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Introduction:Optical Coherence Tomography Angiography (OCTA) is a cutting-

edge imaging technique that captures retinal capillaries at micrometer resolution

using optical instrument. Accurate segmentation of retinal vasculature is

essential for eye related diseases measurement and diagnosis. However, noise

and artifacts from di�erent imaging instruments can interfere with segmentation,

and most existing deep learning models struggle with segmenting small

vessels and capturing low-dimensional structural information. These challenges

typically results in less precise segmentation performance.

Methods: Therefore, we propose a novel and robust Dual-stream Disentangled

Network (D2Net) for retinal OCTA microvascular segmentation. Specifically, the

D2Net includes a dual-stream encoder that separately learns image artifacts and

latent vascular features. By introducing vascular structure as a prior constraint

and constructing auxiliary information, the network achieves disentangled

representation learning, e�ectively minimizing the interference of noise and

artifacts. The introduced vascular structure prior includes low-dimensional

neighborhood energy from the Distance Correlation Energy (DCE) module,

which helps to better perceive the structural information of continuous vessels.

Results and discussion: To precisely evaluate our method on small vessels, we

delicately establish OCTA microvascular labels by performing comprehensive

and detailed annotations on the FOCA dataset, which includes data collected

from di�erent instruments, and evaluated the proposed D2Net e�ectively

mitigates the challenges of microvasculature region recognition caused by noise

and artifacts. The method achieves more refined segmentation performance. In

addition, we validated the performance of D2Net on four OCTA datasets (OCTA-

500, ROSE-O, ROSE-Z, and ROSE-H) acquired using di�erent instruments,

demonstrating its robustness and generalization capabilities in retinal vessel

segmentation compared to other state-of-the-art methods.

KEYWORDS

OCTA, cross-instruments, microvascular segmentation, vessel measurements,

disentanglement
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1 Introduction

Optical Coherence Tomography Angiography (OCTA) is a

non-invasive imaging modality (1) that provides high-resolution,

three-dimensional images (2). Unlike fundus photography,

which lacks detailed microvascular information, and fluorescein

angiography (FA) (3), which may have negative effects on human

subjects (4), OCTA imaging offers a safer alternative by providing

rich retinal microvascular visualizations (5, 6). Consequently,

it has been widely accepted and utilized in clinical practice for

retinal vascular imaging (7). However, due to the presence of

significant independent noise and artifacts in three-dimensional

scan data, it is common practice to project 3D image data onto a

two-dimensional en face image for analysis (4). The en face images

are categorized into three different complexes: the Inner Vascular

Complex (IVC), the Superficial Vascular Complex (SVC), and the

Deep Vascular Complex (DVC) (8).

Changes in retinal vascular morphology can be used not

only for the clinical diagnosis of ocular diseases (9) but also

for analyzing the severity of systemic diseases and evaluating

the effectiveness of treatments (10). Previous research has

revealed a significant correlation between abnormal OCTA retinal

morphology and numerous diseases (4), such as early glaucomatous

optic neuropathy (11, 12), diabetic retinopathy (13–15), age-

related macular degeneration (16, 17), and Alzheimer’s disease (18,

19). Consequently, quantifying retinal vascular biomarkers holds

paramount clinical importance (20).

With the success of deep learning algorithms, many methods

have been developed to address the vascular extraction in OCTA

images (21, 22). However, publicly available datasets primarily

focus on the segmentation of large blood vessels. Figure 1 illustrates

the SVC scans of the OCTA-500 (23), ROSE-O (4), ROSE-Z

(8), and ROSE-H (8) datasets, along with their corresponding

manual annotations. In the magnified views, we can observe

rich microvascular structures in both datasets. However, these

microvascular details have not been completely annotated. Thus,

the primary goal of our method is to achieve precise segmentation

of finer microvascular structures.

Involuntary eye movements during scanning can cause

shifts in the scanning area, leading to linear white noise and

artifact streaks (24, 25). Additionally, imaging patterns from

different scanning instruments introduce significant noise and

artifacts, degrading the quality of retinal vascular imaging (26).

As shown in the magnified view in Figure 1, these variations

across instruments make it challenging to accurately identify

microvascular regions (27, 28). As such, noise and artifacts in the

images remain a primary challenge for retinal microvasculature

segmentation (29). Additionally, due to the localized nature of

convolution operations, deep learning algorithms often struggle

to model long-range dependencies, making it hard to capture the

detailed retinal microvascular structure (30). Repeated convolution

and pooling operations further contribute to semantic information

loss (31, 32), resulting in overly large or missing boundaries

in microvasculature segmentation (33, 34). Figure 2 illustrates

how pixel-level differences lead to oversized segmentation of

thicker vascular boundaries, while microvascular structures

only 1-2 pixels wide may disappear. Therefore, preserving

continuous vascular information is crucial for precise retinal

microvasculature segmentation.

To this end, we propose a novel Dual-stream Disentangled

Representation Network(D2Net) based on the encoder-decoder

architecture, for OCTA retinal vascular segmentation. To further

enhance the modeling of vascular structure and noise and artifacts

features, we map the extracted high-dimensional features into a

latent space for representation. By introducing vascular structure

priors, we strengthen the network’s capability to represent latent

variables effectively. In addition, we construct auxiliary information

to enable the dual-stream encoder to focus on different features

separately. The optimization procedure is achieved by integrating

an image reconstruction term and a Kullback-Leibler (KL)

regularization term. The dual-stream encoders focus respectively

on learning the noise and artifacts features for image reconstruction

as well as learning the latent features of vascular structures for the

KL regularization term. This approach enables the disentanglement

of vascular structure information and artifacts in OCTA images,

thereby making segmentation of retinal microvasculature possible.

Subsequently, we develop a novel module to leverage multi-scale

contextual information to enhance the perception of continuous

vessels, thereby refining segmentation results with better accuracy.

Finally, we conducted detailed and comprehensive manual

annotations on OCTA images collected from two different

instruments, constructing an internally annotated dataset (FOCA)

at the microvascular level to validate the effectiveness of the

proposed segmentation method. Additionally, we conducted

experiments on four datasets focusing on segmenting varying

degrees of vessels, including two public datasets (OCTA-500,

ROSE-O) and two private datasets (ROSE-Z, ROSE-H). The

experimental results demonstrate that the proposed D2Net

achieves superior performance in microvascular segmentation. The

contributions are summarized as follows:

• We propose a Dual-stream Disentangled Network (D2Net)

capable of learning the representation of vascular structure

information and stylistic information in OCTA images,

significantly enhancing the model’s robustness against noise

and artifacts from different instruments.

• We propose a Distance Correlation Energy (DCE) module

that utilizes low-dimensional images to construct auxiliary

information, ensuring that disentanglement remains stable even

when using a single image as input. This approach also enhances the

ability of the network to sense the microvascular structure making

the segmentation boundary more accurate.

• We extensively evaluate the proposed method on

five datasets acquired from multiple OCTA instruments,

confirming its state-of-the-art segmentation performance and

generalization capabilities.

2 Related work

Several works have proposed deep learning methods for

OCTA vessel segmentation. To extract more high-level semantic

features, Pissas et al. (35) proposed a U-shaped network capable

of integrating shallow and deep features. Eladawi et al. (36)

introduced an OCT segmentation algorithm based on the
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FIGURE 1

Illustration of SVC layer scans in four di�erent datasets obtained from multiple instruments and the corresponding manual annotations. From left to

right: OCTA-500, ROSE-O, ROSE-Z, ROSE-H.

Markov Gibbs random field model. Joint-Seg (37) performs joint

encoding on OCTA images and utilizes a feature-adaptive filter

to provide FAZ and RV-related information for separate decoding

branches. These works focus on feature extraction from raw

images, which significantly limits the ability to reconstruct and

represent microvascular structures. To address the issue of feature

degradation caused by convolution and enhance the dependency

relationships of contextual features, Chen et al. (30, 38) combined

U-Net with Transformer, integrating global attention mechanisms

to enhance detailed information and achieve precise localization.

Similarly, Wang et al. (39) and Liu et al. (40) propose layer

segmentation algorithms specialized for OCT images based on

Transformer strategies. Chen et al. (41) combines U-Net and Swin-

Uformer to jointly learn global and local information in OCT

images, compensating for information loss between layers due to

speckle noise.

Despite these advances, attention mechanisms show better

performance in compensating for local information, when the

focus is on microvascular areas with more refined and complete

constraints, the network applies attention enhancement across

all regions containing microvessels in OCTA images. This easily

leads to boundary overshooting during segmentation of adjacent

microvessels, resulting in many false positive predictions, a

phenomenon we also observed in our comparative experiments.

Recently, Liu et al. (26) proposed a segmentation model

that leverages the disentanglement of anatomical and contrast

components from paired OCTA images to focus on vascular

structure information. However, this method requires a large

amount of paired data from different devices for pretraining,

increasing the data acquisition threshold. Additionally, it freezes

the pre-trained model parameters for supervised learning, which

creates limitations in model complexity and portability in the

two-stage approach.

OCTANet (4) is a network specifically designed for the

segmentation of OCTA vessels with varying thicknesses. It

first generates an initial vessel confidence map using a coarse

segmentation module based on splitting, and then optimizes

the shape of retinal microvessels using a fine segmentation

module based on splitting, thereby achieving precise segmentation.

VAFF (8) utilizes OCTA images from different layers and

incorporates a specialized voting gate mechanism to achieve more

accurate vessel localization and segmentation. However, both of

these networks tailored for OCTA segmentation tasks are unable to

effectively address the artifact and noise interference issues caused

by different devices.

The aforementioned methods primarily emphasize combining

additional low-level information to improve network segmentation

performance, without considering the adverse effects of

redundant information reuse and information leakage on

network performance. These methods have limitations when

learning from the OCTA microvascular regions, as they fail to

effectively avoid interference from artifact noise and neglect

the utilization of low-dimensional image information from

the microvessels.
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FIGURE 2

(A) Original OCTA image and the schematic representations of corresponding segmentation pattern, with the same area highlighted by red boxes

and showed in (B). (C) Illustration of the corresponding pixel-level widths for the two modes.

3 Methodology

In this section, we introduce the proposed dual-stream

disentangled architecture named D2Net, including vessels

extractor, dual-stream disentangled network, distance correlation

energy module and loss function for its end-to-end training.

3.1 Architecture

The overall architecture of the proposed D2Net is shown

in Figure 3. D2Net consists of three main components: the

vessels extractor, the dual-stream disentangled network, and the

distance correlation energy (DCE) module. The model’s goal is

to differentiate vascular features from noise and artifacts through

disentangled representation learning, reducing interference and

improving microvascular segmentation.

The model input is a single-layer en face projection from

the SVC layer of the OCTA image. The initial OCTA image

I ∈ R
H×W×3 is duplicated and processed with a 1 × 1

convolutional layer to adjust the channel number to 64, resulting

in I1 and I2. Subsequently, I1 and I2 are sent to the vessels

extractor and DCE module, respectively, to obtain a noise-

free vascular structure prior Ivpc and a version with noise and

artifacts In. The vessels extractor enhances high-dimensional

features at each layer using the DCE module’s correlation energy,

producing Ivpc, which serves as the input for the vascular

disentangled stream and provides a clean vascular structure

reference. To enable the network to focus on the vascular

structure, the second stream must minimize vascular information

while highlighting noise and artifacts. Thus, I2 is enhanced with

correlation energy, creating In, which retains both vascular and

noise information, and is used as input for the noise and artifacts

disentangled stream.

The vessels extractor in D2Net can be any end-to-end

segmentation network; in this paper, a U-shaped architecture is

used as the backbone. Notably, D2Net is designed as a plug-and-

play framework, allowing any state-of-the-art segmentation

network to replace the vessels extractor. The extractor’s

convolutional block includes two 3 × 3 convolution layers with

Instance Normalization and LeakyReLU activation. Maxpooling

and bilinear interpolation are used for feature dimension reduction

and resolution restoration, respectively. The extractor performs

four rounds of feature extraction on I1, producing feature maps

F
high1
1 ( 12H × 1

2W × 128), F
high2
1 ( 14H × 1

4W × 256), F
high3
1

( 18H × 1
8W × 512), and F

high4
1 ( 1

16H × 1
16W × 512). For the noise

and artifacts disentangled stream, it’s only necessary to provide

vascular information comparable to the vascular disentangled

branch while differing in noise and artifacts. Thus, instead of

dimension reduction, the low-dimensional image data I is directly

enhanced with correlation energy by the DCE module and input

into the dual-stream disentangled network.
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FIGURE 3

The architecture of our D2Net, consisting of the vessels extractor, dual-stream disentangled network and the distance correlation energy.

Each layer in the dual-stream encoder extracts high-level

information from two distinct feature types. Specifically, each

encoder layer consists of two convolutional layers with instance

normalization and LeakyReLU activation, followed by maxpooling

for feature extraction. The decoder mirrors this structure, using

bilinear interpolation for feature restoration. Additionally, we

flatten the extracted latent variables, transform the resulting vector

into latent space via linear neurons, reparameterize it, and feed

it into the upsampling layer to complete the reconstruction of

retinal vessels.

3.2 Dual-stream disentangled network

Noise and artifacts can complicate accurate segmentation

of microvascular regions. To address this, our dual-stream

disentangled network is designed to separate representations

of retinal vessel structure from noise and artifact information.

This disentanglement, achievable using a single image, facilitates

training on more diverse datasets. The dual-stream network

includes two encoders with similar structures but independent

weights and a shared decoder. Each encoder focuses on

specific features: one on the vascular structure and the other

on noise and artifacts. With the vascular structure extracted

by the vessels extractor as a prior constraint, the network

learns to reduce noise interference and achieve more accurate

segmentation of microvascular areas. Each encoder maps its

input into latent space, where the shared decoder reparameterizes

the latent features and adaptively learns feature selection and

fusion. The inputs for each stream are tailored: the vascular

structure stream uses prior information from the vessels extractor

enhanced with multi-scale DCE modules, while the noise and

artifacts stream uses OCTA data enhanced with single-scale

DCE modules. This setup ensures both streams have consistent

vascular structure information during encoding. Given that

encoding is a lossy process with a capacity limit (42), the

inputs to both streams are designed to maintain identical

spatial dimensions.

As shown in Figure 3, in the noise and artifacts stream,

I2 is enhanced through the DCE module to obtain In, which

increases the distance correlation energy. Subsequently, In is then

encoded by the noise and artifacts stream encoder, yielding the

probability distribution qφ(Zn|In) in the latent space. The latent

feature Zn has an encoding bottleneck, allowing it to only capture

limited information from In. In the vascular structure stream

branch, I1 is processed by the vessels extractor and the DCE

module, generating Ivpc, which also enhances distance correlation

energy. The vascular structure encoder then maps Ivpc to the

probability distribution qφ(Zv|Ivpc) in latent space. Thus, Zv
represents only the vascular structure features, free of noise and

artifacts, while Zn includes similar vascular features alongside

unique noise and artifact information. The decoder reconstructs

Zn using the encoding bottleneck to prioritize distinct information

while discarding redundancies. Similar to conditional variational

autoencoders (43), this process is guided by the evidence lower

bound (ELBO):

L(θ ,φ; In) = Eqφ (Zn|In)
[log pθ (In|Zn)]− KL(qφ (Zn|In)||p(Zn)), (1)
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This equation balances the reconstruction likelihood of In given

Zn with the KL divergence between the approximate posterior

qφ(Zn|In) and the prior p(Zn), ensuring that the network learns

to generate accurate reconstructions while maintaining diversity in

the latent space.

The encoder maps the input In to a probability distribution in

the latent space, qφ(Zn|In), assumed to be a Gaussian distribution

N (Zn;µ(In), σ (In)). The first term, Eqφ (Zn|In)[log pθ (In|Zn)],

represents the expected log-likelihood of reconstructing the

input data In under the latent variable Zn. The decoder samples

from the latent variable Zn and reconstructs the input data In,

denoted as pθ (In|Zn). The reconstruction error term involves

taking the expectation over the variational posterior distribution

qφ(Zn|In). In practice, this expectation can be computed as
∫

qφ(Zn|In) log pθ (In|Zn) dz.

This represents the expected log-likelihood of reconstructing

In under the latent variable Zn. The objective of optimizing the

reconstruction error term is to maximize Eqφ (Zn|In)[log pθ (In|Zn)],

indicating that we aim for Zn to accurately reconstruct the input

data In as closely as possible. This part is akin to minimizing

the mean squared error of reconstructing In in implementation.

The second term KL(qφ(Zn|In)‖p(Zn)) is the Kullback-Leibler

divergence between the variational distribution qφ(Zn|In) and the

prior distribution p(Zn) in the latent space, used to regularize the

distribution of latent variables.

The decoder parameters are optimized to maximize

reconstruction log-likelihood, aiming to capture only the

most critical latent features for reconstruction. Due to the

limited dimensionality of the latent space, the decoder must

prioritize differential information essential for reconstruction.

If Zn were expected to also represent vascular information,

it would lead to a significant redundancy between Zn and Zv
latent features. Thus, the decoder focuses on preserving features

in Zn specific to noise and artifacts, while Zv retains vascular

structure details.

3.3 Distance correlation energy module

In OCTA images, accurately segmenting fine microvascular

structures is challenging due to complex vascular topology and

interference from noise. Convolutional operations alone struggle

to capture long-range dependencies and maintain low-dimensional

image details, leading to information loss. To address this, we

introduce a DCE module to capture multi-scale neighborhood

correlations, which enhances segmentation accuracy by improving

microvascular representation. The DCE method leverages both

low-dimensional neighborhood semantics and high-dimensional

feature correlations by constructing an energymatrix that measures

pixel correlations. Typically, large differences between neighboring

pixels indicate noise or artifacts, while small differences signify

continuous vascular structures with higher energy. This helps the

network retain vascular structure while minimizing the influence

of independent noise.

Specifically, we represent the OCTA en face image as an

undirected graph G = (V ,E), where V represents the set of nodes

(vertices) in the graph, and E represents the set of edges connecting

these nodes. We calculate the distance between each node and its

four-connected neighbors, forming a distance correlationmatrixD.

Assuming node i has four connected nodes jp (where p = 1, 2, 3, 4),

the matrix D is defined as:

Di,jp = Djp ,i = ‖I(i)− I(jp)‖
2, (2)

where I(·) denotes the pixel values from the pre-processed OCTA

data I2 obtained after a 1 × 1 convolution. To address the

boundary two-neighbor problem, we introduce additional edges

that treat head and tail nodes as independent elements with an

infinite distance between them. In this undirected graph, the path

distance between nodes is computed by summing the weights of

the connecting edges. When structural information in the image is

similar, indicating close proximity between two nodes, the network

assigns higher correlation weights to that region during training to

enhance vascular feature learning. Conversely, regions with greater

differences, such as isolated noise, are assigned higher distances

to neighboring elements. Instead of discarding these noise-related

components entirely, we assign them smaller correlation weights.

The distance correlation matrix is then converted into energy

weights as supplementary information. w can be described as:

w = e−
D
λ , where λ is a predefined hyperparameter that adjusts the

energy magnitude. Since boundary nodes have infinite distances in

the second neighborhood, their energy weights approach zero. This

setup enables the network to localize features in images of various

sizes while maintaining weak connectivity at boundary nodes.

Because features extracted at different layers of the autoencoder

capture different levels of semantic information, the DCE module

needs to provide energy at multiple scales to the vessels extractor.

To ensure alignment, a consistent pooling mechanism is used

in the DCE module, matching the perceptual field of the vessels

extractor. The DCE module then applies the same number of

pooling operations to I2 as the vessels extractor, representing

corresponding low-dimensional signals across scales: Ilow12 ( 12H ×
1
2W × 3), Ilow22 ( 14H × 1

4W × 3), Ilow32 ( 18H × 1
8W × 3), and Ilow42

( 1
16H× 1

16W×3).When features are reduced k times, each pixel can

represent an energy value within a range of 4 · 1
2k(k+1)

. In summary,

this approach enhances the semantic boundaries of vessel regions,

helping to mitigate annotation errors and improve segmentation

model performance for microvascular regions.

3.4 Loss function

During network training, standard cross-entropy (CE) loss is

computed between the vessel extractor’s predictions Yextract and

their corresponding ground truth Ygt is computed and updated

through backpropagation to optimize the network parameters. The

CE loss is represented as LCE(Yextract ,Ygt). In the dual-stream

disentangled network, our aim is to filter out redundant vascular

structure information in the noise and artifacts stream. For this

purpose, the mean squared error (MSE) loss is used between the

reconstructed outputs and the original OCTA image to capture

noise and artifacts more effectively. Given the reconstructed

output Yrec and the image with domain-specific information YI2,

the MSE loss is defined as LMSE(Yrec,YI2). To further optimize,

KL divergence is employed to measure information loss by
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comparing the posterior distribution of latent features to a standard

normal prior. This approach minimizes information loss in the

approximate distribution, prevents distribution shift, and helps

maintain the model’s generalization capability. This process can be

expressed as follows:

Lkl = KL(qφ (Zn|In)||p(Zn)) = −
1

2

n
∑

i=1

(1+ logσ 2 − µ2 − eσ ), (3)

whereµ and σ represent the mean and variance of the distribution,

respectively.

4 Experimental setup

4.1 Datasets

In this work, we constructed a new dataset, FOCA, to validate

the effectiveness of our proposed method for microvascular

segmentation. This dataset specifically focuses on microvascular

regions. To further assess the method’s robustness across

diverse large-vessel segmentation standards, we also conducted

experiments on two publicly available datasets (OCTA-500,

ROSE-O) and two private datasets (ROSE-Z, ROSE-H).

FOCA contains 88 OCTA images from 3 mm × 3 mm

SVC scans acquired using the Angiovue (RTVue XR Avanti,

Optovue) and Zeiss Cirrus 5000-HD-OCT Angioplex (Carl Zeiss

Meditec) instruments. We selected 40 image pairs with optimal

imaging quality and aligned them at the pixel level. Each image

underwent detailed pixel-level annotation, completed meticulously

by a specialist and reviewed independently by another to ensure

precision. Referencing OCTA-500 and ROSE-O, we randomized

the data, using 32 scans for training and 8 for testing. Additionally,

our dataset includes 44 paired, non-annotated images (with

completed registration) to facilitate further research into retinal

vascular structure using paired OCTA images.

ROSE-O includes 39 OCTA images from 3mm × 3mm SVC

scans obtained using the RTVue XR Avanti SD-OCT (Optovue,

USA). We followed the same train-test split used in (4) (30 scans

for training, 9 for testing), utilizing both the scans and their

manual delineations.

ROSE-Z consists of 126 OCTA images from the Zeiss Cirrus

5000-HD-OCT Angioplex (Carl Zeiss Meditec) instrument. This

dataset includes enface SVC, DVC, and IVC layer images from

42 subjects, encompassing 15 cases of diabetic retinopathy, 2 of

Alzheimer’s disease, and 25 healthy controls. We selected the

3mm × 3mm SVC layer scans and their manual annotations for

our experiments.

ROSE-H includes 60 OCTA images obtained using the

Heidelberg Spectralis OCT2 (Heidelberg Engineering, Germany)

instrument, with 3mm× 3mm SVC layer scans and corresponding

manual annotations. This dataset comprises 8 images with

choroidal neovascularization and 12 from healthy controls.

Following the training strategy in (8), we trained using the

ROSE-O dataset’s training subset and reserved ROSE-H solely

for testing to evaluate generalizability across OCTA images from

different instruments.

OCTA-500 contains 200 OCTA images (No. 10301−No.

10500), collected with a 70 kHz SD-OCT (RTVue-XR, Optovue,

CA). The scans, centered on the macula with a 3mm × 3mm

range, include manual annotations. We adhered to the train-

validation-test split in (44): images No. 10301−10440 for training,

No. 10441−10450 for validation, and No. 10451−10500 for testing.

4.2 Implementation details

The proposed D2Net was implemented using the PyTorch

framework and trained on a single NVIDIA GeForce GTX 3090Ti

with 24GB of memory. We used the Adam optimizer with an

initial learning rate of 0.0005 and a batch size of 4. The model

was trained for 200 epochs, with all images resized to 512 × 512

pixels. No learning rate decay was applied. All experiments were

independently validated, and metrics were not directly referenced.

To ensure a fair comparison, the same parameter settings and

training strategies were applied to all comparison methods. During

training, all models underwent the same augmentation techniques,

including random horizontal and vertical flips, random rotations,

and random cropping.

4.3 Evaluation metrics

To comprehensively and objectively evaluate the segmentation

performance of the proposed methods, the following metrics

were calculated between the segmentation results and manual

delineations for each model:

• Area Under the ROC Curve (AUC);

• Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN);

• Dice coefficient (Dice) = 2× TP/(FP + FN + 2× TP);

• G-mean score(GMEAN) =
√

sensitivity× specificity;

where TP, TN, FP, and FN represent True Positives, True Negatives,

False Positives, and False Negatives, respectively. Sensitivity (also

known as recall or true positive rate) is the proportion of actual

positives correctly identified by the model, calculated as TP/(TP

+ FN). Specificity is the proportion of actual negatives correctly

identified, calculated as TN/(TN+ FP). TheGMEAN score balances

sensitivity and specificity, offering a more holistic measure of a

model’s performance in binary classification tasks.

5 Experimental results

Since retinal vascular region segmentation is a dense prediction

task, we evaluated the performance of our model by comparing

it with several recent methods in medical image segmentation,

including UNet (35), UNet++ (45), CENet (33), CSNet (10),

OCTANet (4), VAFF (8), SwinUNet (46), TransUNet (30), and

UTNet (38). To ensure a fair comparison, all methods used the

same training approach and optimization strategy, as described in

Section 4.2.
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FIGURE 4

Comparison of manual annotations and microvascular region prediction results across four heterogeneous datasets and one homogeneous dataset.

The prediction model was trained using D2Net on the FOCA dataset.

FIGURE 5

The segmentation results of OCTA images for di�erent methods on the FOCA dataset. The results are shown in red boxes as zoomed-in examples of

the segmentation details.
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TABLE 1 Comparison of microvascular segmentation performance of

di�erent segmentation methods on the dataset FOCA.

Method AUC (%) ACC (%) GMEAN (%) DICE (%)

CENet 78.09± 5.54 68.19± 6.74 69.92± 5.74 60.21± 6.44

CSNet 80.02± 7.45 71.19± 7.53 72.06± 7.45 61.06± 8.88

SwinUNet 78.60± 6.52 67.34± 6.38 70.28± 6.48 60.40± 7.38

TransUNet 78.61± 6.55 71.57± 6.12 70.55± 6.68 60.09± 8.47

Unet 79.69± 7.51 71.34± 8.09 70.77± 7.54 60.66± 9.12

Unet++ 80.19± 7.28 71.48± 6.93 71.85± 7.23 60.99± 8.75

UTNet 75.96± 6.24 69.06± 5.92 69.15± 6.23 58.55± 7.53

OCTANet 73.26± 5.45 70.98± 6.21 71.61± 4.11 61.47± 4.97

VAFF 79.01± 6.73 70.48± 6.62 71.16± 6.69 61.01± 8.13

Ours 81.14± 7.48 72.03± 8.08 72.90± 7.55 63.48± 8.88

5.1 Subjective comparisons

5.1.1 Qualitative comparisons of annotation and
segmentation

Figure 1 shows examples of manual annotations from the

OCTA-500, ROSE-O, ROSE-Z, and ROSE-H datasets. In many

cases, the manual annotations do not accurately match the actual

microvascular regions, and these regions are often overlooked

during annotation. In Figure 4, we use the microvascular region

annotations from the FOCA dataset to guide segmentation, leading

to more accurate and refined results across the four datasets.

For example, in the OCTA-500 segmentation results, the large

vessels in the original image and the predictions are mostly

consistent, but the manual annotations for large vessels near the

FAZ region are incomplete. Additionally, the segmentation of

microvascular regions is much more accurate compared to the

manual annotations, which often fail to capture these regions. In

the ROSE-O and ROSE-Z datasets, the predictions are more refined

and accurate.

In the generalization experiments on the ROSE-H dataset,

while the continuity of capillaries was not as well-preserved

as in the other domains, the predictions for large vessels

remained accurate. In areas with noise and artifact stripes, manual

annotations mistakenly identify them as vessels, while our model

correctly classifies them as non-vessel structures. Our method

shows a stronger ability to predict low-contrast regions, generating

visually richer and usually accurate microvascular predictions.

We also conducted tests on the same-domain FOCA dataset. In

these examples, we selected lower-contrast original images for

demonstration. Our method outperforms in boundary handling,

accurately matching the boundary width of professional manual

annotations. Furthermore, in blurry microvascular regions, the

predicted results are generally complete and accurate.

5.1.2 Qualitative comparisons with
state-of-the-art methods

Figure 5 shows the segmentation results of OCTA images from

the FOCA dataset using different methods. D2Net outperforms

Unet, Unet++, CE-Net, and CS-Net in boundary segmentation.

For example, in the red-highlighted areas, these methods over-

segment large vessels and microvasculature, extending beyond

the vessel boundaries. Due to fine annotations and the strong

memory capabilities of these networks, continuous microvascular

regions are often over-segmented and identified as block-like

areas, losing their microvascular shape. TransUNet and UTNet

focus more on local microvascular regions, showing better

performance in these areas, but they still exhibit the issue of

segmentation extending beyond vessel boundaries. While the

over-segmentation problem has improved compared to the other

methods, it remains notable. VAFF’s voting mechanism helps

prevent the network from forciblymemorizing and stacking results,

providing better boundary handling. However, it struggles with

learning microvascular regions. For example, in the FAZ region,

microvascular predictions are inaccurate, with many breakages

and incorrect segmentations. In contrast, our approach shows

a trend of reduced over-segmentation and under-segmentation.

This improvement is due to the DCE module, which effectively

uses the correlation energy information of neighboring pixels to

assign higher weights to continuous vessels and capture long-

distance information.

5.2 Quantitative comparisons

5.2.1 Quantitative comparison of microvascular
datasets

To evaluate the effectiveness of our method for retinal

microvascular segmentation, we conducted quantitative

experiments using the FOCA dataset, which focuses on

microvascular regions. The results, shown in Table 1, demonstrate

that our method, D2Net, outperforms existing state-of-the-art

approaches. Specifically, D2Net achieved the best segmentation

performance across multiple key metrics, including AUC, ACC,

GMEAN, and DICE. As indicated in the table, D2Net leads in all

metrics, with a Dice score 2.01 percentage points higher than the

second-best method. This highlights the effectiveness of our dual-

stream disentangled network, which reduces noise and artifact

interference by separately learning vascular structures and image

noise, leading to more accurate and complete segmentation results.

5.2.2 Quantitative comparison of large vascular
datasets

We conducted quantitative comparisons across four large vessel

datasets to demonstrate the the superior performance of our

proposed method. All comparison methods were independently

validated in our experimental environment. Table 2 presents the

segmentation results of D2Net on the public datasets OCTA-500

and ROSE-O, while Table 3 shows results on the private datasets

ROSE-Z and ROSE-H. As seen in both tables, D2Net outperforms

other methods in all metrics. It accurately captures large vessels

with high precision and consistency, and performs excellently in

both DICE and GMEAN, showing its ability to identify large vessel

regions while avoiding under-segmentation. These results highlight

D2Net’s superior performance in large vessel segmentation tasks.
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TABLE 2 Comparison of large vessel segmentation results between di�erent methods on the public datasets ROSE-O and OCTA-500.

Method ROSE-O OCTA-500

AUC (%) ACC (%) GMEAN (%) DICE (%) AUC (%) ACC (%) GMEAN (%) DICE (%)

CENet 82.34± 0.87 90.61± 1.02 81.22± 1.01 73.98± 1.08 99.56± 7.39 98.31± 1.45 93.38± 7.87 87.50± 0.69

CSNet 85.37± 0.78 89.53± 0.81 85.10 ± 0.83 74.25± 0.65 98.89± 0.95 98.69± 0.17 95.93± 0.98 90.50± 1.05

SwinUNet 80.62± 0.98 82.59± 2.06 80.54± 0.93 63.17± 1.20 98.13± 2.05 96.22± 0.37 89.95± 0.87 90.45± 1.25

TransUNet 83.67± 1.00 87.10± 1.11 83.48± 1.03 69.94± 0.94 99.60± 1.10 98.39± 0.20 96.65± 1.13 88.77± 1.28

UNet 85.17± 0.88 88.75± 0.90 84.96± 0.91 73.04± 0.63 98.59± 0.96 98.47± 0.22 96.81± 0.99 89.31± 1.47

UNet++ 84.27± 0.75 87.74± 1.49 84.07± 0.74 71.22± 0.92 99.67± 0.73 97.48± 0.29 96.46± 0.73 88.89± 1.54

UTNet 79.82± 3.25 82.68± 3.76 79.61± 3.34 62.01± 2.81 99.69± 1.54 98.59± 0.25 94.42± 1.64 89.43± 2.28

OCTANet 85.26± 0.84 89.58± 0.98 84.97± 0.88 74.27± 0.89 96.45± 0.74 98.69± 0.17 96.41± 0.76 90.49± 0.98

VAFF 81.52± 0.87 90.30± 0.85 79.95± 1.05 74.36± 1.12 99.66± 1.16 98.67± 0.19 95.43± 1.22 90.30± 1.37

Ours 87.71± 0.95 90.96± 0.84 82.87± 1.09 75.37± 1.11 99.82± 0.77 98.75± 0.16 96.96± 0.80 91.23± 0.08

TABLE 3 Comparison of large vessel segmentation results between di�erent methods on the private dataset ROSE-Z and ROSE-H.

Method ROSE-Z ROSE-H

AUC (%) ACC (%) GMEAN (%) DICE (%) AUC (%) ACC (%) GMEAN (%) DICE (%)

CENet 79.42± 0.25 86.66± 0.70 77.79± 0.41 72.32± 0.32 81.31± 1.09 89.13± 0.92 79.96± 1.30 74.16± 1.32

CSNet 84.89± 0.66 85.97± 1.28 84.85± 0.64 75.89± 1.47 80.74± 1.16 89.63± 0.75 78.98± 1.45 74.27± 1.47

SwinUNet 80.54± 0.74 81.44± 1.11 80.51± 0.73 69.95± 1.17 81.56± 0.51 84.89± 1.52 81.27± 0.66 70.08± 0.49

TransUNet 84.49± 0.82 84.27± 1.12 84.47± 0.82 74.83± 1.23 82.59± 0.69 87.78± 0.78 81.25± 0.75 72.70± 1.22

UNet 84.60± 0.71 86.50± 0.97 84.49± 0.70 75.61± 1.25 82.84± 0.65 89.42± 0.93 80.80± 0.64 74.58± 1.45

UNet++ 84.88± 0.87 85.37± 1.13 84.87± 0.86 75.91± 1.37 82.35± 1.08 87.69± 1.23 71.74± 1.14 73.38± 1.29

UTNet 81.04± 1.92 83.91± 3.02 80.66± 2.01 72.26± 2.15 79.82± 1.88 85.73± 2.27 78.81± 2.64 69.63± 1.75

OCTANet 84.28± 0.65 85.69± 0.76 84.22± 0.65 75.71± 0.98 81.99± 1.14 85.70± 0.94 80.69± 1.34 74.42± 1.44

VAFF 84.29± 0.40 87.09± 0.75 84.05± 0.40 75.96± 0.82 82.45± 0.96 89.56± 0.81 81.35± 1.13 74.61± 1.04

Ours 85.58± 0.38 87.77± 0.76 85.28± 0.39 77.72± 0.81 83.83± 1.08 90.67± 0.86 82.73± 1.26 75.97± 1.24

Furthermore, we assessed the model’s generalization performance,

with results from the cross-domain dataset ROSE-H (not used in

training) shown in Table 3. The results demonstrate that D2Net

not only generalizes well but also achieves the best performance

compared to other methods.

6 Discussion

6.1 Ablation studies

To validate the effectiveness of the dual-stream disentangled

network and the DCE module in accurately segmenting retinal

microvascular structures, we used a U-shaped architecture as the

backbone for the retinal vessel extractor on the OCTA-500 dataset.

We performed ablation experiments with two versions: D2Net

without the DCE module and D2Net with the DCE module. The

results are summarized in Table 4, and the visual effects are shown

in Figure 6. Specifically,Original, Segmentation, and Reconstruction

show the original OCTA image, segmentation, and reconstruction

results, respectively. EnergyAddition demonstrates the intensity

TABLE 4 Ablation results for D2Net and DCE module.

Method AUC ACC GMEAN DICE

BaseLine 99.11± 0.74 98.28± 0.17 96.45± 0.77 89.30± 0.95

BaseLine+DCE 99.17± 0.81 98.70± 0.17 96.09± 0.82 90.48± 1.01

BaseLine+D2Net 99.19± 0.86 98.79± 0.18 96.14± 0.89 90.31± 1.01

BaseLine+D2Net+DCE 99.94± 0.77 98.94± 0.16 96.76± 0.80 91.43± 0.88

patterns after adding the DCE module, while VesselOnly and

NoiseOnly display the disentangled outputs focusing on vascular

structures and noise, respectively.

The results highlight the effectiveness of the ablated

components, showing that the complete version of D2Net

significantly improves various evaluation metrics. This

enhancement is due to the effective integration of key components

in our method. First, the dual-stream disentangled network in

D2Net plays a crucial role in improving segmentation accuracy by

better distinguishing between noise and actual vessel structures,

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2025.1542737
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hu et al. 10.3389/fmed.2025.1542737

FIGURE 6

Illustration of the visual representation of various ablation results.

reducing the likelihood of missegmentation. Baseline methods

struggle to make this distinction. Additionally, the DCE module

enhances segmentation by utilizing low-dimensional image

neighborhood energy, which improves vessel morphology

and topology representation. This helps prevent segmentation

errors caused by a lack of contextual information. In summary,

D2Net leverages the synergistic effects of the dual-stream

disentangled network and DCE module to reduce noise and

artifact interference, improving the detection of continuous

vascular structures and boosting overall performance. These results

demonstrate the superior performance, robustness, and accuracy

of our method in retinal microvascular segmentation, even in

noisy environments. The proposed dual-stream disentangled

network is highly portable and requires minimal data acquisition.

It can be easily integrated into any end-to-end extractor,

needing only access to the target of interest for the task. In

our structure stream branch, the encoding is designed to

capture specific information, allowing the decoder to efficiently

filter out irrelevant details during image reconstruction in the

other branch.

6.2 Comparison of real data

D2Net effectively learns vascular structures while decoupling

OCTA vascular features from image noise and artifacts. As shown

in Table 1, decoupling representation reduces interference from

noise and artifacts, enhancing the model’s ability to learn vascular

structures. The VesselOnly subplot in Figure 7 demonstrates

that the network extracts vascular structures, particularly in

microvascular regions, more accurately.

As explained in Section 5.1, our model understands vascular

structure information rather than relying on memorized answers

to make final predictions. To demonstrate the network’s error-

correction ability, we selected an image from the FOCA

dataset with obvious mislabeling for comparison (Figure 7). By

calculating the TP, TN, FP, and FN metrics for segmentation and

manual annotations, we visualized them using different colors. A

continuous large vascular structure in the upper left of the image

was confidently identified by the segmentation, which was missed

in the manual annotation.

6.3 Microvascular morphometric
measurements and clinical disease analysis

The study of retinal microvascular changes has gained

significant attention, as these changes are closely linked to cognitive

impairment. Abnormalities in vascular structures are associated

with neurodegenerative diseases such as Alzheimer’s disease (AD)

and mild cognitive impairment (MCI) (47). This study explores

how retinal microvascular morphology differs between AD, MCI,
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FIGURE 7

Illustration of the original image corresponding to the FOCA dataset, segmentation result, and manual annotation. In the segmentation result, green

represents True Positives (TP), black represents True Negatives (TN), red represents False Positives (FP), and blue represents False Negatives (FN).

TABLE 5 Comparisons of OCTA measurement metrics between healthy

control, MCI, and AD participants were conducted, with p-values

obtained through ANOVA.

Metrics AD MCI Control p

VT 1.51 (0.14) 1.50 (0.15) 1.58 (0.10) p > 0.05

VAD 21.75 (3.00) 20.44 (3.01) 21.97 (2.59) p < 0.01

VLD 7.99 (1.13) 7.43 (1.19) 8.27 (0.86) p < 0.01

VBN 250 (70) 256 (76) 238 (62) p < 0.01

VFD 1.54 (0.03) 1.53 (0.04) 1.55 (0.02) p < 0.01

and healthy control (Control) groups to better understand how

cognitive impairment stages affect microvascular changes. We

evaluate these changes using five metrics: vascular tortuosity

(VT), vascular density (VAD), vascular length density (VLD),

vessel bifurcation number (VBN), and vascular fractal dimension

(VFD).

• VT: Measures the tortuosity of the microvasculature.

• VAD: Measures the total length of perfused retinal

microvasculature per square millimeter.

• VLD: Measures the ratio of the number of microvascular

centerline pixels to the area of the analyzed region.

• VBN: Counts the vessel bifurcation points.

• VFD: Measures the geometric complexity of the

microvasculature.

We applied D2Net to segment 90 OCTA images from AD,

MCI, and Control groups (30 images per group), trained on the

full FOCA dataset. The metrics VT, VAD, VLD, VBN, and VFD

were measured at the SVC layer of the OCTA images, with results

shown in Table 5. VT showed a slight decrease in AD and MCI

compared to Control, though the difference was not statistically

significant (p > 0.05), suggesting minimal changes in tortuosity

in early cognitive impairment. However, both VAD and VLD

decreased significantly in AD and MCI compared to Control (p <

0.01), indicating reduced blood supply and a sparse microvascular

structure as cognitive impairment progresses. VBN increased in AD

and MCI, while it was lower in Control (p < 0.01), suggesting

vascular remodeling to compensate for ischemic conditions.

Finally, VFD slightly decreased in AD and MCI (p < 0.01),

consistent with studies showing reduced geometric complexity in

the microvasculature as cognitive impairment progresses.

We also visualized these metrics as blood flow direction

maps, shown in Figure 8. Due to space limitations, results for

two subjects from each group are displayed. These findings

suggest that retinal microvascular changes are closely linked

to cognitive impairment stages. In particular, the significant

changes in VAD, VLD, VBN, and VFD emphasize their

potential for distinguishing AD and MCI patients from healthy

controls. Future research should explore how these metrics

can be used to track cognitive impairment progression and

therapeutic effectiveness.

6.4 Limitations

Our work highlights the limitations of previous microvascular

segmentation tasks, which rely on detailed information from

small field-of-view (FOV) scans. During our experiments, we

found that D2Net consistently performed best in cross-domain

data prediction. This led us to explore segmentation of images

scanned across different visual fields. However, we discovered

significant discrepancies between vascular structures in small

and large FOVs. In cross-field segmentation, noise and artifacts

are often misidentified as vascular structures, leading to over-

segmentation. Moving forward, we plan to further investigate

cross-domain and large-field segmentation tasks in medical

imaging, with a focus on disentangled segmentation across

different domains.

7 Conclusion

We have developed a dual-stream disentangled representation

network (D2Net) for OCTA retinal microvascular segmentation.
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FIGURE 8

Visualization of direction maps of blood flow signals. The same color represents the same blood flow direction.

The network effectively separates vascular structures from noise

and artifacts, improving segmentation accuracy, especially in

microvascular regions. The DCE module enhances vessel distance

correlation, capturing low-dimensional information often lost

during convolution and pooling. Experimental results show that

D2Net reduces interference from noise and artifacts, performs well

in microvascular and larger vascular region segmentation,

and demonstrates strong generalizability. Additionally,

statistical analysis of retinal morphology measurements for

Control, MCI, and AD patients suggests that D2Net supports

clinical diagnosis.
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