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Brain functional connectivity
analysis of fMRI-based
Alzheimer’s disease data

Maitha S. Alarjani * and Badar A. Almarri *

Computer Science Department, College of Computer Sciences and Information Technology (CCSIT),

King Faisal University, Al-Ahsa, Saudi Arabia

The prevalence of Alzheimer’s disease (AD) poses a significant public health

challenge. Distinguishing AD stages remains a complex process due to

ambiguous variability within and across AD stages. Manual classification of

such multifaceted and massive data of brain volumes is operationally ine�cient

and vulnerable to human errors. Here, we propose a precise and systematic

framework for AD stages classification. The core of this framework discovers

and analyzes functional connectivity among regions of interest (ROIs) of a human

brain. Multivariate Pattern Analysis (MVPA) is applied to extract features that reveal

complex functional connectivity patterns in the brain. These features are then

used as inputs for an Extreme Learning Machine (ELM) model to classify AD

stages. The model’s performance is assessed through comprehensive evaluation

metrics to ensure robustness and reliability. Applying this framework on datasets

which contain meticulously validated fMRI scans such as the OASIS and AD

Neuroimaging Initiative datasets, we validate the merit of this proposed work.

The framework’s results show improvement in the collective performance of

two-class and multi-class classification. Feeding ELM with MVPA features yield

decent outcomes given a generalizable and computationally-e�cient model.

This study underscores the e�ectiveness of the proposed approach in accurately

distinguishing AD stages, o�ering potential improvements in AD and AD stages

detection.

KEYWORDS

Alzheimer’s disease, cognitive, functional connectivity, extreme learning machine,

machine learning, computational analysis

1 Introduction

Alzheimer’s disease (AD) is a progressive and irreversible brain disorder that slowly

destroys memory and thinking capabilities, ultimately causing loss of cognitive function.

It is one of the diseases that cause brain damage (1). The disease typically begins with

mild memory loss and may be mistaken for normal aging. As it progresses, individuals

may experience significant cognitive impairment, difficulty with language, problem-solving

challenges, and a loss of the ability to carry out daily activities (2)

The buildup of tau tangles and amyloid-beta (A) protein in the brain are two of

the main symptoms of AD. This neurodegenerative brain ailment progressively impairs

cognition in its initial stages and eventually results in mortality. AD is a progressive

condition that worsens over time. There are two subtypes of AD (3):

• Early-onset AD and late-onset AD Uncommon genetic abnormalities characterize

early-onset AD in patients under the age of 65 (5%).

• AD with a late onset, which affects people with an age onset older than 65 years old

(95%) and is not caused by inherited mutations.
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Advanced neuroimaging techniques, including magnetic

resonance imaging (MRI) and positron emission tomography

(PET), allow researchers to detect structural and molecular

markers of AD in a non-invasive way, offering both structural and

functional insights without the need for physical intervention.

Meanwhile, methods like cerebrospinal fluid (CSF) analysis and

blood biomarker assessment, though invasive, provide crucial

molecular information that can aid in early diagnosis and tracking

of AD progression. As neuroimaging technologies continue to

evolve at a rapid pace, the volume and complexity of multi-modal

data generated are also increasing, posing challenges for data

integration, interpretation, and management (4) (see Figure 1).

AD cannot be cured at this time. Some medications can be

helpful in symptom control; however, these treatments cannot

stop the course of the disease. Unfortunately, the experiments that

were conducted to test various strategies, Drugs that diminish the

amount of the A peptide or encourage its clearance via active

or passive vaccination, for example, failed to show therapeutic

efficacy. There have been several tried-and-true methods, such as

medications that reduce the amount of A protein or encourage the

elimination of the through active or passive vaccination (5, 6).

To address these challenges, computer-aided machine learning

techniques have become essential in processing and analyzing

neuroimaging data efficiently and accurately. Such techniques

enable the extraction of subtle patterns and predictivemarkers from

large datasets, which may otherwise be undetectable to the human

eye. Early identification of AD and suitable treatment intervention

are crucial aspects of care, as the illness can start years or even

decades before dementia develops. As a result, there is a growing

focus being placed on carrying out clinical tests in groups consisting

of people with no persons with mild cognitive impairment (MCI)

or dementia who are in danger of acquiring AD.

1.1 Research contributions

This recent systematic review highlighted the limited

number of studies employing MVPA in Alzheimer’s research (7).

The scarcity was attributed to the complexity and technical

challenges of MVPA, including the need for specialized knowledge

and difficulties in data preprocessing, feature selection, and

classification. Despite the numerous algorithms in the literature

demonstrating high accuracy, our focus on MVPA is justified

by its unique capability to compute the connectivity between

brain regions, offering insights into the underlying patterns of

neural activity that other methods might overlook. Our approach

aims to enhance the understanding of AD by leveraging the

advanced analytical power of MVPA, which could complement

and potentially surpass existing methods in capturing the intricate

network interactions in the brain.

The key focus areas of this research include:

• Understanding AD through brain connectivity patterns.

• Mapping fMRI scans to a parcellation model using the AAL3

brain atlas to investigate brain connectivity patterns using

Machine learning.

• Defining a framework model using Multivariate Pattern

Analysis (MVPA) for classification using ELM classifier.

• Evaluate the model using performance metrics by comparing

with OASIS and ADNI datasets.

The remaining papers are arranged as follows: offers a

comprehensive review of the literature on AD in Section 2,

Section 3 The Theoretical Background of AD and brain imaging

are explained, Section 4 details our methodology, including Data

Information, Preprocessing Pipeline, Functional Connectivity, and

Classification Algorithms for different stages. Section 5 presents

the discussion, while Section 6 covers the conclusions and

future directions.

2 Previous studies

Because early illness identification is so important, numerous

scientists are interested in returning to this field to find a therapy

for AD. Thus, themost essential works in this field will be presented

in this part.

The Graph Convolutional Network (GCN) model, which was

established in this study (8), has two main functions: it can be

used to diagnose MCI by differentiating MCI from normal controls

(NCs), and it can also be used to predict the risk of dementia

by categorizing NCs from participants in the OASIS-3 dataset.

Possibly having MCI but not yet receiving a formal diagnosis.

The findings show that the recommended GCN outperforms both

baseline GCN and Support Vector Machine (SVM), with a peak

accuracy of 91.2% and an average accuracy of 80.3%, which is 23.5%

higher than SVM and 11.7% higher than baseline GCN. Although

individual FC often outperforms global FC, under the GCN design,

global graphs with the right connections can occasionally achieve

similar or even greater performance than individual graphs. GCN

categorization is influenced by brain network connections like the

default mode, visual, ventral attention, and somatomotor networks.

In this study, Alarjani (9) identified key features in fMRI data

using a patch-based approach (PBA) and two 3D-CNNs with

fully connected layers. We applied decision tree and k-nearest

neighbor classifiers to detect AD, MCI, and NC using the ADNI

dataset, achieving improved classification performance compared

to previous studies.

Kolla et al. (10) used data-driven analysis of resting-state

fMRI data to examine functional brain nodes and their effects

on graph metrics. It introduces a new measure known as “node-

metric coupling” (NMC), which considers the connection between

graph metrics and node sizes. The findings suggest that NMC may

serve as a valuable biomarker for brain disorders, underscoring

the critical need to account for variations in node sizes in

neuroimaging studies.

In order to improve the diagnosis of moderate cognitive

impairment (MCI), HE et al. (11) employed a graph convolutional

neural network to extract information from functional brain

networks automatically. GCN with multimodal connectivity,

integrates diverse connectivity patterns, achieving 92.2% accuracy

and an AUC of 0.988 on the ADNI dataset, outperforming

previous methods.

Ĩsmail et al. (12) proposed a novel model combining Capsule

Network (CapsNet) and Recurrent Neural Network (RNN) to

capture the full 4D information of fMRI data for AD diagnosis. The

trial’s results demonstrate its effectiveness. Compared to normal
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FIGURE 1

Invasive and non-invasive approaches.

control (NC), AD was identified with 94.5% accuracy, while

61.8% accuracy separated early eMCI from late moderate cognitive

impairment (lMCI).

This study used the edge time series paradigm in network

neuroscience to examine the connections between brain and

behavior in AD and related diseases. An examination of

data from 152 persons examined the connections between

neuropsychological processes and functional brain networks. New

connections between attention, limbic, front parietal, and default

mode networks and linguistic, executive, cognitive, and attention

processes were found by the study. These results demonstrate how

edge time-series analysis can go beyond conventional functional

connectivity techniques to reveal brain dynamics associated to

illness (13).

Kadhim et al. (14) created a computer-aided brain diagnostic

(CABD) system capable of detecting AD from brain scans. By

employing feature extraction techniques along with fMRI and

Positron-Emission Tomography methods, the AD Neuroimaging

Initiative (ADNI) data is analyzed. The developed method

demonstrates an impressive classification accuracy rate of 97.7% for

ADNI images.

Amini et al. (15) developed a machine learning (ML) method

for AD diagnosis. To predict the severity of the disorder, they

used fMRI data and MMSE scores using CNN, Decision Trees,

SVM, KNN, RF, and LDA. Their CNN approach achieved an

efficiency of 96.7% and sensitivity rates of 98.1% for low, 95.2% for

mild, 89.0% for moderate, and 87.5% for severe AD. These results

indicate superior performance compared to previous techniques in

detecting AD severity.

Wang et al. (16) created a classification system for fMRI

data that differentiates between AD, early and late moderate

cognitive impairment (EMCI and LMCI), and healthy

controls (HC) using graph theory and machine learning. A

dual graph theoretical approach was merged into a unique

multi-feature selection technique. Classification accuracy

varied from 83.30% to 96.80%, suggesting that graph and ML

combined might be useful for diagnosing AD, particularly

when local metrics are used to indicate functional changes

in specific brain areas. This study explored deep learning

for early Alzheimer’s detection, focusing on fMRI data after

finding genetic factors had little impact. A 3D CNN model

achieved 92.8% accuracy using ADNI data, highlighting

the potential of deep learning in medical imaging for AD

prediction (17).

Alarjani and Almarri (18) applied multivariate pattern analysis

(MVPA) to compute connectivity among nodes and to analyze

activity across multiple brain voxels. The proposed approach is

applied to two public datasets and then classified using various ML

classifiers. The results were assessed using performance metrics,

and comparisons were conducted to differentiate between various

stages of AD.

Table 1 presents a comparative analysis of various studies

on AD detection techniques, highlighting their respective

methods and limitations. This assessment serves as a valuable

reference for understanding the unique attributes and

challenges associated with both the graph-based optimization

approaches in the context of analyzing brain signals for

AD detection.
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TABLE 1 Comparison with existing studies.

Research study Techniques used Advantages Limitations

(8)

Graph GCNs capture brain region relationships Training GCNs on fMRI data requires

Convolutional and detection functional connectivity changes, substantial computational resources

Networks improving early dementia detection due to model complexity.

(9)

3D-CNNs extracted features, Used two 3D-CNNs with dual input Deep learning was applied solely

and decision tree/k-NN classified layers for enhanced feature extraction for feature extraction, not for classification

(10)

ICA on fMRI data extracts FNC NMC is used as a potential biomarker, Results depend on chosen atlas,

matrices and analyzes brain revealing a new link between affecting generalizability

connectivity via graph metrics node size and graph metrics

(16)
Integrated graph measures with Highlighted local brain measures’ Multi-feature selection and graph analysis

ML for fMRI analysis role in detecting cognitive impairments are computationally intensive

(14)

CNNs combined with Histogram Feature HFE and Canny edge Performance depends on ADNI

Extraction were used to classify AD and NC detection improve dataset quality and size,

subjects by extracting gradient orientation features feature detection limiting generalizability

(13)

The Edge Time-Series method is used to investigate Identifies dynamic interactions A limited dataset size

interrelationships between brain function between various brain nodes was used.

and neuropsychological measures

(11)

GCN extracts functional Multimodal connectivity improves The study included only

brain network features performance by combining patterns NC and MCI groups

(12)

FC matrices were used for Combined CapsNet and RNN for enhanced Performance was lower in classifying

feature extraction from fMRI data spatial and temporal feature learning lMCI vs. eMCI, with 61.8% accuracy

(15)

KNN, SVM, DT, LDA, An effectively classifies Alzheimer’s Small datasets may lead to

and RF were used to classify AD stages using fMRI and MMSE scores overfitting in some methods

(18)
MVPA analyzes brain connectivity The study utilized the OASIS The study lacks deep

and voxel activity patterns and ADNI datasets learning models

3 Background

AD progresses through stages: normal, very mild cognitive

impairments, mild cognitive impairments, moderate dementia,

and severe dementia (see Figure 2). MCI stages are mentioned

among dementia and cognitively healthy people. Although MCI

patients have lower cognitive function than healthy controls, their

indications are less severe than those of Alzheimer’s. There is a

distinct deterioration in the association between the period with

symptoms, MCI, and dementia phases of AD and typical cognitive

aging. When someone has MCI, their thinking abilities showminor

but significant changes that are visible to them and their family and

friends, yet they are still capable of going about their daily lives.

MCI affects about (15–20)% of persons 65 and older (19). A sizeable

fraction of people can return to their normal cognitive process,

whereas others can stay stable and avoid developing AD. The

likelihood of acquiring AD is higher in people with antipsychotics

and multi-domain MCI, while patients without dementia MCI are

more likely to get other kinds of dementia (20, 21).

Brain imaging represents a transformative advancement in

cognitive neuroscience. Before the advent of imaging technologies,

brain research relied heavily on animal models and post-injury

evaluations in humans. Diagnosing brain injuries posed significant

challenges due to limited tools for assessing internal damage.

Modern imaging techniques now provide precise methods for

studying the brain, including mapping brain pathways, assessing

brain density, and analyzing brain function (19).

Functional magnetic resonance imaging (fMRI) is among the

most commonly used techniques for studying brain function, as

it can capture high-resolution, real-time images of neural activity.

This capability makes it invaluable for understanding both normal

and abnormal brain processes. By detecting fluctuations in blood

flow and oxygenation levels associated with neuronal activation,

fMRI enables researchers to map specific regions of the brain

that are engaged during various cognitive, sensory, and emotional

tasks. This method provides insights into normal brain function,

as well as potential abnormalities linked to neurological and

psychiatric conditions. The depth of information fMRI offersmakes

it invaluable for studying complex neural networks, identifying

biomarkers, and tracking subtle changes in brain function over

time (22).

This work’s primary focus is on computer-aided diagnostics.

Achieving accuracy and reliability is crucial for its proper

functioning in a healthcare setting, making it one of the most
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FIGURE 2

Phase of MCI stage.

challenging issues in medical image processing. The goal is

to categorize patients’ cognitive states as CN, MCI, and AD

based on their fMRI data. The categorization for AD diagnosis

has been the subject of numerous investigations. In additional,

He et al. (23) proposed the Spatiotemporal Graph Transformer

Network (STGTN) for diagnosing AD using rs-fMRI data. Unlike

traditional methods, STGTN captured spatiotemporal features and

used adversarial training to enhance robustness and address limited

sample sizes. The model achieved high accuracy (92.58% for AD

vs. NC and 85.27% for eMCI vs. lMCI), outperforming existing

methods. Additionally, it highlighted crucial brain connections for

different classification tasks.

Support Vector Machine (SVM) was utilized by Jo et al. (24)

to provide an enhanced AD classification system based on

MRI indicators for categorizing CN vs. AD SVM was also

utilized in Coupé et al. (25) to create a model that relied on

the correlation of changes in transverse brain structure—

multimodal indicators of MCI development with numerous

kernel learning (KCL). However, use a model structure with

k-Nearest Neighbors (KNN) (26). Suggested a best-resolution

patch-based attributes extraction to retrieve cross-sectional

and transverse information from MRI scans of the brain.

Several medical fields have used deep learning, including image

retrieval, segmentation techniques, image identification, and

computer-aided diagnostics.

4 Methodology

The proposed system framework, depicted in Figure 3, consists

of several key stages: data collection, data preprocessing, feature

engineering, functional connectivity analysis, classification, results

generation, and analysis. Each stage is integral to the system’s

workflow, facilitating the precise and efficient processing of data.

The subsequent sections provide a detailed overview of each stage

and its role in the framework.

4.1 Dataset collection and preparation

This study leverages two extensively used neuroimaging

databases, the AD Neuroimaging Initiative (ADNI) and the

Open Access Series of Imaging Studies (OASIS), which are

critical resources in Alzheimer’s research. These datasets provide

a comprehensive range of imaging and clinical data, enabling

detailed analyses of disease progression, early detection, and

biomarker discovery.

The rs-fMRI dataset from ADNI was selected for its ability

to capture brain activity during resting states without external

stimuli. The dataset includes both male and female participants in

different stages of AD (27). Specifically, 55 individuals (30 males

and 25 females) were selected for the AD stage, 35 individuals (20

males and 15 females) for MCI, and 95 individuals (50 males and

45 females) for NC. Imaging data were collected using a Philips

scanner with an 80◦ flip angle. To address the class imbalance

inherent in the dataset, the Synthetic Minority Oversampling

Technique (SMOTE) was employed. SMOTE generates synthetic

examples for underrepresented classes, effectively balancing the

data set and enhancing the performance of the model (28).

For the OASIS dataset, fMRI data were accessed through the

official website using verified credentials, which allowed free access

to the data. Each 3D image is structured as a volume composed

of multiple 2D images. The dataset also includes male and female

participants across Alzheimer’s stages, with 101 individuals (72

males and 29 females) for the AD stage, 95 individuals (40 males

and 55 females) for MCI, and 102 individuals (60 males and

42 females) for NC. These datasets collectively provide a robust

foundation for exploring Alzheimer’s biomarkers and functional

connectivity analysis (29). Figure 4 shows the distribution of

subjects across the AD, MCI, and NC stages for the ADNI and

OASIS datasets.

4.2 Preprocessing of fMRI

Since medical images are complex and, hence, hard to extract

the features from an image, we need to process images in the dataset

using many techniques. All pre-processing techniques are essential

for the model during training to make the images clearer, more

useful, and perform well. Also, it’s necessary during deployment as

a part of the model to make the input shape of the images match

the input shape of activations from the same brain regions that are

accurately captured (30).

Data preparation was conducted using the CONN toolbox (31).

The CONN includes several tasks, including segmenting the

functional fMRI data, realigning, normalizing, and slicing time

correction. It also eliminates noise via de-nosing procedures (32).

4.2.1 Realignment
The second step in our preprocessing pipeline was realignment,

aimed at correcting head motion and ensuring that the position

of the brain is consistent across all images. This process aligns the

functional images so that activations from the same brain regions

are accurately captured. In our study, we followed the rational
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FIGURE 3

An overview of the proposed framework, including data collection, preprocessing, application of the AAL atlas, connectivity computation, feature

selection, model application, and final classification using the ELM classifier.

FIGURE 4

fMRI scans of NC, MCI, and AD subjects.
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FIGURE 5

Image realignment: (A) Each fMRI scan can di�er slightly in angle or position because of minor head movements or inconsistencies in the scanner. As

a result, the voxels (3D pixels) in each scan may represent slightly di�erent spatial locations in the brain. This misalignment can create inconsistencies

when analyzing data from multiple scans, as the same brain region may not appear consistently in the same voxel at di�erent time points. (B) The

realignment process modifies each scan to ensure a consistent angle and position, aligning them so that each voxel corresponds to the same spatial

location in the brain across all scans.

FIGURE 6

Image registration: (A) slice without registration (original image). (B) After registrar fMRI with structural MRI.

ranges of motion, which were –0.2 to 0.5 for normal controls and

–0.2 to –0.15 for individuals with AD (33). As demonstrated in

Figure 5.

4.2.2 Registration
Image registration in fMRI refers to the process of

aligning multiple images acquired from different time

points or subjects to a common reference space. This

alignment is crucial for combining or comparing data

across different scans or individuals. In fMRI studies,

image registration typically involves aligning functional

images acquired during the scanning session to a standard

anatomical template or to each other (34), as demonstrated in

Figure 6.

4.2.3 Slice time correction
The ascending method is commonly employed in slice-time

correction to address the temporal misalignment of slices in fMRI

data. The slices are obtained interleaved rather than sequentially

during the collection of fMRI data. The processing starts with

inferior slices and progresses to superior slices for each volume

for example, in the Philips slice order, the slices are acquired in

1, 4, 7, 6, 9, etc. Slice time correction reorders these slices to be

sequential, which is crucial for proper analysis and interpretation

of the data (35), as shown in Figure 7.

4.2.4 Spatial normalization
SN is a crucial preprocessing step, particularly because brain

sizes can vary significantly among individuals. The goal of this
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FIGURE 7

Slice time correction inspired by Poldrack et al. (30).

procedure is to reduce the total squared deviations between the

functional image and a template image that is commonly used.

Normalization matches each brain scan to a common standard

space, such the Montreal Neurological Institute (MNI), enabling

meaningful comparisons across different people and studies. In our

study, we employed indirect normalization to MNI space, ensuring

that our functional images were successfully transformed into a

standardized space for further analysis (36). The normalization

procedure is shown in Figure 8.

4.2.5 Spatial smoothing
SS is a crucial preprocessing step in neuroimaging data analysis

that raises the signal-to-noise ratio and signal sensitivity. We used

a 6 × 6 × 6 mm Gaussian kernel to process the data in our

investigation. This kernel size represents the spatial extent over

which neighboring voxel values are averaged. By smoothing the

data in this manner, we effectively reduce noise and enhance the

detect-ability of true underlying signals, improving the quality of

subsequent analyses (37). The Smoothing procedure is shown in

Figure 9.

4.3 Feature engineering

Feature engineering is vital in neuroimaging analysis,

particularly for AD and other neurological disorders. This process

entails selecting and transforming raw neuroimaging data into

relevant features that enhance both model performance and

interpretability (38).

4.3.1 Brain regions of interest
ROIs are specific brain areas that are selected for analysis based

on their known or suspected involvement in a particular process or

function. In the context of major brain networks, ROIs are typically

selected to represent critical nodes or hubs within these networks.

In our paper, we utilized automated anatomical atlas 3 (AAL3) for

feature extraction to identify relevant brain regions or patterns in

the fMRI data. Following this, extract the time series within each

ROI (39). In Figure 10 plotting regions of interest from the AAL3

atlas that includes 170 nodes (i.e., regions). Table 2 represents all

brain regions in the AAL3 atlas.

4.4 Functional connectivity

Multi-voxel pattern analysis (MVPA) is a neuroimaging

technique that examines activity patterns across multiple brain

voxels (volumetric pixels). Unlike traditional methods that focus on

average activity within specific brain regions, MVPA analyzes the

distribution of activity across voxels to decode or classify cognitive

states, stimuli, or tasks. This approach offers a significant advantage

over single-voxel analyses, as it provides greater sensitivity for

identifying specific cognitive states in the brain. By considering

the relationships and interactions between voxels, MVPA can

detect subtle and distributed patterns of neural activation that

might be missed by region-based analysis. This makes MVPA

particularly effective in revealing complex brain processes, offering

insights into how different brain areas work together to support

cognitive functions. Additionally, MVPA has been widely used in

studies involving visual perception, language processing, decision-

making, and various other cognitive tasks, contributing to a deeper

understanding of brain organization and function (40).

Figure 11 presents the time series data for a specific voxel within

an fMRI dataset, highlighting the changes in intensity over time.

The plot shows the intensity values of the selected voxel at various

time points. The x-axis is labeled “TR” (time repetitions), while the

y-axis is labeled “Voxel Intensity.”

In Figures 12, 13 display the dimensions of the correlation

matrix, which is the number of ROIs squared. This shows how each

pair of ROIs for two distinct datasets is connected to the other.

4.5 Classifier

In 2004, Huang et al. (41) introduced the Extreme Learning

Machine (ELM), a straightforward yet highly effective single

hidden-layer feedforward neural network approach. ELM

randomly selects input weights and hidden layer biases, calculates

output weights analytically, and overcomes the limitations of

conventional single-hidden-layer feedforward neural network

(SLFN) learning methods. This technique has found extensive

applications across diverse disciplines, including illness diagnosis,

traffic sign detection, picture quality evaluation, and beyond (42),

as shown in Figure 14.

Our proposed model leverages the inherent speed and

efficiency of ELMby integrating additional techniques that improve

performance on high-dimensional neuroimaging data, especially

functional MRI (fMRI). We tackle the complexity of this data

using innovative ensemble methods combined with ELM. In this

approach, multiple ELM classifiers are trained on various subsets

of features or data splits, and their predictions are aggregated. This

ensemble method enhances robustness and minimizes the impact

of data variability, ultimately boosting classification accuracy. For

our Model, we set the parameters as follows: hidden units = 32,

activation function = “softmax,” random type = “normal,” and

C= 0.1.
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FIGURE 8

Spatial normalization.

FIGURE 9

Spatial smoothing.

FIGURE 10

Regions of interest from the AAL3 atlas.

4.6 Result and performance validation

The proposed AD classification model is evaluated using

multiple metrics, each offering distinct insights into performance.

Accuracy measures the ratio of correctly predicted positive

and negative cases to the total samples, providing an overall

assessment of the model’s categorization ability as per (44,

45). However, it may be unreliable for imbalanced datasets as

mentioned by Alqahtani et al. (46). To address this limitation

as suggest by Pruthviraja et al. (47), Salehi et al. (48), and

(49) precision, and recall are also used. Precision evaluates

the model’s ability to correctly identify positive cases among

all predicted positives (50), focusing on prediction accuracy

(51). Recall measures the model’s sensitivity by identifying all

positive cases in the dataset (52). The F1-score, which calculates

the harmonic mean of precision and recall, balances these
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TABLE 2 Name of regions for AAL3 atlas.

Part of regions Name of brain regions

Frontal(Front) Lobe

Precentral (LR) Front Sup (LR) Front Mid (LR)

Front Inf Oper (LR) Front Inf Tri(LR) Front Inf Orb 2(LR)

Rolandic Oper (LR) Supp Motor Area (LR) Front Sup Medial (LR)

Front Med Orb (LR) Rectus (LR) OFCmed (LR)

OFCant (LR) OFCpost (LR) OFClat (LR)

Cingulate Mid (LR) Cingulate Post (LR)

Temporal Lobe

Olfactory (LR) Hippocampus (LR) ParaHippocampal (LR)

Amygdala(LR) Heschl(LR) Temporal Sup (LR)

Temporal Pole Sup (LR) Temporal Mid (LR) Temporal Pole Mid (LR)

Temporal Inf (LR)

Occipital Lobe

Calcarine (LR) Cuneus (LR) Lingual(LR)

Occipital Sup (LR) Occipital Mid (LR) Occipital Inf (LR)

Fusiform (LR)

Parietal Lobe

Postcentral (LR) Parietal Sup (LR) Parietal Inf (LR)

SupraMarginal (LR) Angular(LR) Precuneus (LR)

Paracentral Lobule (LR)

Cerebellum (Cere)

Cere_Crus1 (LR) Cere_Crus2 (LR) Cere 3 (LR)

Cere4 5 (LR) Cere 6 (LR) Cere 7b (LR)

Cere 8 (LR) Cere_9 (LR) Cere 10 (LR)

Vermis (Verm)

Verm 1_2 Verm_3 Verm_4_5

Verm_6 Verm_7 Verm_8

Verm_9 Verm_10

Thalmus

Thal_AV (LR) Thal_LP (LR) Thal_VA (LR)

Thal_VL (LR) Thal_VPL (LR) Thal_IL (LR)

Thal_Re (LR) Thal_MDm (LR) Thal_MDl (LR)

Thal_LGN (LR) Thal_MGN (LR) Thal_PuA (LR)

Thal_PuM (LR) Thal_PuL (LR) Thal_PuI (LR)

Insula Insula (LR)

Caudate Caudate (LR)

Not in Lobe1 wise regain

ACC sup (LR) N_Acc (LR) ACC_sub (LR)

ACC_pre (LR) N LC (LR) Raphe_M

SN_pc (LR) SN_pr (LR) VTA (LR)

SN_pr (LR) Red_N (LR) Raphe_D

Not in Lobe2 wise regain Pallidum (LR) Putamen (LR)

metrics, ensuring a comprehensive evaluation of the model’s

performance (53).

In Table 3 binary classification tasks, the ELM model

demonstrated strong performance, achieving an accuracy rate of

87.80% in distinguishing between NC and MCI, 86.16% between

AD/NC, 85.9% MCl/NC, and 83.1% AD/MCL/NC. Also, in term

of recall we got 87.10% distinguishing between NC and MCI,

86.3% between AD/NC, 85.9% MCl/NC, 83.7% for multi-class

classification (AD/MCL/NC). In term of prec we got 87.3%

distinguishing between NC and MCI, 86.57% between AD/NC,

85.8% MCl/NC, 89% for multi-class classification (AD/MCL/NC).

In term of f1-score we got 87.90% distinguishing between NC

and MCI, 86.22% between AD/NC, 85.9% MCl/NC, 83.20%

for AD/MCL/NC for OASIS dataset. In ADNI dataset the binary

classification tasks demonstrate the strong performance of the ELM

model. It achieved an accuracy of 94% in distinguishing between

AD and MCI, 93.9% between AD and NC, 90.6% between MCI

and NC, and 94.1% for multi-class classification (AD/MCI/NC).
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FIGURE 11

Plot of voxel intensity over time in fMRI analysis.

In terms of recall, the model achieved 94% for AD vs. MCI, 93.9%

for AD vs. NC, 90.68% for MCI vs. NC, and 94% for multi-class

classification. Precision results showed 94.82% for AD vs. MCI,

93.8% for AD vs. NC, 92.9% for MCI vs. NC, and 94.04% for the

multi-class task. Finally, the F1-score performance was 94.14% for

AD vs. MCI, 93.9% for AD vs. NC, 91.3% for MCI vs. NC, and

94.5% for multi-class classification (AD/MCI/NC). SO, the result

of ADNI dataset outperform OASIS.

Comparing the OASIS and ADNI datasets, the ELM model

performs significantly better on the ADNI dataset across all metrics.

This suggests the ELM model has a higher generalization capacity

and may be more compatible with the ADNI data. These findings

imply that the ADNI dataset may offer higher-quality or more

discriminative features, which enhances the model’s ability to

distinguish between different cognitive stages more effectively.

The performance differences between the two datasets underscore

the importance of selecting the right dataset in machine learning

studies focused on AD detection. Furthermore, this indicates

that ELM models can leverage specific characteristics of detailed

datasets for improved classification results.

4.7 Experimentation setup

All experiments are performed on a PC with 3.7 GHz Intel

Core i7-8GB RAM, 250 GB SSD. Programming environment

includes 64-bit Windows 10 pro as operating system, MATLAB

R2019a, Python 3.9.12, and TensorFlow. Neuroimaging

analysis and processing were conducted using the CONN

and Statistical Parametric Mapping (SPM) toolbox, which provides

comprehensive preprocessing pipelines for fMRI data.

5 Discussion

It is essential to accurately classify MCI as an intermediate stage

because this can help in early detection and timely intervention,

potentially delaying the progression of AD. Our model’s ability

to improve classification accuracy at this stage indicates its

potential for clinical applications in monitoring cognitive decline.

The integration of neuroimaging data, especially functional MRI

(fMRI), is crucial for understanding the neural correlates of MCI

and AD. This approach enables the identification of specific

patterns of brain activity linked to these conditions.

Accessing medical data from local sources is essential for

advancing healthcare research and improving patient outcomes.

We faced significant challenges in collecting data from local

hospitals, mainly due to the scarcity of available local fMRI

datasets related to AD. Strict patient privacy regulations and

personal concerns about data sharing created obstacles to obtaining

the necessary information. While these regulations are vital for

protecting patient confidentiality, they can also impede research

progress by limiting the availability of relevant datasets.

Changes because of AD, About 100 billion neurons with

widespread, growing delays make an adult brain in good health.

Individual neurons can connect to other neurons thanks to their

expansions. Information is transferred at these interconnections,

known as synapses, in the form of brief chemical outbursts emitted

by one neuron and picked up by a sensory cell. About 100 of these

are further harmed by the brain’s diminished capacity so that its

primary energy, glucose, is metabolized.

According to studies, the brain alterations linked to Alzheimer’s

may start 20 years or earlier symptoms manifest. In the early

stages of brain alterations, the brain compensates for these changes,

enabling individuals to continue functioning normally. However,

as neuronal damage progresses, the brain’s ability to compensate

diminishes, leading to mild cognitive decline. Over time, this

decline can interfere with daily activities and impact memory and

problem-solving abilities. Recognizing these early signs is crucial

for timely intervention and management. Eventually, neuronal

loss is so severe that people exhibit overt cognitive decline,

comprising signs like memory loss or time- and place-related

confusion. Even later, basic physical processes like swallowing

become compromised. Although some of the early brain changes

related to AD can be recognized in study designs, further study is

required to improve the accuracy of the instruments before they can
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FIGURE 12

Functional networks of OASIS dataset: (A) functional connectivity of NC, No. of Subject 002_S_0295. (B) Connectivity of AD, No. of Subject

002_S_0413. (C) Functional connectivity of MCI, No. of Subject 002_S_0729.

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2025.1540297
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alarjani and Almarri 10.3389/fmed.2025.1540297

FIGURE 13

Functional networks of ADNI dataset: (A) functional connectivity of NC, No. of Subject OAS30001. (B) Connectivity of AD, No. of Subject OAS30090.

(C) Functional connectivity of MCI, No. of Subject OAS30009.
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TABLE 3 Comparison of results from di�erent fMRI scan methods with our work.

Type of class

References Perf No. of dataset Model AD/MCI AD/NC MCI/NC AD/MCI/NC

(8)

Acc - - - - 80.3% -

Rec OASIS GCN - - - -

Prec - - - -

f1-Sc - - - -

(9)

Acc - - - 96%

Rec ADNI - - - 96%

Prec KNN - - - 97%

f1-Sc - - - 96%

(11)

Acc - - 92% -

Rec ADNI GCL - - 89% -

Prec - - 95% -

f1-Sc - - 91% -

(12)

Acc - 94.5% - -

Rec ADNI CapsNet - - - -

Prec - - - -

f1-Sc - - - -

(14)

Acc - - - 97.7%

Rec ADNI CNN - - - 91.3%

Prec - - - 93.64%

f1-Sc - - - -

(15)

Acc - - - 96.7%

Rec ADNI CNN - - - -

Prec - - - 97%

f1-Sc - - - -

(16)

Acc - 96.80% - -

Rec ADNI SVM - - - -

Prec - - - -

f1-Sc - - - -

(18)

Acc 95.47% 95.11% 93.5% 92%

Rec ADNI & OASIS HML 95.47% 95.11% 93.49% 93%

Prec 96.22% 95.83% 93.34% 92%

f1-Sc 95.50% 95.13% 93.54% 92%

∗Our study

Acc 87.80% 86.16% 85.9% 83.1%

Rec OASIS 87.10% 86.3% 85.9% 83.7%

Prec ELM 87.3% 86.57% 85.8% 89%

f1-Sc 87.90% 86.22% 85.9% 83.20%

Acc 94% 93.9% 90.6% 94.1%

Rec ADNI 94% 93.9% 90.68% 94%

Prec 94.82% 93.8% 92.9% 94.04%

f1-Sc 94.14% 93.9% 91.3% 94.5%

∗ Wemeasure the performance of our trained model using evaluation metrics.
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FIGURE 14

Architecture of extreme learning machine inspired by Ding et al. (43).

be used in clinical settings. Additionally, although several are being

evaluated in clinical studies, there are now no medications that can

prevent, slow, or stop these alterations (54)

6 Conclusions

The degenerative and irreversible brain condition known

as AD progressively impairs thinking and memory abilities,

eventually resulting in the loss of mental function. In this paper,

we computed functional connectivity (FC) using Multivariate

Pattern Analysis (MVPA). Then we classified fMRI data from

the longitudinal OASIS-3 and ADNI datasets into binary and

multi-class categories using the Extreme Learning Machine (ELM)

model. While our approach demonstrates promising results,

several limitations need to be considered. The use of deep

learning models, such as the Extreme Learning Machine (ELM),

although efficient, introduces challenges. Deep learning models

are often viewed as “black boxes,” making it difficult to interpret

the features they learn and understand the decision-making

process. This lack of interpretability is a significant limitation,

especially in clinical settings, where understanding the rationale

behind predictions is essential. Future research will employ our

techniques to analyze electroencephalography (EEG) recordings

of individuals in the resting state (i.e., with their eyes closed)

who are suffering from AD, front temporal dementia, and

NC (55). We are going to use EEGNet, a specific kind of neural

network architecture made to handle EEG data. Using unprocessed

fMRI data, our suggested approaches can accurately predict

Alzheimer’s illness. This research can improve our understanding

of the disease and how it progresses, which has enormous

clinical relevance.
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