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Background: Sarcopenia frequently occurs as a complication among individuals 
with chronic kidney disease (CKD), contributing to poorer clinical outcomes. 
This research aimed to create and assess a predictive model for the risk of 
sarcopenia in CKD patients, utilizing data obtained from the China Health and 
Retirement Longitudinal Study (CHARLS).

Methods: Sarcopenia was diagnosed based on the Asian Working Group for 
Sarcopenia (AWGS 2019) criteria, including low muscle strength, reduced 
physical performance, and low muscle mass. The 2015 CHARLS data were split 
randomly into a training set (70%) and a testing set (30%). Forty-nine variables 
encompassing socio-demographic, behavioral, health status, and biochemical 
factors were analyzed. LASSO regression identified the most relevant predictors, 
and a logistic regression model was used to explore factors associated with 
sarcopenia. A nomogram was developed for risk prediction. Model accuracy 
was evaluated using calibration curves, while predictive performance was 
assessed through receiver operating characteristic (ROC) and decision curve 
analysis (DCA). Four machine learning algorithms were utilized, with the optimal 
model undergoing hyperparameter optimization to evaluate the significance of 
predictive factors.

Results: A total of 1,092 CKD patients were included, with 231 (21.2%) diagnosed 
with sarcopenia. Multivariate logistic regression revealed that age, waist 
circumference, LDL-C, HDL-C, triglycerides, and diastolic blood pressure are 
significant predictors. These factors were used to construct the nomogram. 
The predictive model achieved an AUC of 0.886 (95% CI: 0.858–0.912) in the 
training set and 0.859 (95% CI: 0.811–0.908) in the validation set. Calibration 
curves showed good agreement between predicted and actual outcomes. 
ROC and DCA analyses confirmed the model’s strong predictive performance. 
The Gradient Boosting Machine (GBM) outperformed other machine learning 
models. Applying Bayesian optimization to the GBM achieved an AUC of 0.933 
(95% CI: 0.913–0.953) on the training set and 0.932 (95% CI: 0.905–0.960) on 
the validation set. SHAP values identified age and waist circumference as the 
most influential factors.

Conclusion: The nomogram provides a reliable tool for predicting sarcopenia in 
CKD patients. The GBM model exhibits strong predictive accuracy, positioning 
it as a valuable tool for clinical risk assessment and management of sarcopenia 
in this population.
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1 Introduction

Sarcopenia, characterized by the progressive loss of skeletal 
muscle mass, strength, and functionality, poses an increasing health 
challenge, particularly for older adults and individuals with chronic 
illnesses. As kidney function declines, there is a notable deterioration 
in muscle health, which significantly affects physical capabilities and 
overall quality of life (1). Chronic kidney disease (CKD) affects 
millions worldwide and leads to various complications, including 
metabolic imbalances, nutritional deficiencies, and reduced physical 
capacity, all of which exacerbate muscle function decline (2–4). 
Sarcopenia frequently occurs as a complication among individuals 
with CKD, with a global prevalence of 24.5% across all disease stages 
(5). This progressive muscle deterioration contributes to poorer 
clinical outcomes, including increased mortality risk (6). While recent 
studies have developed nomograms for sarcopenia prediction in 
hemodialysis populations, reliable tools for non-dialysis CKD patients 
remain scarce. This gap underscores the need for models adaptable to 
broader CKD stages (7, 8). Developing an accurate risk prediction 
model would aid healthcare providers in identifying high-risk 
individuals early, facilitating the timely implementation of 
interventions focused on nutrition and physical rehabilitation. These 
interventions are crucial for enhancing the quality of life, minimizing 
the risk of additional health complications, and reducing overall 
healthcare costs.

The China Health and Retirement Longitudinal Study (CHARLS) 
provides a valuable opportunity to develop such a predictive model 
(9). It is a nationally representative survey of Chinese adults aged 45 
and older, designed to collect comprehensive data on health, social, 
and economic factors (10). The dataset includes comprehensive 
information, such as biomarkers, physical measurements, and health 
histories, making it an ideal resource for developing models that 
predict adverse health outcomes associated with aging (11). The 
primary objective of this study is to develop and validate a predictive 
model for muscle health decline in patients with CKD using CHARLS 
data. The model is designed to enhance the early detection of high-risk 
individuals, facilitating prompt interventions to avert severe 
health decline.

2 Materials and methods

2.1 Study design and population

This study draws on data from CHARLS. The CHARLS dataset 
includes extensive details about participants’ demographic profiles, 
health conditions, socioeconomic status, and lifestyle habits. This 
study analyzes data obtained from the publicly accessible 2015 wave 
of CHARLS, which provides comprehensive health-
related measurements.

Participants eligible for inclusion in the study were individuals 
diagnosed with chronic kidney disease (CKD), identified through 
either self-reported confirmation by a physician or clinical diagnostic 

criteria, such as an estimated glomerular filtration rate (eGFR) of less 
than 60 mL/min/1.73 m2 (12). To uphold the robustness of the 
analysis, those with incomplete data on key variables—including 
sarcopenia-related metrics, renal function indicators, and other 
covariates integral to the predictive model—were excluded. 
Consequently, the final analytic sample comprised 1,092 CKD patients 
aged 45 years or older, each with comprehensive data suitable for 
evaluation (Figure 1).

2.2 Definition of sarcopenia

Sarcopenia status was evaluated in accordance with the 2019 
criteria established by the Asian Working Group for Sarcopenia 
(AWGS), encompassing three core components: muscle strength, 
appendicular skeletal muscle mass (ASM), and physical performance. 
The diagnosis of sarcopenia was assigned to individuals exhibiting 
reduced muscle mass in conjunction with either compromised muscle 
strength or diminished physical performance (13). Muscle Strength 
was measured using a Yuejian™ WL-1000 dynamometer. Participants 
stood upright, holding the dynamometer at a right angle to their body, 
and were instructed to squeeze the handle as firmly as possible for 3 s. 
Two trials were performed for each hand, with a minimum rest 
interval of 15 s between consecutive trials to minimize fatigue. The 
highest value across all four trials (left and right hands combined) was 
recorded as the final grip strength. Consistent with the AWGS 2019 
criteria, low grip strength was defined as <28 kg for men and < 18 kg 
for women.

ASM was estimated using a validated anthropometric equation 
specifically designed for Chinese residents. Previous studies have 
demonstrated that this equation yields results closely aligned with 
those obtained from dual X-ray absorptiometry (DXA) (14, 15). Low 
muscle mass was defined as the sex-specific lowest 20% of height-
adjusted ASM (ASM/Ht2) within the cohort, consistent with 
methodologies applied in large-scale Chinese sarcopenia studies (16). 
Specifically, for women, low muscle mass was defined as less than 
5.37 kg/m2, and for men, it was less than 7.06 kg/m2. The ASM 
equation utilized is:

( ) ( )
( ) ( )
0.193 0.107 4.157
1 ,2 0.037 2.631

= ∗ + ∗ −
∗ = = − ∗ −
ASM weight kg height cm
gender men women age years

Additionally, physical performance was assessed through gait 
speed and a 5-time chair stand test. For gait speed, participants 
completed two trials of a 2.5-meter walk at their usual pace, with 
timing initiated when the first foot crossed the start line and stopped 
at the finish line; the maximum speed from either trial was used, with 
<1 m/s defined as low performance. 5-Time Chair Stand Test required 
participants to rise five times as quickly as possible with arms crossed 
over the chest. Timing began on the command “ready? stand” and 
ended when the participant’s buttocks touched the chair after the fifth 
stand. A practice trial was allowed prior to formal measurement. Low 
performance was defined as a completion time ≥ 12 s (13).
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2.3 Variables

2.3.1 Demographic characteristics
The demographic factors considered in this study were age, 

gender, marital status, and education level. Marital status was 
categorized as either married or not married. Educational attainment 
was categorized into primary, secondary, or tertiary education levels.

2.3.2 Lifestyle and behavioral factors
Lifestyle and behavioral factors encompassed smoking status, 

alcohol use, physical and social activities, sleep quality, and life 
satisfaction. Smoking status was categorized into two groups: 
current smoker and non-smoker. Alcohol consumption was 
categorized into two groups based on drinking history: individuals 
with a history of alcohol use and those without. Physical activity 
was categorized by frequency and intensity as high, moderate, or 
low. Social activity was classified into two categories based on 

engagement: those who participate in social activities and those 
who do not. Sleep quality was classified into four levels based on 
self-reported frequency of poor sleep: “Rarely or none of the time,” 
indicating poor sleep is infrequent or almost never occurs; “Some 
or a little of the time,” suggesting poor sleep occurs occasionally but 
not regularly; “Occasionally or a moderate amount of the time,” 
denoting that poor sleep is experienced somewhat regularly; and 
“Most or all of the time,” reflecting frequent or consistent poor 
sleep. Life satisfaction was measured and divided into three levels: 
“Fair,” indicating average life satisfaction; “Good,” indicating above-
average satisfaction where individuals feel mostly content with their 
lives; and “Poor,” signifying below-average satisfaction, where 
individuals often feel dissatisfied.

2.3.3 Health-related factors
Health-related factors included body index, self-perceived 

health status, ADL (Activities of Daily Living) disability, IADL 

FIGURE 1

Flowchart of study design.
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(Instrumental Activities of Daily Living) disability, and depressive 
symptoms. Body index encompassed body mass index (BMI), waist 
circumference, height, and weight. BMI was determined by dividing 
weight in kilograms by height in meters squared. Self-reported 
health status was categorized as good, fair, or poor based on 
participants’ own assessment of their overall health. The ADL scale 
assesses participants’ ability to perform basic tasks such as dressing, 
bathing, feeding, transferring, toileting, and maintaining 
continence. If a participant is completely unable to perform any one 
of these tasks, they are considered to have an ADL disability. 
Similarly, the IADL scale evaluates more complex tasks, including 
doing chores, cooking, shopping, managing finances, and taking 
medication. If a participant is completely unable to perform any one 
of these tasks, they are considered to have an IADL disability (17–
19). Depressive symptoms were assessed using a 10-item screening 
questionnaire derived from the Center for Epidemiologic Studies 
Depression Scale (CES-D), which evaluates depressive mood and 
behavior. A CES-D score greater than 10 was used to define the 
presence of depression (20, 21).

2.3.4 Chronic diseases
Chronic diseases were identified through self-reported diagnoses, 

including mental disease, stroke, heart disease, cardiovascular disease, 
arthritis, dyslipidemia, liver disease, digestive disease, hypertension, 
chronic lung disease, and asthma.

2.3.5 Laboratory test indicators
Laboratory test indicators included blood pressure, lipid profile, 

renal function markers, hematological indicators, and inflammatory 
markers. Blood pressure measurements included systolic and 
diastolic values. The lipid profile included low-density lipoprotein 
(LDL-C), triglycerides (TG), high-density lipoprotein (HDL-C), and 
total cholesterol (TC). Renal function markers included cystatin C, 
serum creatinine, blood urea nitrogen (BUN), and uric acid levels. 
The estimated glomerular filtration rate (eGFR) serves as an 
important indicator of kidney function. In this study, we  used a 
formula based on serum cystatin C (Cys) levels, known for its 
accuracy. This method, derived from the CKD-EPI equation, provides 
a reliable assessment of kidney function, especially in populations 
where creatinine-based estimates are less accurate (22). 
Hematological indicators included glycated hemoglobin and 
C-reactive protein.

2.4 Data processing

The CHARLS 2015 dataset was randomly divided into two 
subsets: a training set (70% of the data) and an internal validation 
set (30% of the data). LASSO (Least Absolute Shrinkage and 
Selection Operator) regression was performed on the training set 
to identify possible predictors of sarcopenia in individuals with 
chronic kidney disease (CKD). Variables that showed significant 
associations were included in a subsequent multivariate logistic 
regression analysis, where independent predictors were determined 
using a significance level of p < 0.05. These identified predictors 
were then utilized to create a nomogram for evaluating sarcopenia 
risk (23).

2.5 Model performance assessment

The model’s ability to discriminate was assessed using the area 
under the receiver operating characteristic curve (AUC). Calibration 
was examined through the use of calibration plots and the Hosmer-
Lemeshow test, which assessed how well the predicted probabilities 
aligned with the actual outcomes. To determine the clinical utility of 
the nomogram, Decision Curve Analysis (DCA) was performed.

2.6 Model development and evaluation

To evaluate the predictive performance of the identified predictors, 
four machine learning models were developed: Gradient Boosting 
Machine (GBM), Regularized Discriminant Analysis (RDA), Random 
Forest (RF), and Support Vector Machine (SVM). For further 
optimization, Bayesian optimization was employed for hyperparameter 
tuning. Additionally, SHapley Additive exPlanations (SHAP) values and 
variable importance metrics were used to assess feature contributions.

2.7 Principal component analysis and 
cluster analysis

Principal Component Analysis (PCA) was conducted to reduce 
dimensionality and mitigate multicollinearity (24). The analysis included 
all predictor variables, excluding ID and the outcome variable 
(sarcopenia). The number of principal components (PCs) retained was 
determined based on cumulative explained variance, with the goal of 
capturing at least 75% of the total variance. K-means clustering was 
performed to identify subgroups with similar characteristics. The 
optimal number of clusters was determined using the Elbow method and 
Silhouette coefficient. The clusters were analyzed in relation to sarcopenia 
prevalence to explore potential group-specific differences (25).

2.8 Statistical analysis

All statistical analyses were performed using R version 4.3.1. 
Continuous variables are expressed as mean ± standard deviation (SD) 
or median (interquartile range, IQR), depending on suitability, whereas 
categorical variables are shown as frequencies and percentages. 
Appropriate statistical tests, including Student’s t-test, chi-square test, 
and Mann–Whitney U test, were employed for group comparisons. A 
two-tailed p-value below 0.05 was deemed statistically significant.

3 Results

3.1 Study population characteristics

A total of 1,092 CKD patients were included in the final analysis, 
with 231 diagnosed with sarcopenia and 861 without, yielding a 
sarcopenia incidence of 21.2%. The demographic and clinical features of 
the sample, which were used for model development, are presented in 
Table 1. Notable differences were found between the groups in terms of 
age, marital status, BMI, and waist circumference (p < 0.05). Individuals 
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with sarcopenia were generally older and exhibited a higher rate of 
comorbidities, including hypertension and dyslipidemia (p < 0.05).

The cohort exhibited significant gradients in clinical profiles 
across CKD stages (Supplementary Table S2). Participants with 
advanced CKD (G3b-G5) were older (mean age 71.6 vs. 60.9 years in 
G1-G2, p < 0.001) and had higher rates of hypertension (58.5% vs. 
38.9%, p < 0.001) and IADL disability (24.5% vs. 13.0%, p = 0.001). 
Cognitive function declined progressively (8.13 vs. 10.38, p < 0.001), 
paralleled by elevated inflammatory markers (CRP: 4.49 vs. 2.70 mg/L, 
p < 0.001). Sarcopenia prevalence nearly doubled in G3b-G5 (29.9%) 
compared to G1-G2 (16.2%, p < 0.001), underscoring the 
multifactorial burden in advanced CKD.

The dataset, comprising 1,092 participants, was randomly divided 
into two subsets: a training set and an internal validation set. To ensure 
that the two subsets were comparable, we conducted thorough statistical 
comparisons, the results of which are provided in Supplementary Table S1. 
These analyses were aimed at evaluating the equivalence of the training 
and validation cohorts across key demographic and clinical 
characteristics. The findings revealed no significant differences (p > 0.05).

3.2 Feature selection using LASSO 
regression

LASSO regression was applied to the training dataset (n = 764) to 
identify the most relevant predictors of sarcopenia in CKD patients 
(Figure 2). The following predictors were retained in the model: age, 
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), triglycerides (TG), waist circumference, and 
diastolic blood pressure (DBP). These variables were subsequently 
included in the multivariate logistic regression analysis.

3.3 Multivariate logistic regression analysis

Multivariate logistic regression was performed to validate the 
independent predictors of sarcopenia. The results are presented in 
Table 2. Age: OR = 4.39 (95% CI: 3.08–6.26), LDLC: OR = 0.66 (95% 
CI: 0.48–0.90), HDLC: OR = 1.40 (95% CI: 1.06–1.84), TG: OR = 0.53 
(95% CI-0.37, 0.76), Waist: OR = 0.32 (95% CI: 0.23–0.43), 
DBP:OR = 0.62 (95% CI: 0.45–0.86) were identified as significant 
independent predictors of sarcopenia (p < 0.05).

The model’s performance was evaluated using several methods, 
including the area under the receiver operating characteristic curve 
(AUC) for both the training and validation datasets, as well as calibration 
curves and decision curve analysis (DCA). In the training set 
(Figure 3A), the model achieved an AUC of 0.886 (95% CI: 0.858–0.912), 
while in the validation set (Figure 3B), the AUC was 0.859 (95% CI: 
0.811–0.908), demonstrating ability to distinguish between sarcopenia 
patients and non-patients. The Hosmer-Lemeshow goodness-of-fit test 
yielded p-values greater than 0.05 for both the training set (χ2 = 13.302, 
df = 8, p = 0.102) and validation set (χ2 = 6.748, df = 8, p = 0.564). The 
calibration curve was near the ideal line, further validating the model’s 
predictive accuracy (Figure 4). Decision curve analysis was performed 
to evaluate the clinical utility of the model. DCA was conducted to assess 
the clinical value of the model, with the resulting curve indicating 
substantial net benefit across a range of decision thresholds, 
underscoring its potential utility in clinical practice (Figure 5).

3.4 Nomogram development

The nomogram is presented in Figure  6. Each predictor was 
assigned a score corresponding to its contribution to sarcopenia risk, 
and the total score was used to estimate the probability of sarcopenia.

3.5 Machine learning model performance 
and comparison

To further assess the predictive performance and significance of 
the predictors used in developing the nomogram, we constructed four 
machine learning models. As shown in Figures 7A,B, these models 
exhibited strong discriminative ability and predictive value in both the 
training and validation sets. The Random Forest (RF) model achieved 
the highest AUC of 1.000 in the training set, but performed moderately 
in the validation set (AUC = 0.917, 95% CI: 0.884–0.949). In contrast, 
the Gradient Boosting Machine (GBM) model demonstrated the best 
predictive performance in the validation set (AUC = 0.923, 95% CI: 
0.893–0.953), while ranking second in the training set (AUC = 0.966, 
95% CI: 0.952–0.981), just behind the RF model.

3.6 Hyperparameter optimization and 
importance of predictors

We ultimately selected the Gradient Boosting Machine (GBM) 
model for hyperparameter optimization using Bayesian optimization. 
This method is efficient for optimizing hyperparameters by constructing 
a probabilistic model of the objective function and using it to identify 
the most promising hyperparameters for evaluation. The optimization 
process identified the following optimal parameters: 56 trees, an 
interaction depth of 2, a shrinkage rate of 0.0777, and a minimum 
number of observations in a node of 30. After optimization, the model 
achieved an AUC of 0.933 (95% CI: 0.9132–0.9527) for the training set 
and 0.932 (95% CI: 0.9045–0.9595) for the validation set (Figure 8). 
Variable importance analysis revealed that waist circumference was the 
most significant predictor, followed by age, DBP, TG, LDL-C, and 
HDL-C. Specifically, waist circumference had a relative importance of 
59.88%, age 26.92%, DBP 4.22%, TG 3.89%, LDL-C 3.77%, and HDL-C 
1.32% (Figure 9A). Additionally, SHAP (Shapley Additive exPlanations) 
values were used to interpret the model’s predictions. Age and waist 
circumference were the primary drivers of the model’s output, with 
other variables contributing to a lesser extent, making smaller 
adjustments to the final prediction (Figure 9B).

3.7 Principal component analysis (PCA) and 
cluster analysis

PCA reduced the original 52 features into 10 principal 
components, explaining a total of 75.8% of the variance. The first two 
principal components explained 26.5% of the variance. PC1 was most 
strongly influenced by eGFR, cystatin C, uric acid, age, and creatinine, 
whereas PC2 was primarily influenced by waist circumference, BMI, 
BRI, triglycerides, and immediate recall. The PCA biplot (Figure 10) 
illustrates the contribution of these features. K-means clustering 
identified four distinct patient subgroups. Cluster 1 had the highest 
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TABLE 1 Baseline characteristics of samples.

Variables Overall (n = 1,092) Non-Sarcopenia (n = 861) Sarcopenia (n = 231) p-value

Age 65.41 (9.81) 63.99 (9.22) 70.74 (10.15) <0.001

Gender (%) 0.01

 Female 552 (50.5) 453 (52.6) 99 (42.9)

 Male 540 (49.5) 408 (47.4) 132 (57.1)

Marital (%) <0.001

 Married 888 (81.3) 720 (83.6) 168 (72.7)

 Unmarried 204 (18.7) 141 (16.4) 63 (27.3)

Education (%) 0.427

 Primary 1,038 (95.1) 815 (94.7) 223 (96.5)

 Secondary 48 (4.4) 40 (4.6) 8 (3.5)

 Tertiary education 6 (0.5) 6 (0.7) 0 (0.0)

Area (%) 0.01

 Rural 921 (84.3) 713 (82.8) 208 (90.0)

 Urban 171 (15.7) 148 (17.2) 23 (10.0)

Alcohol (%) 0.761

 No 764 (70.0) 600 (69.7) 164 (71.0)

 Yes 328 (30.0) 261 (30.3) 67 (29.0)

Smoking (%) 0.005

 No 560 (51.3) 461 (53.5) 99 (42.9)

 Yes 532 (48.7) 400 (46.5) 132 (57.1)

Socialactivity (%) 0.003

 No 503 (46.1) 376 (43.7) 127 (55.0)

 Yes 589 (53.9) 485 (56.3) 104 (45.0)

Sleep quality (%) 0.091

 Rarely or none of the time 424 (38.8) 328 (38.1) 96 (41.6)

 Some or a little of the time 172 (15.8) 148 (17.2) 24 (10.4)

 Occasionally or a moderate amount of the time 181 (16.6) 139 (16.1) 42 (18.2)

 Most or all of the time 315 (28.8) 246 (28.6) 69 (29.9)

Life satisfaction (%) 0.396

 Fair 662 (60.6) 513 (59.6) 149 (64.5)

 Good 384 (35.2) 311 (36.1) 73 (31.6)

 Poor 46 (4.2) 37 (4.3) 9 (3.9)

Health (%) 0.895

 Fair 477 (43.7) 378 (43.9) 99 (42.9)

 Good 87 (8.0) 67 (7.8) 20 (8.7)

 Poor 528 (48.4) 416 (48.3) 112 (48.5)

ADL_disability (%) 0.477

 No 1,043 (95.5) 820 (95.2) 223 (96.5)

 Yes 49 (4.5) 41 (4.8) 8 (3.5)

IADL_disability (%) 0.377

 No 912 (83.5) 724 (84.1) 188 (81.4)

 Yes 180 (16.5) 137 (15.9) 43 (18.6)

BMI 24.13 (4.52) 25.47 (4.07) 19.17 (1.86) <0.001

Waist 85.98 (14.78) 89.19 (13.63) 74.03 (12.63) <0.001

Height 157.30 (8.09) 157.72 (7.99) 155.70 (8.29) 0.001

(Continued)
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TABLE 1 (Continued)

Variables Overall (n = 1,092) Non-Sarcopenia (n = 861) Sarcopenia (n = 231) p-value

Weight 59.83 (12.53) 63.40 (11.37) 46.51 (5.96) <0.001

CESD 10.93 (7.27) 10.94 (7.23) 10.88 (7.44) 0.918

Depression (%) 1

 No 541 (49.5) 427 (49.6) 114 (49.4)

 Yes 551 (50.5) 434 (50.4) 117 (50.6)

Hypertension (%) <0.001

 No 597 (54.7) 435 (50.5) 162 (70.1)

 Yes 495 (45.3) 426 (49.5) 69 (29.9)

Chronic lung diseases (%) 0.167

 No 843 (77.2) 673 (78.2) 170 (73.6)

 Yes 249 (22.8) 188 (21.8) 61 (26.4)

Cardiovascular disease (%) 0.037

 No 739 (67.7) 569 (66.1) 170 (73.6)

 Yes 353 (32.3) 292 (33.9) 61 (26.4)

Stroke (%) 0.343

 No 1,028 (94.1) 807 (93.7) 221 (95.7)

 Yes 64 (5.9) 54 (6.3) 10 (4.3)

Mental disease (%) 0.212

 No 1,067 (97.7) 844 (98.0) 223 (96.5)

 Yes 25 (2.3) 17 (2.0) 8 (3.5)

Arthritis (%) 0.093

 No 460 (42.1) 351 (40.8) 109 (47.2)

 Yes 632 (57.9) 510 (59.2) 122 (52.8)

Dyslipidemia (%) <0.001

 No 832 (76.2) 623 (72.4) 209 (90.5)

 Yes 260 (23.8) 238 (27.6) 22 (9.5)

Liver disease (%) 0.437

 No 965 (88.4) 757 (87.9) 208 (90.0)

 Yes 127 (11.6) 104 (12.1) 23 (10.0)

Digestive disease (%) 0.986

 No 660 (60.4) 521 (60.5) 139 (60.2)

 Yes 432 (39.6) 340 (39.5) 92 (39.8)

Diabetes (%) 0.185

 No 927 (84.9) 724 (84.1) 203 (87.9)

 Yes 165 (15.1) 137 (15.9) 28 (12.1)

Asthma (%) 0.459

 No 981 (89.8) 777 (90.2) 204 (88.3)

 Yes 111 (10.2) 84 (9.8) 27 (11.7)

ADL_score 5.85 (0.53) 5.83 (0.57) 5.91 (0.30) 0.038

Cognition 9.70 (4.22) 10.08 (4.06) 8.26 (4.52) <0.001

Hearing (%) 0.3

 Fair 624 (57.1) 497 (57.7) 127 (55.0)

 Good 243 (22.3) 195 (22.6) 48 (20.8)

 Poor 225 (20.6) 169 (19.6) 56 (24.2)

(Continued)
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prevalence of sarcopenia (53.4%), while Clusters 2 and 3 had lower 
prevalence (10.8 and 8.8%, respectively). Among the characteristics 
available at presentation, the clusters differed significantly across 
82.4% (42/51) of all the admission variables recorded 
(Supplementary Table S3; Supplementary Figure S1).

4 Discussion

CKD leads to muscle atrophy through a complex interaction of 
factors, primarily characterized by a disruption in the balance 
between protein synthesis and breakdown, along with impaired 
muscle regeneration (26, 27). A key driver of muscle wasting in CKD 
is the dysregulation of critical molecular pathways involved in muscle 
metabolism. The insulin-like growth factor-1 (IGF-1) pathway, which 
is essential for promoting muscle protein synthesis and cell 
proliferation, is often disrupted in CKD patients (28). This disruption 
creates an imbalance between the IGF-1 and myostatin pathways, 
with myostatin inhibiting muscle growth and promoting protein 
catabolism (29, 30). Consequently, accelerated catabolic processes 
contribute to increased muscle atrophy in these individuals (31). 
Inflammation plays a key role in muscle atrophy in CKD, with 
increased levels of pro-inflammatory cytokines like tumor necrosis 
factor-alpha (TNF-α) and interleukin-6 (IL-6) driving muscle 
degradation (32, 33). These cytokines activate the 

ubiquitin-proteasome system (UPS) and the autophagy-lysosome 
pathway (ALP), both of which lead to increased proteolysis (34–36). 
Additionally, oxidative stress from excessive reactive oxygen species 
(ROS) exacerbates mitochondrial dysfunction, impairing energy 
production essential for muscle maintenance and repair (37). Other 
contributing factors include insulin resistance, vitamin D deficiency, 
and altered levels of angiotensin II, all of which further exacerbate the 
muscle-wasting process (38, 39). Insulin resistance, common in CKD, 
diminishes the anabolic effects of insulin on muscle tissue, while 
vitamin D deficiency is linked to muscle weakness and atrophy (40–
44). Moreover, elevated levels of angiotensin II may promote muscle 
degradation through its effects on inflammation and fibrosis (45, 46).

TABLE 1 (Continued)

Variables Overall (n = 1,092) Non-Sarcopenia (n = 861) Sarcopenia (n = 231) p-value

Vision (%) 0.647

 Fair 491 (45.0) 393 (45.6) 98 (42.4)

 Good 318 (29.1) 246 (28.6) 72 (31.2)

 Poor 283 (25.9) 222 (25.8) 61 (26.4)

Pain (%) 0.939

 No 58 (5.3) 45 (5.2) 13 (5.6)

 Yes 1,034 (94.7) 816 (94.8) 218 (94.4)

eGFR 75.11 (27.45) 76.88 (27.37) 68.50 (26.78) <0.001

Systolic pressure 130.97 (20.85) 132.09 (20.55) 126.81 (21.48) 0.001

Diastolic pressure 75.33 (11.60) 76.34 (11.45) 71.58 (11.39) <0.001

BUN 17.35 (6.82) 17.13 (6.81) 18.20 (6.82) 0.033

UA 5.44 (1.62) 5.48 (1.62) 5.32 (1.62) 0.182

CR 0.97 (0.64) 0.96 (0.70) 0.98 (0.33) 0.773

CYS 1.10 (0.51) 1.09 (0.53) 1.16 (0.41) 0.048

TG 145.19 (88.66) 156.15 (92.81) 104.35 (54.41) <0.001

TC 182.94 (36.87) 185.18 (37.63) 174.59 (32.63) <0.001

HDLC 50.27 (12.17) 49.08 (11.55) 54.69 (13.40) <0.001

LDLC 101.60 (28.53) 103.21 (28.84) 95.57 (26.54) <0.001

GLU 105.51 (37.44) 106.69 (38.39) 101.13 (33.39) 0.045

HB 6.11 (1.13) 6.15 (1.13) 5.95 (1.14) 0.017

CRP 3.27 (4.38) 3.31 (4.27) 3.11 (4.78) 0.532

Medians and interquartile ranges (25th and 75th percentiles) were calculated for continuous variables, while frequencies and percentages were determined for categorical variables. The 
Wilcoxon rank-sum test was used to compare group differences for continuous variables, and Chi-squared tests were employed for categorical variables. BMI mean Body Mass Index; BUN 
mean Blood Urea Nitrogen; UA mean Uric Acid; CR mean Creatinine; CYS mean Cystatin C; TG mean Triglycerides; TC mean Total Cholesterol; LDLC mean Low Density Lipoprotein-
Cholesterol; HDLC mean High Density Lipoprotein-Cholesterol; GLU mean Glucose; HB mean Glycated Hemoglobin; CRP mean C-Reactive Protein.

TABLE 2 The prediction model with multivariate logistic regression.

Variables OR (95% CI) p-value

Age 4.39 (3.08, 6.26) < 0.001

LDLC 0.66 (0.48, 0.90) 0.009

HDLC 1.40 (1.06, 1.84) 0.018

TG 0.53 (0.37, 0.76) <0.001

Waist 0.32 (0.23, 0.43) < 0.001

Diastolic pressure 0.62 (0.45, 0.86) 0.005

OR, odds ratio; CI, confidence interval; LDLC mean Low-Density Lipoprotein Cholesterol; 
HDLC mean High-Density Lipoprotein Cholesterol; TG mean triglycerides.

https://doi.org/10.3389/fmed.2025.1546988
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lu et al. 10.3389/fmed.2025.1546988

Frontiers in Medicine 09 frontiersin.org

FIGURE 3

(A) Nomogram ROC curves generated from the training set. (B) Nomogram ROC curves generated using the validation set.

This study focused on creating and validating a sarcopenia risk 
prediction model specifically for CKD patients, utilizing data from 
the 2015 CHARLS cohort. The final model determined that waist 
circumference, age, LDL-C, TG, HDL-C, and DBP are significant 
predictors of sarcopenia in CKD patients.

Age emerged as a significant predictor, aligning with the 
established link between aging and sarcopenia. As individuals age, 
they experience a progressive decline in muscle mass and strength, 
driven by several interconnected factors. Hormonal changes, 
particularly reductions in testosterone, estrogen, and growth 

FIGURE 2

Demographic and clinical feature selection was performed using the LASSO regression model. (A) Coefficient profile was generated based on the 
logarithmic (lambda) sequence, with non-zero coefficients identified at the optimal lambda. (B) The optimal lambda parameter was selected through 
tenfold cross-validation using the minimum criteria. The partial likelihood deviation (binomial deviation) curve relative to log(lambda) was plotted, and a 
vertical line was drawn at the optimal value using the 1-SE criterion.
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hormone, play a crucial role in muscle metabolism and regeneration, 
leading to decreased muscle protein synthesis and increased muscle 
breakdown (47, 48). Additionally, the aging process often results in 
reduced physical activity levels, which further contributes to muscle 
atrophy and loss of strength. Furthermore, aging is associated with 
increased oxidative stress and inflammation, both of which can 
negatively impact muscle health. Elevated levels of reactive oxygen 
species (ROS) can damage muscle fibers and impair their function 
(49, 50).

Our findings indicate that in CKD patients, waist 
circumference, LDL-C, and TC are inversely related to sarcopenia 

risk, whereas HDL-C is positively associated with an increased risk, 
whereas high-density lipoprotein cholesterol is positively associated 
with an increased risk. This finding contrasts with much of the 
literature, which generally considers abdominal fat a risk factor for 
muscle loss (51, 52). Many studies have highlighted that excessive 
body fat, particularly visceral fat, is closely linked to declines in 
muscle mass, primarily due to the negative effects of inflammatory 
cytokines secreted by adipose tissue on muscle metabolism (53, 
54). However, our results may reflect a protective role of moderate 
waist circumference and associated fat storage in maintaining 
muscle health among CKD patients. This hypothesis is further 

FIGURE 4

(A) Calibration curves of the nomogram prediction for the training set, (B) Calibration curves of the nomogram prediction for the validation set.

FIGURE 5

(A) DCA curves for the training set, (B) DCA curves for the validation set.
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FIGURE 7

(A) ROC curves of the machine learning models for the training set, (B) ROC curves of the machine learning models for the validation set.

supported by findings from other studies, which showed that 
patients without sarcopenia had higher waist circumference, 
LDL-C, and TG levels compared to those with sarcopenia (55). 
Additionally, in a study constructing a predictive model for 
sarcopenia, low BMI was identified as a significant risk factor, 

consistent with findings from a Taiwanese population-based study 
(16, 56).

Our findings suggest that higher diastolic blood pressure may act 
as a protective factor against sarcopenia, potentially due to its impact 
on skeletal muscle perfusion. Chronic low blood pressure can impair 

FIGURE 6

Nomogram to evaluate the risk of sarcopenia in patients with diabetes. LDLC mean low-density lipoprotein cholesterol. HDLC mean high-density 
lipoprotein cholesterol.TG mean triglycerides.
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blood flow to skeletal muscles, reducing muscle quality and 
contributing to the progression of sarcopenia. Maintaining adequate 
blood flow is crucial for delivering oxygen, hormones, and nutrients 
necessary for muscle maintenance and repair (57). Previous studies 
have indicated that insufficient perfusion can compromise muscle 
health, leading to increased muscle loss. Additionally, inadequate 
capillarization of skeletal muscle restricts the diffusion of substrates, 
oxygen, hormones, and nutrients, further exacerbating the risk of 
sarcopenia and the decline in physical function among older adults (58, 
59). Consequently, higher diastolic blood pressure levels may reflect 
better vascular health and more efficient nutrient delivery, ultimately 
contributing to the preservation of muscle mass and function (60).

A notable strength of this study is the creation of the first 
nomogram specifically designed to assess sarcopenia risk across the 
CKD spectrum, leveraging data from the CHARLS. Our model 

incorporates six commonly available demographic, clinical, functional 
measures, along with key blood biomarkers such as LDL-C, HDL-C, 
and triglycerides, enabling simplified risk assessment in community 
and primary care settings. This broad applicability is particularly 
valuable given the scarcity of tools for non-dialysis CKD populations. 
Furthermore, the model’s robust predictive performance was achieved 
through advanced machine learning methodologies and 
comprehensive hyperparameter optimization, demonstrating parity 
with hemodialysis-specific tools despite its broader scope (7, 8).

The clinical applicability of our model is underscored by its 
capacity to identify CKD patients at elevated risk of sarcopenia 
through readily obtainable parameters, such as waist circumference, 
lipid profiles, and blood pressure. Considering the substantial 
prevalence of sarcopenia among CKD patients and its correlation with 
adverse clinical outcomes, early detection is imperative for timely and 

FIGURE 8

(A) ROC curve for optimized GBM model for the training set. (B) ROC curve for optimized GBM model for the validation set.

FIGURE 9

(A) Variable importance in optimized GBM model. (B) SHAP value contribution in optimized GBM model.
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FIGURE 10

PCA comprehensive analysis. Exploring variable contributions and patient clustering: (A) Correlation heatmap of original variables and principal 
components. (B) Top contributing variables for each principal component. (C) Grouping of original variables based on positive or negative 
contributions to PCs. (D) Patient grouping based on PCA’s two principal dimensions: scatter plot.

effective intervention. This predictive tool allows clinicians to 
categorize patients based on their risk and apply targeted strategies, 
such as personalized nutritional interventions, to improve body 
composition and support evidence-based dietary practices.

Nevertheless, this study has its limitations. Firstly, the cross-
sectional design of the analysis limits our ability to infer causal 
relationships between the identified predictors and the onset of 
sarcopenia. Longitudinal research is required to clarify the temporal 
sequence and mechanistic pathways driving these associations. 
Second, the relatively modest sample size, while sufficient for model 
development, may limit the statistical power to detect weaker 
associations and could potentially influence the stability of the 
findings. Expanding datasets and conducting collaborative research 
across multiple cohorts would strengthen the robustness and reliability 
of the findings. Additionally, the study population was derived 
exclusively from the CHARLS, which may introduce selection bias 

and limit the applicability of the findings to other demographic and 
ethnic groups. External validation in independent CKD cohorts from 
diverse settings is critical to ensure the model’s generalizability and 
broader clinical utility. Furthermore, while the model utilizes easily 
accessible variables, the absence of more sophisticated biomarkers, 
such as serum myostatin or inflammatory markers, may restrict its 
ability to capture the complex biological processes driving sarcopenia.

Future studies should aim to increase the sample size and include 
longitudinal data to enhance causal inference. Integrating advanced 
omics data and imaging modalities could further refine the predictive 
accuracy of the model and deepen our understanding of sarcopenia’s 
pathophysiology. Additionally, while our percentile-based definition 
of low muscle mass aligns with precedents in aging research and 
mirrors AWGS DXA thresholds, future studies should harmonize 
sarcopenia criteria across methodologies to facilitate cross-population 
comparisons. Finally, clinical implementation research is needed to 
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evaluate the nomogram’s effectiveness in improving patient outcomes, 
helping to bridge the gap between predictive modeling and real-world 
healthcare interventions.

5 Conclusion

We developed a novel nomogram and machine learning framework 
for sarcopenia prediction in CKD. The Gradient Boosting Machine 
model demonstrated optimal performance, providing a validated tool 
for early risk stratification. This framework offers potential clinical utility 
in identifying high-risk patients and guiding personalized interventions. 
Future studies could explore its implementation in clinical practice and 
further validate its effectiveness in diverse patient populations.
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