhaled corticosteroids (ICSs) on

endothelial function, suggesting an independent positive effects of

rehabilitation on vascular health (85).

The importance of the above discussed data becomes

undoubtedly clear when considering that, on the basis of meta-

analytical evidence, for each percentage point reduction in FMD

values, there is an increase of 12% in the risk of ischemic events

(86). Therefore, given that pulmonary rehabilitation appears to

positively affect FMD values, it could be hypothesized that PR

may be identified as the most appropriate healthcare setting for

the management of cardiovascular comorbidity in severe COPD

patients.

In summary, the available evidence suggests that pulmonary

rehabilitation may be a highly effective treatment strategy for

addressing ED in COPD patients. Unfortunately, several barriers

continue to limit regular access to pulmonary rehabilitation

programs (87), including patients’ misperception of rehabilitation

as an additional burden rather than an opportunity, insufficient

collaboration between primary care physicians and rehabilitation

facilities, and a lack of caregiver support.

Conclusions

COPD’s systemic effects and cardiovascular risk are tightly

linked through ED. Mounting evidence has shown that ED is

a determinant feature of COPD and its improvement through

different strategies may be linked to functional and clinical

amelioration. Targeting ED early in COPD could potentially

slow down disease progression and mitigate cardiovascular

complications. Lifestyle modifications, pharmacological therapies,

and rehabilitation programs provide complementary strategies to

enhance endothelial health. Meanwhile, non-invasive techniques

such as FMD and PAT, alongside emerging biomarkers, show

promise for improving diagnosis and enabling personalized

treatment. Despite a promising body of evidence, a strong

effort is required in order to bring the study of ED within

the current management of COPD patients, while several

questions still remain unanswered. In fact, the optimal timing

for initiating pulmonary rehabilitation and the most appropriate

training regimen for COPD patients to reduce ED remain to

be determined. Additionally, the potential synergistic effects

of pulmonary rehabilitation combined with pharmacological or

nutraceutical strategies (88) or the enhancement of its benefits

through the administration of oxygen via high-flow devices

(89) have not yet been fully explored. Future well-designed

trials are needed to address these questions, as well as to

identify the most suitable assessment tools for both research and

clinical applications.

Referring COPD patients to intensive multidisciplinary

pulmonary rehabilitation programs currently appears to be a

practical and effective strategy for managing ED and, in turn,

reducing their cardiopulmonary risk. Ultimately, exploring the

role of ED in COPD’s systemic manifestations remains a critical

priority in both research and clinical practice.
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